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We investigate the onset of three-dimensionality in a Mach 5 slender double wedge flow as the
turn angle at the compression corner increases. Beyond a critical angle, the two-dimensional flow
destabilizes to three-dimensional perturbations and results in growth of spanwise periodic flow struc-
tures. We carry out global linear stability analysis to identify the critical turn angle and the nature
of the associated three-dimensional instability. At the critical angle, an unstable mode is present in
the separation bubble and the reattached boundary layer. The mode is associated with streamwise
streaks in wall temperature downstream of the corner. The existence of the unstable mode and its
growth rate is confirmed with direct numerical simulations. It is found from budget analysis that
streamwise deceleration of the recirculating flow plays a dominant role in the three-dimensional
instability. Wavemaker analysis suggests that the instability does not have a centrifugal origin.
Linear stability analysis of the steady state flow at an angle beyond bifurcation is also carried out.
The spanwise wavelength of the most unstable mode obtained at this turn angle compares well with
experimental observations.
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I. INTRODUCTION

High speed flow over a double-wedge is a canonical case of shock boundary layer interaction [1]. Flow
deflection at the compression corner can cause the laminar boundary layer to separate due to inviscid pressure
rise. This is associated with a separation/reattachment shock system. A strong turn angle at the corner
can cause an incoming laminar boundary layer to become turbulent post-reattachment[2]. Experiments of
supersonic and hypersonic flow on compression ramps and double wedges exhibit three-dimensionality in the
form of streamwise striations or streaks in wall temperature near reattachment, that persist downstream.
Streamwise vortical structures associated with these streaks result in heat transfer with large local peaks in
span. The three-dimensional flow structures have a destabilizing effect on the boundary layer and play a
role in the transition process[3, 4].

Streamwise streaks are observed in compression corner experiments over a range of Mach numbers, turn
angles and wall temperatures[2, 5–9]. The presence of streaks near reattachment is not restricted to compres-
sion ramps[3]. For example, they also appear in axisymmetric geometries such as the hollow cylinder-flare[10]
and oblique shock boundary layer interaction[11]. The wavelength associated with the streamwise streaks
is usually on the order of twice the boundary layer thickness at reattachment[2, 12]. De Luca et al. [13]
and de la Chevalerie et al. [14] studied the role of the unit Reynolds number and the leading-edge to corner
distance on the spanwise wavelength of the streaks on a Mach 7 15◦ compression ramp. The wavelength
was found to decrease with increasing unit Reynolds number and with decreasing flat plate length. Roghelia
et al. [2] found that increasing the radius of curvature of the flat plate leading edge for as Mach 8 15◦ ramp
increases the wavelength of the streaks on account of the thicker boundary layer. This suggests that the
wavelength of the streamwise vortices scales with the local boundary layer thickness.

The observed streaks are often attributed to Görtler-like vortices[15] that arise from destabilizing centrifu-
gal forces near reattachment where the streamline curvature is highly concave. Görtler instability implies a
role of upstream perturbations[16] in the formation of streaks. Therefore, some studies have proposed leading
edge imperfections as the origin of streamwise streaks. However, Matsumura et al. [17] studied streamwise
vortices on a scramjet forebody geometry and mentioned that streamwise streaks appear on HyperX even
with a high quality leading edge. Roghelia et al. [18] demonstrated a similar spanwise heat flux pattern
on two different 15◦ ramps in two different experimental facilities. Zhuang et al. [19] visualized a Mach
3 turbulent boundary layer turning on a 25◦ compression ramp using nano-tracer planar laser scattering
and found that Görtler-like streamwise vortices are not only present at the reattachment but in the entire
separation bubble. Priebe and Mart́ın [20] and Priebe et al. [21] analyzed a Mach 2.9 turbulent boundary
layer turning at a 24◦ corner and conjectured the presence of a global instability associated with the observed
streamwise vortices. Brown et al. [22] carried out three-dimensional simulations of a Mach 11 cylinder-flare
and reported that the three-dimensionality in the separation bubble can result in the formation of heat flux
streaks near reattachment independently from the Görtler instability of the reattaching shear layer. There-
fore, instabilities in the separation bubble and their connection to streamwise streaks post-reattachment
merit attention.

Literature on high speed compression ramp flow instabilities is scarce. Inger [12] first explained the
presence of three-dimensional counter-rotating vortices at reattachment as a steady neutral perturbation
that can exist in reattaching flow idealized as a Hiemenz-type stagnation point flow. The work is similar
to the Görtler−Hämmerlin analysis[23, 24], where the stability of flat plate stagnation flow is investigated
with respect to three-dimensional perturbations. Fletcher et al. [25] and Cassel et al. [26] used the unsteady
supersonic triple-deck equations to discover the presence of a two-dimensional instability in the recirculation
region beyond a critical ramp angle.

Several studies have focused on three-dimensional instabilities in oblique shock boundary layer interaction.
Oblique shock interaction is similar to compression ramp interaction, although a major difference is the
presence of an impinging shock in the former case. The inviscid flow turns once on the compression ramp,
but twice in the presence of an oblique shock impinging on the wall. Dwivedi et al. [27] used adjoint-
based optimization to obtain streak-like perturbations that can rapidly amplify post-reattachment. However,
the analysis was restricted to the reattached boundary layer and did not consider reversed flow in the
separation bubble. ‘Global’ stability methods[28] that can account for flow recirculation, have also been
applied to oblique shock boundary layer interaction. Global linear stability considers the linear stability of
small amplitude perturbations superposed on a steady base flow state without assumptions on the spatial
variation of the base flow and the directionality of perturbation waves. This makes global analysis suitable
for investigating the stability of separated flows. Robinet [29] and Hildebrand et al. [30] have applied
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global stability analysis to study the bifurcation of the nominally two-dimensional interaction to three-
dimensionality in Mach 2.15 and Mach 5.92 interactions respectively. In the Mach 5.92 case[30], corrugation
in the impinging shock foot was found to play a role in the physical mechanism sustaining the three-
dimensional instability. Global stability analysis has been also used in the past to study the onset of
three-dimensional instability in an incompressible separation bubble[31–33], backward facing step[34] and
open cavity flows[35]. In these stability analyses, when the strength of the two-dimensional recirculation
increases beyond a critical value, a three-dimensional instability causes topological changes in the flow[31].

We apply global stability analysis to shock/boundary layer interaction on a slender double wedge. Ex-
perimental visualization of regularly spaced streaks on a nominally two-dimensional flow-field over a double
wedge suggests the existence of an unstable spanwise periodic perturbation. Since the streaks are not related
to finite span effects[4], the physical system presents itself as an ideal candidate for global stability analysis
where perturbations are assumed to be periodic in span. We consider ‘slender’ double wedges where the flow
turn angle at both ramps is small, close to 10◦. This is important for two reasons. First, the inviscid shock
structure changes from Edney type VI to Edney type V/IV/IVr[1] with increasing turn angle. Therefore,
small and large turn angle regimes involve fundamentally different inviscid-viscous interaction. Second, on
double wedges with large first ramp turn angle, the two dimensional boundary layer can be susceptible to
large three-dimensional perturbation growth prior to separation[36, 37]. In the double ramp experiments by
Caljouw [36], this growth is visualized via oil flow and temperature-sensitive paint as streaks upstream of
the interaction. The physical system may then no longer be simply hypothesized to have originated from a
globally unstable mode of the steady-state two-dimensional flow field. The boundary layer undergoing sepa-
ration in such a case is already three-dimensional due to the growth of external perturbations and results in a
recirculation bubble different from a two-dimensional steady recirculation. Moreover, if the two-dimensional
steady state flow is unstable to two-dimensional perturbations[38, 39], it is non-trivial to compute it from a
numerical standpoint. Therefore, we investigate the intrinsic three-dimensionality[40] in the slender double
wedge flow and the associated wall temperature streak patterns. Perturbations originating upstream of the
separating boundary layer are absent in this analysis and ‘Görtler-like’ instability at separation or reattach-
ment is not considered. The low-pass spatio-temporal amplification properties of the recirculation bubble
with respect to extrinsic perturbations has been investigated in the case of oblique shock boundary layer
interaction by Sansica et al. [41, 42] and in the slender double wedge interaction by Dwivedi et al. [43].

Although the present work investigates the flow on a slender double wedge, the findings in this paper
also apply to a flat plate compression ramp. This was demonstrated in GS et al. [40] where the experiment
of Bleilebens and Olivier [9] on a heated flat-plate compression ramp was considered. Here, we focus on
a double wedge because the reference experiment[7] incorporated a long test time of 7 seconds, which is
relevant to the asymptotic stability of the shock-boundary layer interaction.

The paper is organized as follows. In section II, we linearize the compressible Navier-Stokes equations in
conserved variables and present a finite-volume based discretization for the linearized equations. In section
III, we construct the linear stability eigenvalue problem corresponding to the geometry and flow conditions
corresponding to the experiment[7] conducted in the High SuperSonic Tunnel (HSST) at the University of
Manchester on a 12◦/22◦ double wedge. We demonstrate the bifurcation of the two dimensional steady-
state flow to three-dimensionality via a global instability as the turn angle at the second ramp is gradually
increased. The results from global linear stability analysis are corroborated with direct numerical simulations
and a simplified physical mechanism of the instability is presented. In section IV we compare the predictions
from global linear stability with the experiment. Verification of the linearized equations is presented in the
Appendix.

II. NUMERICAL METHODOLOGY FOR LINEAR ANALYSIS

We analyze the stability of the slender double wedge flow by investigating the associated small perturbation
dynamics. The governing equations for small perturbations are linear after terms involving higher powers of
perturbation quantities are neglected.

Linear stability of compressible flows involves transport of two thermodynamic perturbation variables
in addition to the flow perturbation variables. Previous global stability analyses linearize the governing
equations in primitive variable sets such as (p, ui, T ) [29] and (p, ui, s) [30], or the conserved variable set
(p, ui, E) [35]. We linearize the equations in the conserved variable set as its validity and accuracy in the
presence of shocks has been studied in the past [44, 45]. Also, compressible base flow calculations typically
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solve for the conserved variable set. Employing linearization in the conserved variables is therefore relevant.
We construct a global linear stability solver that is fully unstructured and uses a finite volume discretization
for the linearized compressible Navier-Stokes equations. The unstructured methodology is expected to make
global stability analysis of high-speed flows of complex geometry configurations more convenient.

Later, in subsection II B, we discuss the specific discretization employed for the current work. Our method-
ology discretizes the linearized compressible Navier-Stokes equations. An alternate method is to linearize
the discretized non-linear equations as is done via numerical differentiation in Mack and Schmid [46], for
example. The two methods have been compared in Hall et al. [47] for conserved variable perturbations.

A. Conserved variable based linearization

The compressible Navier-Stokes equations in the conservation form are

∂U

∂t
+
∂Fj
∂xj

+
∂Fv

j

∂xj
= 0 (1)

where U is the vector of conserved solution variables, Fj = Fj(U) is the inviscid flux vector and Fv
j is the

viscous flux vector.

U =


ρ
ρu
ρv
ρw
E

 , Fj =


ρuj

ρuuj + pδ1j
ρvuj + pδ2j
ρwuj + pδ3j
(E + p)uj

 , Fv
j =


0
σ1j
σ2j
σ3j

σijui + qj

 (2)

Here, E = Eint+ρukuk/2 is the total energy and Eint is the internal energy of the gas. The viscous momentum
flux is σij = −µ(Sij − 2/3Skkδij) and the molecular heat diffusion is qj = −κ∂jT . Sij is the strain rate
tensor. The viscosity of air is computed using the Sutherland’s law of viscosity µ = µ(T ). Conductivity κ for
air is evaluated corresponding to a Prandtl number Pr ' 0.72. The conserved flow variables are decomposed
into the base and small fluctuation components, U = U + U′ such that ‖U′‖ <<

∥∥U∥∥. The superscript ‘′’
denotes the perturbation quantities and the overbar denotes the base flow variables. The convective flux can
be expanded using Taylor series about U as

Fj(U) = Fj(U) +
∂Fj
∂U

∣∣∣∣
U

U′ +O(U′2) (3)

The viscous flux involves spatial gradients in the primitive variable set VT = (ρ, u, v, w, T ) and can be
written in the form[48]

Fv
j = Mjk

∂

∂xk
V (4)

and decomposed into the base state viscous flux and perturbation flux as

Fv
j (U) = Fv

j (U) + Mjk
∂

∂xk
V′ + M

VD

j V′ (5)

The matrices Mij contain the transport coefficients, and can be found in the Appendix. We neglect the
terms that consist of viscosity perturbation µ′ due to perturbation in temperature. Including these terms
increases the computational cost of factoring the sparse matrix, but as is observed from direct numerical
simulations later in the paper, their contribution to the instability growth rate is negligible. For the freestream
conditions considered in our study, we find from DNS that µ′ terms are relevant only in the region of shock-
shock interaction and are at least an order of magnitude smaller in the separation bubble and the boundary

layer. The term M
VD

j is a rank 1 tensor and arises from linearization of the viscous dissipation σijui term.

Subtracting the governing equations for the base flow state U from Eq 1, we obtain the governing equations
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for small compressible perturbation (Eq 6)

∂U′

∂t
+

∂

∂xj

(
Āj + Āv

j

)
U′ = 0

Āj =
∂Fj
∂U

∣∣∣∣
U

, Āv
j =

(
Mjk

∂

∂xk
+ M

VD

j

)
N

(6)

Since perturbations are small, the conserved variable set U′ and the primitive variable set V′ can be linearly
transformed. Here, the matrix N is the transformation matrix such that V′ = NU′. The use of conserved
perturbation variables results in a conserved form of linear governing equations.

B. An unstructured finite-volume discretization

The conserved form of linearized Navier-Stokes equations can be discretized spatially using a finite volume
framework. The semi-discrete form of Equation 6 can be expressed as

∂U′c
∂t

+
1

Vc

∑
f

(
(Āj + Āv

j )SjU
′
)
f

= 0 (7)

where the subscript ‘c’ refers to the cell and ‘f ’ refers to the face. Sk is the face normal vector scaled with
the face area. We apply the Modified Steger Warming type flux splitting [49] to the inviscid linearized flux.

ĀfU
′
f ≈ Ā+

f U′fL + Ā−f U′fR = Āf
U′fL + U′fR

2
+ (Ā+

f − Ā−f )
U′fL −U′fR

2
(8)

where U′fL,U
′
fR indicate the left and the right reconstructed conserved perturbation values at the face

and Āf = ĀjSj is evaluated using (UfL + UfR)/2. Writing (Ā+
f − Ā−f ) as |Ā|, the dissipative portion

of the linearized perturbation flux can be expressed as |Ā|(U′fL − U′fR)/2 and on the lines of the low-
dissipation flux methodology of Subbareddy and Candler [50], it may be selectively activated at shocks and
contact discontinuities by convolving the expression with an appropriate sensor α. High order polynomial
interpolation for U′fL,U

′
fR using neighboring cell and gradient values may be used to increase the spatial

order of accuracy[51].

While solving the compressible Navier-Stokes equations, second and higher order spatially accurate solu-
tions require limiting in the non-smooth regions to ensure the TVD (total variation diminishing) property of
the solution. Although perturbation variables do not develop shocks, while propagating through the shock,
the perturbation characteristics encounter a discontinuity in wave speed. Therefore, higher-order spatial
discretization of the perturbation equations requires limiters. A one-dimensional analog is linear wave prop-
agation in heterogeneous media, where the application of limiters results in non-oscillatory solution at the
interface[52–54]. However, perturbations may be accurately propagated through a normal shock without the
use of limiters, with violation of the TVD property. For example, a third order upwind method predicts the
transmission coefficient of an acoustic perturbation wave incident on a normal shock within 5% for a M = 3
normal shock (figure in Appendix).

It must be noted that the approach followed in this work involves linearizing the governing equations and
applying the limiters to the discretized linear equations as a numerical treatment for accurate solution. An
alternate approach is linearization of the discretized compressible Navier-Stokes equations which involves
linearization of the limiters themselves. In this work, we do not use limiters as we solve the temporal eigen-
problem and do not numerically propagate perturbations in time. For the slender double wedge problem
considered, the oblique shock angles are small and we find that the second-order symmetric inviscid pertur-
bation flux (U′fL = U′L,U

′
fR = U′R, α = 0) suffices for obtaining physical solutions to the eigenproblem,

without the use of limiters on the perturbation variables. Zero numerical dissipation also avoids damping the
eigenvalues of the normal perturbation modes ensuring physically accurate asymptotic temporal behavior.

The gradient operator in the viscous Jacobian Āv
j is evaluated using a deferred correction approach[55].
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FIG. 1. An illustration of the 2D stencil for linearized viscous flux computation

The cell center gradients are computed using weighted least squares methodology[56]

∂φ

∂xk

∣∣∣
f

=
∂φ

∂xj
sjsk +

∂φ

∂xk
− ∂φ

∂xj
sjsk (9)

≈ dN(f)
R φR + d

N(f)
L φL +

1

2

( ∑
c∈N (R)

dLS(R)
c φc +

∑
c∈N (L)

dLS(L)c φc

)
=

∑
c∈(N (L)∪N (R))

dfcφc (10)

where φ is any physical quantity. As illustrated in Fig.1 for a two-dimensional stencil, sk denotes the face
normal vector, L and R are the cells sharing f , and N (R) is the set of cells consisting of R and its immediate
neighbors. The face gradient ∂kφ|f is expressed as a linear combination of the φ values in the cell stencil
N (L) ∪ N (R) with the weight coefficient associated with cell c denoted by dfc . The coefficient dc[LS(e)]
corresponds to the gradient at cell e evaluated using the weighted least squares method outlined in Shima
et al. [56], while dc[N(f)] corresponds to the gradient at face f evaluated using φL and φR along the face
normal sk. This form of face gradient is consistent with the viscous flux used for base flow computation in
the compressible finite volume code US3D[57].

To compute spanwise periodic global eigenmodes, we seek perturbation solutions of the following form

U′(x, y, z, t) = U′2D(x, y) exp(−i(ωr + iωi)t+ i2πz/λz) (11)

where λz is the wavelength of the perturbation mode and ωi is the growth rate. Substituting this perturbation
form in the linear system of equations (Eq 7) results in a generalized eigenvalue problem for U′2D, which we
solve using the shift-invert approach with the software PARPACK[58] and SuperLU[59].

III. BIFURCATION TO THREE-DIMENSIONALITY

In this section, we study the global linear stability of the two-dimensional high speed flow on a slender
double wedge with respect to three-dimensional perturbations. A range of wedge turn angles is considered.
For all interactions, the flow is globally stable to two dimensional perturbations. In this case, constraining the
DNS to remain two-dimensions allows us to evaluate steady state solution to the compressible Navier-Stokes
equations. Beyond a certain turn angle, the two-dimensional steady state solution is unstable with respect to
three-dimensional perturbations. Using global stability analysis, we identify the critical turn angle at which
the flow first supports an unstable mode. The spatial structure of the unstable mode is also obtained from
the analysis. We verify this three-dimensional instability by carrying out three-dimensional direct numerical
simulations. Further, we analyze the physical mechanism of the instability and demonstrate that streamwise
deceleration of the separated flow plays an important role in the emergence of three-dimensionality.

A. Flow configuration and computational setup

The slender double wedge geometry we consider corresponds to the experiments of Yang et al. [7]. Figure
2 shows the geometry and the free-stream conditions considered in this work.
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FIG. 2. Slender double-wedge geometry and free-stream conditions.

FIG. 3. (Left) Mach number field on the 12◦/20◦ slender double wedge at free-stream conditions mentioned in
figure 2 and (right) 2D streamlines visualizing the recirculation region marked with the separation(S), corner (C) and
reattachment (R) points.

The two-dimensional steady state flow on the double wedge is computed using the finite volume compress-
ible flow solver US3D[57]. The second order accurate Modified Steger-Warming fluxes using MUSCL limiters
are employed. The numerical method for computation of the base state has been validated with hypersonic
double- wedge and double-cone experiments in the past [60]. The solutions are time-marched to steady state
implicitly using the method with CFL ramping. Since the enthalpy and temperature encountered in the
flow-field are low, we do not consider real gas effects in this study, and consider a calorically perfect gas that
follows the ideal gas law. An adiabatic wall boundary condition is imposed to match the conditions in the
experiment where the test times last as long as seven seconds. For a grid with 105K cells, the streamwise
grid resolution in the separation zone is 0.08 mm and the wall-normal transverse grid spacing in the shear
layer region is approximately 0.04 mm. In the Appendix we show that this resolution is sufficient for global
mode analysis. Increasing the resolution further has no appreciable effect on the resulting mode shapes or
associated eigenfunctions.

Figure 3 shows the Mach contours and the recirculation bubble streamlines at the compression corner. The
boundary layer separates 12.15 mm upstream of the corner, forming a separation shock. The δ99 thickness of
the boundary layer at separation is L = 1 mm. The separated shear layer reattaches 11.4 mm downstream
of the corner and is associated with a reattachment shock. The separation, corner and the reattachment
points associated with the 2D steady state flow-field are marked as S, C and R in the figures that follow.

In the forthcoming sections, we will use the boundary layer thickness at separation, L as the reference
length scale for non-dimensionalization.

B. Global stability analysis

In order to investigate the onset of three-dimensionality, we evaluate the stability of the 2D flow to spanwise
periodic perturbations of the form in Eq 11. The spanwise wavelength of the perturbation is denoted by λz
and the wavenumber by β = 2π/λz. The resulting eigenvalue problem is solved for a set of the least stable
eigenvalues ω. The imaginary part of the eigenvalue ωi corresponds to the growth rate of the perturbation
and the real part corresponds to the frequency.
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FIG. 4. Growth rate vs angular frequency: shift in the eigenvalue spectrum at the least stable λz with increase in
turn angle at bifurcation.

We carry out stability analysis for several base flows at different turn angles at the same free-stream
conditions. As shown in Figure 5 (left), we vary the turn angle θ by rotating the second wedge about the
corner point while the angle of the first wedge is held constant to approximately preserve the state of the
boundary layer prior to separation. Increasing θ increases the strength of the recirculation.

The boundary conditions on the perturbations for linear stability analysis are implemented in the form of
sponge zones upstream near the leading edge, downstream on the shoulder of the slender double wedge, and
in the wall normal direction near the freestream. The sponge zone is implemented using a blending function
θ(x, y) that varies from 0 in the interior to 1 in the boundary sponge zones. The global matrix entry Ãij is
obtained from the sponge-free non-dimensional system matrix Aij as

Ãij = Aij(1− θ) +
θδij
ε
, ε = 10−10

The function θ consists of a tanh based sigmoid function of the type tanh((x − x0)/ls) as an indicator of
where the perturbations must decay to zero. In the present case, the left and the right boundary θ functions
are centered at x0 = 3.5, 82.0 mm respectively, with ls = 1 mm. The modes reported in this study are found
to be insensitive to the strength and location of the sponge, provided they are away from the recirculation
region.

For the geometry and conditions considered in this study, we find that the least stable eigenvalue is three-
dimensional and non-oscillatory i.e. ωr = 0, β 6= 0. Figure 4 shows the eigenvalue spectrum at λz ∼ 6.28 for
θ at 7.5◦(black) and 8◦(red). The spectra for the two turn angles show that an increase in θ increases the
growth rate ωi associated with the least stable mode, and beyond the critical angle, the 2D flow becomes
unstable to 3D perturbations with ωi > 0.

The analysis is repeated for different perturbation spanwise wavelengths λz, and it is found that the growth
rate ωi peaks for at a specific spanwise wavelength, selected by the base flow. With respect to perturbations
with very large and vanishingly small wavelengths, the base flow is found to be stable for all turn angles
(Fig.5).

Figure 6 shows the 2D cross-section of the perturbation variables corresponding to the most unstable
eigenmode and the three-dimensional visualization of w′, T ′ isosurfaces. All the perturbation variables are
real, except w′ which is 90◦ out of phase and is purely imaginary. While the spanwise perturbation velocity
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FIG. 5. (Left) schematic showing the variation of the turn angle via rotation of the second ramp about the compression
corner and (right) associated bifurcation of the 2D steady flow on the slender double wedge.

is confined to the separation bubble, the perturbation in temperature is present well within the reattached
region of the boundary layer. The pressure perturbation field exhibits periodicity in the streamwise direction
with a wavelength that is approximately equal to the separation bubble length. We also note that the velocity
perturbation components u′ and v′ are in phase with respect to spanwise variation. The pressure component,
in the upstream half of the separation bubble is 180◦ out of phase with u′. The w′ component is 90◦ out of
phase with u′ and p′.

To illustrate the role of the three-dimensional instability on the topology of the recirculation, we superpose
the unstable mode on the base flow with the three-dimensional velocity field obtained as ui = ūi + εu′i.
Here, u′i denotes the normalized perturbation velocity field and the parameter ε denotes the amplitude of
the perturbation. The perturbation velocity field is normalized by the L2 norm of the non-dimensional
perturbation vector. Freestream base state values are used for non-dimensionalization. The resulting three-
dimensional flow-field is therefore a function of the amplitude of the eigenmode imposed. Small amplitude
causes a small deviation from the two-dimensional state but changes the flow topology. As shown in Fig.7,
the flow inside the recirculation bubble organizes into 3D cells of spanwise length λz/2. These cells are
bounded in the spanwise direction by xy-planes where w = 0. Because no flow can cross these planes, fluid
elements belonging to a cell never leave it. Within a cell, however, fluid elements follow three-dimensional
paths. One edge of each cell coincides with the spanwise location of maximum recirculation bubble strength
while the other edge coincides with the location of minimum recirculation strength. The cell pair repeats
across the span.

To understand the three-dimensional flow within a cell, we consider the flow’s critical points, in a manner
similar to the analysis of Theofilis et al. [31]. In each xy-plane, one critical point can be found at the center,
or core of the recirculation bubble. A critical point in a plane is defined as the point where the in-plane
velocity vector is zero. Because of the three-dimensional nature of the flow, this critical point can be a stable
spiraling focus, an unstable spiraling focus, or a center. At the edge of the cell that corresponds to maximum
recirculation strength, the core critical point is an unstable focus. While, at the opposite end of the cell,
coinciding with minimum recirculation strength, the core critical point is of stable spiraling focus type. The
flow expelled at the unstable focus spirals towards the stable focus along an outer corkscrew type trajectory.
Flow movement towards the stable focus is strongest at the outer periphery of the recirculation cell. As the
outer flow approaches the plane of minimum recirculation, it is attracted back into the core. In the core,
flow travels in span in the opposite direction, making the flow in the cell self-contained in the span. Figure 7
(right) illustrates the topology of this three-dimensional flow pattern. In the core of the recirculation bubble,
the flow from the stable focus to the unstable focus transports spanwise vorticity from regions of minimum
to the regions of maximum recirculation, reinforcing the instability.

We can also understand the flow topology by considering “no-slip” critical points along the wall, as
shown in Fig. 8 (top row). In this view, the separation line is an attractor where streamlines from the
oncoming flow meet those of the recirculating flow downstream. Conversely, the reattachment line is a
repulsor where flow impinging on the wall splits and turns both upstream and downstream. The three
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FIG. 6. The unstable eigenmode at λz/L = 6.28: 2D slices and 3D isosurfaces of different perturbation variables.

dimensional perturbation imparted by the global mode forms an alternating series of saddle and stable-node
critical points along the separation line and a series of saddle and unstable-node critical points along the
reattachment line. For the compression ramp, we observe that the stable nodes along the separation line
align with the unstable nodes along the reattachment line downstream. This is the same pattern as that
observed for incompressible separation bubbles [32], but is different from the pattern observed for obique
shock/boundary layer interactions. In the latter case, the stable and unstable nodes were 180◦ out-of-
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FIG. 7. (Left) Topology of the 3D bubble reconstructed with ui = ūi + εu′i, ε = 2.The streamlines on the top are red
(ui > 0) and those at the bottom are colored blue (ui < 0); (right) a simplified model of the 3D bubble structure
with foci marked as squares (red denotes unstable, blue denotes stable).

FIG. 8. The 3D bubble reconstructed with ui = ūi + εu′i with increasing mode amplitude ε = 5 (left), 10 (center)
and 20 (right); top row: critical points on the wall streamlines (circles denote nodes, stars denote saddle points and
squares denote foci, red denotes unstable and blue denotes stable), middle row: volume streamlines colored with T ′

(red is positive and blue is negative), and bottom row: the vortex tube passing through the stable foci.

phase[30].

As the amplitude of the perturbation is increased, although the basic structure of the 3D cell remains the
same, the flow structure evolves. Increasing ε and its effect on critical points at the wall is shown in Fig.8
(a,b,c). In addition to the critical points in the separation and reattachment lines, critical points appear
within the separated flow region beyond a certain perturbation amplitude. The stable foci move closer to the
wall with increasing ε, and eventually attach to the wall. This may be understood physically by visualizing a
straight vortex line along the z axis in the two-dimensional base flow. As seen in the figure panels (g)-(i), the
vortex line develops spanwise undulations that grow as a result of the instability. Beyond a certain critical
amplitude, the vortex line splits and attaches to the wall, connecting with its image. Also, Fig. 8 (d,e,f)
shows that T ′ is positive at the foci and negative away from them. The velocity field reconstructed with a
large amplitude perturbation (ε >> 0) reveals interesting flow features. The counter-rotating streamlines
on the wall are similar to those observed due to corner vortices in oblique shock boundary layer interaction
with turbulent incoming boundary layer[61]. Similarly, the spanwise tornadoes seen in Fig. 8 (f) have been
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Run no. θ Lz (mm) Lz/λz Initial condition Verification

Run1 8.0 14.0 2 U2D Flow becomes 3D

Run2 7.5 14.0 2 U2D Flow remains 2D

Run3 8.0 28.0 4 U2D λz with the highest growth rate

Run4 8.0 14.0 2 U2D + εU′ Growth rate

Run5 8.0 7.0 1 U2D + εU′ Wall streamline topology near non-
linear saturation

TABLE I. List of DNS runs for GLSA verification

earlier observed via PIV in the work of Dussauge et al. [62].

C. Direct numerical simulations

In this section, we use direct numerical simulations (DNS) to verify

- the existence of the three-dimensional instability and dominant spanwise wavelength, independently of
linear analysis

- the growth rate of the linearly unstable eigenmode by introducing the mode obtained from GLSA into
the DNS

- the appearance of late time wall-streamline pattern as predicted from linear analysis

We use low-dissipation second-order spatially accurate kinetic-energy-consistent fluxes in the US3D hyper-
sonic flow solver to perform DNS. Crank-Nicolson implicit time-marching is employed with a CFL number
of 5, which we found to be low enough such that lowering it yet further did not change the evolution of
the three-dimensional perturbations. A 3D grid created by spanwise extrusion of the 2D grid used for the
steady baseflow calculations is used. Periodic boundary conditions are applied in the span. In all DNS
runs, the spanwise resolution is fixed at 32 grid points per wavelength corresponding to the most unstable
perturbation mode.

The set of DNS cases considered in this study are listed in Table I. As a first check, we first consider
two DNSs (Run1 and Run2) corresponding to θ = 8.0◦ and 7.5◦. According to global stability analysis,
the former should remain stable to 3D perturbations while the latter should be unstable. While we do
not initialize either simulation with three-dimensional perturbations, numerical round-off error provides an
extremely low-level three dimensional forcing in both cases. After running the simulation for long time,
we observe that three dimensional flow structures emerge in the θ = 8◦ flow, but the θ = 7.5◦ run for the
same amount of time remains two-dimensional. This confirms that the global stability analysis does indeed
predict the onset of three-dimensionality in double-wedge flow and that DNS is consistent with the stability
analysis.

Furthermore, we observe that the three-dimensional flow structures in the case of θ = 8◦ have spanwise
wavelength λz corresponding to the wavelength associated with the highest growth rate predicted from
linear stability analysis (see Fig. 4, right). To check that this λz is independent of the spanwise length of the
computational domain, we perform a third DNS (Run3) at θ = 8◦ but with a computational domain having
twice the spanwise width. This simulation resulted in structures having the same spanwise wavelength as
the first simulation Run1 (Run1 captured two spanwise wavelengths, while the simulation with the double
spanwise domain captured four as seen in Fig.10 (right)). This demonstrates that besides predicting the
onset of three-dimensionality, the global stability analysis predicts the spanwise wavelength of the three
dimensional flow structures that emerge from the 2D flow.

Figure 10 (left) shows a comparison of the mode shape predicted by global stability analysis and a slice
through the three-dimensional flow that develops in Run1. The qualitative agreement is remarkable, indi-
cating that global stability analysis accurately captures the essential flow physics of the predicted three-
dimensional double-wedge instability. Quantitative comparisons of the profiles is shown in Fig. 9. The w
profiles in figure are lifted and more amplified downstream in comparison to the linear stability results. This
is not a surprising result. As the instability grows, it affects the upstream boundary layer and the separation
shock, resulting in modifications to the nominally two-dimensional state. We must emphasize that Fig. 9
does not serve as a verification exercise for linear analysis.
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FIG. 9. Profiles of w from case Run1 at late time compared with w′ of most unstable eigenmode of the 2D steady
state flow.

FIG. 10. Spanwise perturbation velocity w′ in DNS Run3 at approximately tU∞/L = 6000

To further verify the global stability results, we measure the growth rate of the three-dimensional pertur-
bation in the DNS. We run θ = 8◦ case initialized it with the linearly unstable global mode overlaid on the
base flow. To save computational resources, we choose a smaller spanwise domain width such that only one
spanwise wavelength is contained within the domain. As seen in Fig. 11 (left), after a brief transient, the
perturbation grows exponentially at the rate predicted by the global stability analysis.

After a very long run time, the global mode in the DNS grows enough that the stable foci in the bubble
core attach to the wall (Fig. 11, right). When this happens, we observe the foci to form in the wall-
streamlines just as predicted from global stability analysis (see Fig. 8). While the perturbation eventually
undergoes non-linear saturation in the DNS, it is interesting to note that the predictions of wall streamline
patterns obtained from linear analysis hold true even after time scales on the order of 400 flow-through times.
However, we do not simulate the three-dimensional flow-field to its asymptotic state as the small growth
rate of the instability results in large computational cost.

D. Physical mechanism of instability

In the previous subsections, we have demonstrated the presence and investigated the evolution of the
three-dimensional instability using global linear stability analysis and direct numerical simulations. In this
subsection, we analyze the physical mechanism driving the instability. This is important because the least
stable eigenmode is structurally similar, below and above the critical turn angle θc. Yet, while the mode
decays at θ < θc, it amplifies for θ > θc. Specifically, we identify the imbalance in the modal dynamics that
causes growth.
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FIG. 11. (Left) comparison of growth rate of the unstable eigenmode between DNS and global linear stability analysis,
and (right) appearance of foci on near-wall streamlines in the DNS flow-field: near-wall streamlines in white, volume
streamlines and wall colored by temperature.

The transport equations for the perturbation quantities ρ′, u′i, p
′, T ′ can be written in the form

Transport(T )︷ ︸︸ ︷ Production(P)︷ ︸︸ ︷ Linearized Lagrangian source(S)︷ ︸︸ ︷ Viscous(V)︷ ︸︸ ︷
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where we have categorized the terms into transport (T ), source (S), production (P) and viscous (V) terms.
The transport terms arise due to advection of the perturbation by the mean velocity. The production
terms, which can be positive or negative, arise from the non-linear advective term with u′i acting on the
mean flow gradients. The source terms correspond to the perturbation component of the inviscid material
derivative of the perturbation. For example, in Eq 12, the source term is (−ρ∇ · ui)′ which when linearized,
is ρ′∇ · ūi + ρ̄∇ · u′i.

In general, any term in one of the four categories mentioned above can amplify or suppress the perturbation
locally. If we quantify the perturbation at a point in space using an energy norm, each term may then be
identified as an amplifier or a suppressor by its contribution to the energy norm. We choose the Chu energy
norm ECE (Eq.16) proposed in [63] to evaluate the contribution budget. The Chu energy norm ensures
that the time-evolution of perturbation energy norm is independent of term involving p′∇ · u′. This takes
into account the kinetic-thermal energy exchange within the perturbation dynamics and avoids unphysical
growth in perturbation energy norm evolution[64].
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2
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(16)
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FIG. 12. (Left) the wall-normal integrated rate of perturbation energy ECE plotted along surface co-ordinate ξ for the
stable and the unstable turn angle and (right) budget of contribution from individual terms; Bezier fits are plotted.
∗ indicates the corner (ξ/L = 12.2) and base flow reattachment point (ξ/L = 23.6); separation point ξ/L = 0 is
outside the plot range.

∂tECE + T = P + S + V (17)

where T = (p̄/ρ̄2)(ρ′/2)Tρ′ + ρ̄(u′i/2)Tu′
i

+ (Eint/T̄
2)(T ′/2)TT ′

P = (p̄/ρ̄2)(ρ′/2)Pρ′ + ρ̄(u′i/2)Pu′
i

+ (Eint/T̄
2)(T ′/2)PT ′

S = (p̄/ρ̄2)(ρ′/2)Sρ′ + ρ̄(u′i/2)Su′
i

+ (Eint/T̄
2)(T ′/2)ST ′

= −∂i(p′u′i)− p̄∂iūi((ρ′/ρ̄)2 + (T ′/T̄ )2)

V = ρ̄(u′i/2)Vu′
i

+ (Eint/T̄
2)(T ′/2)VT ′

The terms that correspond to the four categories for the perturbation energy are obtained by contracting
Eq.(13) with ρ̄u′i, (12) with p̄ρ′/ρ̄2 and (15) with EintT

′/T̄ 2 and adding them together. This results in
Eq.(17). It is important to note that the term categorization is dependent only on perturbation dynamics
(Eqs.(12-15)) and not the definition of the perturbation energy norm (Eq.(16)). For example, the transport
term T for Chu’s energy is different from ūj∂jECE. The norm chosen in this study therefore does not
have any physical implications in the budget analysis other than the weighting of the different perturbation
components.

To evaluate the contribution budget along the streamwise direction ξ , we integrate the term associated
with each category in the wall normal direction η. Here, 2D separation point marks ξ = 0 such that the
streamwise co-ordinate values are ξ/L ' 12 at the compression corner and ξ/L ' 24 at the 2D reattachment
point.

F (∂tECE) = F (ξ) =

∫ L

0

∂tECE(ξ, η)dη

Figure 12 (left) shows the wall-normal integrated contribution F associated with the perturbation energy
ECE. The integrated amplification factor F (∂tECE) is negative for a stable wedge turn angle and is positive
for an unstable turn angle.

The budget plot (Fig. 12 right) shows that the production term dominates in the separation bubble, while
the transport term is the dominant destabilizing term in the reattached boundary layer downstream of the
bubble. The difference in the two angles is that the stronger interaction (larger turn angle) increases the
magnitude of the contribution associated with each term. Past the critical turn angle, the amplifying terms
surpass the suppressor terms in magnitude and the net result is that the perturbation mode amplifies in
time. We should note that the production term is itself a sum of multiple terms involving streamwise and
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FIG. 13. Lines colored on a white-red scale mark the region where the contribution of the mean flow deceleration
term to perturbation energy is positive; mean flow streamlines plotted in grey for comparison.

wall-normal velocities and derivatives. For example, within the ‘production term’ for streamwise velocity

perturbation energy u′
2
ξ/2, the amplification factor of −u′2ξ∂ξūξ is the largest. Here uξ denotes the streamwise

velocity component. In the discussion that follows, we will denote the local streamwise velocity component
uξ with u and the local wall-normal velocity component uη with v for readability.

The budget analysis provides us with information about how and where the perturbation mode is primarily
amplified. We show that the driving mechanism behind the growth of the eigenmode can be traced to a
local exponential instability. We begin by tracking the growth of spanwise velocity which causes flow three-
dimensionality. By examining the magnitude of the terms in the spanwise velocity perturbation equations,
we find that the term involving p′ provides largest amplification. Therefore, growth of w′ is attributed
to development of spanwise pressure peaks and valleys. Similarly, examining the evolution equation for
p′, we find that the peaks and valleys are produced by u′ perturbations. However, the mechanism of p′

amplification in the upstream half and the downstream half of the bubble is different. In the upstream
half, pressure perturbations are amplified by u′ acting against the mean adverse pressure gradient, while
in the downstream half, dilatation of the perturbation ∇ · u′ is the primary destabilizer. The largest term
constituting ∇·u′ is ∂ξu

′ involving streamwise velocity perturbation. After w′ and p′, we then scrutinize the
terms in u′ equation. The production term −u′∂ξū is found to be the primary amplifier term. Streamwise
deceleration in the recirculating flow ∂ξū < 0 results in local u′ evolution of the form u̇′ ∼ ku′ where k is a
postive real number. This is an exponential growth equation. Figure 13 shows that the base flow deceleration
amplifies u′ inside the recirculation bubble. The physical intuition behind this inviscid instability may be
invoked from rapid distortion theory where compression of mean flow leads to growth of perturbations, while
straining of the mean flow makes the perturbations decay. The dominant physical mechanism driving the
growth of spanwise flow structures may therefore be described in the schematic shown in Fig.14.

The η − z plots in Fig.14 show one spanwise wavelength of the perturbation. The w′ = 0 planes are seen
to contain the two cells mentioned in subsection III B. In the upstream half of the bubble, the spanwise
movement of fluid in the bubble is towards the center (stable node at separation, see Fig. 8), while in the
downstream half of the bubble, it is away from the center (unstable node at reattachment). We had earlier
visualized the streamline topology associated with this perturbation field using blue colored streamlines in
Fig.7 (left). As fluid moves from the high to low pressure region, p′ and w′ can be seen to be 90◦ out of
phase.

Previously, we traced the cause of growth in w′ to growth in u′. Similarly, by following the dominant
amplifying terms, we can identify the driver mechanism of T ′ streaks. Temperature perturbation is produced
primarily by wall-normal velocity perturbation v′ working against the base wall-normal temperature gradient
∂ηT̄ in the reattaching shear layer. The primary amplifier term for v′ is found be u′∂ξ v̄. Separately, in the
entirety of the bubble, ∇ · u′ also amplifies T ′. Therefore, like w′, growth of T ′, is indirectly driven by u′.

Although we have postulated a simple local model for the physics that drives the exponential growth of
the perturbation mode, the global nature of the instability involves all terms actively operating together,
particularly the transport terms. The transport of perturbations and the ‘global’ nature of the perturbation
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FIG. 14. Dominant mechanism of instability in the recirculation region; ξ̂ goes into the plane. The compression
corner is at ξ/L = 12. The z axis is stretched by a factor of 1.5 for clarity of illustration.
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mode are physically synonymous.

E. Structural sensitivity

In the previous subsection, we identified the physical mechanism that drives the instability. Here, we
leverage the adjoint linearized Navier-Stokes equations to identify the regions in the flow where the unstable
eigenmode is most sensitive to perturbations. The adjoint mode, corresponding to the unstable mode (or
the direct mode) corresponds to the perturbations that optimally initiate or external perturbation inputs
that optimally trigger the unstable perturbation eigenmode in reponse[65]. We obtain the adjoint mode
corresponding to the direct mode (perturbation eigenmode discussed in subsection III B) by computing the
adjoint eigenvalue problem associated with the discretized direct linear system (Eq 7). Figure 15 (right)
shows the adjoint mode corresponding to the spanwise momentum and is denoted by with a ‘+’ superscript.
The (ρw)+ mode may be contrasted with the (ρw)′ component of the direct mode. While the direct mode is
present primarily in the separation bubble and the reattached boundary layer, the adjoint mode is present
in the upstream half of the separation bubble and all the way upstream in the incoming boundary layer.
Physically, the modulus of the adjoint map in the plot represents the spatial region in which linearly unstable
direct mode is most receptive to external spanwise momentum forcing or the initial spanwise momentum
perturbation.

In supersonic flow past compression corners, the presence of streamwise streaks near reattachment is often
associated with Görtler-like vortices arising from centrifugal instabilities due to strong mean flow curvature.
To understand whether the three-dimensional instability originates in the region of high streamline curvature,
we compute a spatial sensitivity map of the eigenvalue(ω) of the direct mode using the method of Giannetti
and Luchini [66]. The map helps locate the core of the three-dimensional instability by evaluating the
strength of the local feedback of the unstable mode onto itself. The core therefore, has high sensitivity as
well as large perturbation reponse from the mode. At the core, a local modification to the structure of the
global eigenvalue operator produces the greatest change in the eigenvalue, or, equivalently the growth rate
of the eigenmode. For oscillator-type instabilities, the region is often referred to as the wavemaker. The
eigenvalue drift |δω| caused by a spatially localized feedback of the form f = δ(xi − xi,0)U can be shown[66]
to be bound by the ‘wavemaker’ Λ(xi,0).

Λ(xi) =
‖U+(xi)‖‖U′(xi)‖∫
V U+ ·U′dV

(18)

Here, U′ and U+ correspond to the direct and the adjoint eigenmodes associated with the eigenvalue ω.
V is the domain and δ represents the Kronecker delta function. The instability mechanism resides in the
region where the direct and the adjoint modes overlap and is strongest where Λ is maximum. The growth
rate of the unstable eigenmode is most sensitive at that specific location to a change in the two-dimensional
base flow. In the case of the current unstable mode, Fig.16 (left) shows that Λ peaks near the core of the
separation bubble. Interestingly, this location coincides approximately with the location where production
of ECE peaks. The wavemaker analysis therefore establishes the instability mechanism at the core of the
separation bubble.

Separately, we compute the Rayleigh coefficient ∆ (Eq.19) and plot it alongside the eigenvalue sensitivity
field Λ in Fig.16 to compare the regions associated with centrifugal instability and the unstable global mode.
A negative value of ∆ is an inviscid criterion for the existence of short-wave centrifugal instabilities[67]. The
Rayleigh discriminant is defined as

∆ = 2
√
uiuiωz/R (19)

where R is the radius of curvature of the local streamline. The Rayleigh criterion is satisfied around the
separation and reattachment regions, indicating that the ‘wavemaker’ associated with the global instability
and the regions with ∆ < 0 are spatially decorrelated.
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FIG. 15. (Left) the direct mode corresponding to spanwise momentum perturbation, and (right) the corresponding
adjoint mode.

FIG. 16. (Left) Contours of receptivity to spatially localized feedback λ in blue superimposed on the separation
bubble streamlines (grey) and (right) regions with ∆ < 0 (colored in red) plotted alongside region with λ > 0.1λmax

in blue.

IV. COMPARISON TO EXPERIMENTAL OBSERVATIONS

Experimental visualization of wall temperature via temperature-sensitive paint measurements have been
reported for the present geometry and free stream conditions at a turn angle θ = 10◦ in the work of Yang
et al. [7]. The value of 10◦ is beyond the bifurcation point in the turn angle parameter space. Nevertheless,
we evaluate the global linear stability of the two-dimensional steady state flow on this configuration to test
the linear predictions against an experiment.

The validity of the two-dimensional steady flow on θ = 10◦ as a base state may be justified from an initial
condition perspective. In the experiment, the flow sets up from rest U∞ = 0 m/s to U∞ = 792 m/s within
a time-scale in the order of milliseconds. Beyond the critical Re, when the flow becomes unstable to three-
dimensional perturbations, the experimental flow does not move towards the equilibrium three-dimensional
flow state, and then onward as would be the case in numerical continuation. Before the three-dimensional
instability of the marginally unstable 2D steady flow sets in, the freestream velocity increases. Therefore,
if the flow that initially sets up in the experiment is the 2D steady state, the associated three-dimensional
instabilities can be physically relevant.

Figure 17 (left) shows the unstable modes obtained for θ = 10◦ on a ωi − λz plot. The two-dimensional
steady state flow is stable to two dimensional perturbations. Here, the non-dimensional length scale L = 0.001
m is kept unchanged from previous subsections for consistency but does not represent the base flow boundary
layer thickness at separation for θ = 10◦. In contrast to the θ = 8◦ case, several unstable modes are obtained,
including unsteady modes (shown in red). The modes are tracked by the spatial signature of the eigenvector,
and are divided into several mode branches. The most unstable mode is a stationary mode, similar to the 8◦

case, albeit with a smaller wavelength than the 8◦ case. Investigation of the spatial map of the eigenvector
reveals that this mode is structurally different from the mode that was most unstable at the bifurcation
angle. We refer to this new mode branch as ‘B2’, while the mode branch that destabilizes the flow at 8◦ is
labeled as ‘B1’.

Figure 18 shows the w′ component associated with the different mode branches. The difference in B2 and
B1 is clearly observed. In B2, w′ is localized near the core of the separation bubble, slightly downstream of
the corner. Whereas in B1, w′ is present in the entirety of the separation bubble. The wavelength from the
experimental TSP visualization can be seen to compare well with the most unstable wavelength predicted
by global linear stability analysis. This makes the unstable stationary global mode B2, a potential source
of streamwise wall temperature streaks observed in the experiment. The T ′ isosurface associated with B2 is
plotted next to the TSP images from the experiment for comparison (Fig.20).
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FIG. 17. (Left) growth rate of unstable perturbation modes vs spanwise wavelength and (right) eigenvalue spectrum
corresponding to the most unstable spanwise wavelength λz/L = 2.3mm.

FIG. 18. Spanwise component of the perturbation velocity w′ for different unstable mode branches identified in
Fig. 17 with blue denoting negative and red denoting positive values. (Re) and (Im) refer to real and imaginary
components respectively. The w′ fields correspond to normalized eigenvectors of the non-dimensional linear system.

In addition to the stationary branches, two unstable oscillatory mode types, B4 and B5 are observed
(shown in red in Fig.17 left). Branch B4 forks into B3 and B2 as the wavelength λz is decreased. In the
eigenvalue plane ωi − ωr, the two conjugate eigenvalues associated with B4 come closer to the ωi = 0 axis,
merge (at the junction) and then move away from each other along the ωi = 0 axis, forming B2 and B3
respectively. Fig.19 helps visualize this movement in the ωr − λz −ωi three-dimensional space. The angular
frequency ωr associated with the mode B4 changes with perturbation wavelength λz. The real and the
imaginary part of the B4 eigenmode in Fig.18 are found to resemble the steady mode branches B2 and B3
respectively, indicating that the unsteadiness is associated with the perturbation oscillating between the two
stationary instabilities.

The oscillatory mode B5, in contrast to B4, has a constant angular frequency independent of λz with the
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FIG. 19. Locii of the eigenvalues in the growth-rate/frequency/spanwise wavelength space. Projections on the ωi−ωr

and λz − ωr planes is shown in grey.

FIG. 20. (Left) streaks in wall temperature on second ramp, (right) isosurface of temperature perturbation corre-
sponding to the unstable eigenmode at λz/L = 2.2 for θ = 10◦. The reattachment point corresponds to the 2D steady
state solution with adiabatic wall BC. The scales along horizontal and vertical directions in the left figure are the
same. (YZEK 2012: [7])

non-dimensional value ωr = 0.1. The eigenvalue is identified in the spectrum in Fig.17 (right). The real part
of w′ component (Fig.18) exhibits streamwise periodicity in the upstream half of the separation bubble, an
indication of traveling spanwise oblique perturbations that are associated with the temporal oscillations.

The purpose of GLSA at θ = 10◦ in this paper is to establish physical relevance of the most unstable
mode computed using the linearized flow dynamics. The spanwise wavelength of late time wall temperature
variation in the experiment is found to be similar to the most unstable wavelength predicted by the asymptotic
stability analysis. The mode branches uncovered in this process require further analysis to understand the
three-dimensionality and unsteadiness in high speed flow on double-wedges. The analysis on instabilities at
larger turn angles will constitute a part of the future study and is beyond the scope of the current work.

V. CONCLUSIONS

Mach 5 flow on a 12◦/20◦ double wedge is shown to be intrinsically three-dimensional in the absence of
upstream perturbations. The three-dimensionality in the flow is shown to arise from a linear instability of
the two-dimensional recirculation bubble. As a consequence of the resulting three-dimensional recirculation,
a streamwise streak pattern in wall temperature is observed. The streaks begin near the reattachment region
and persist downstream on the second ramp, similar to those observed in experiments. More specifically,
prediction of the streak spanwise wavelength from linear analysis is found to compare well with the wavelength
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deduced from temperature-sensitive paint images on a 12◦/22◦ double wedge experiment. The current results
provide an explanation for the origin of streaks in addition to the centrifugal instability in the vicinity of
flow reattachment. It is not clear which mechanism operates when or whether both mechanisms can operate
together. However, our analysis shows that in the absence of external disturbances, the three-dimensionality
in the separation bubble results in the longitudinal heat flux streaks.

A global analysis which evaluates stability with respect to spanwise periodic small perturbations, is con-
sidered to investigate the three-dimensional linear instability of the two-dimensional steady-state double
wedge flow. Equations for small perturbations in conserved variables are discretized using a second-order
spatially accurate finite volume scheme. The temporal eigenvalue problem resulting from the linear system
of equations for the base flow is then solved to assess its asymptotic stability. We start with a 12◦/12◦ double
wedge with no recirculation and gradually increase the turn angle at the second ramp by rotating it about
the compression corner. The recirculation region increases in strength and at 12◦/20◦, the flow becomes un-
stable to three-dimensional perturbations. Direct numerical simulation of the flow on this geometry confirms
the instability and presence of three-dimensional recirculation.

The dominant destabilizing mechanism on a 12◦/20◦ double wedge is identified by analyzing the spatial
fields of the individual terms in the unstable eigenmode dynamics. The analysis reveals that the mean
gradients are responsible for the growth of the perturbation in the separation bubble, while growth in the
reattached boundary layer arises from downstream convection from the bubble. The exponential growth of
the globally unstable mode is traced to an inviscid local instability in which streamwise deceleration of the
two-dimensional flow results in exponential growth of streamwise velocity perturbation. Spanwise undulation
of the streamwise velocity perturbation results in a pressure perturbation peak/valley in span driving three-
dimensionality. By identifying the ‘wavemaker’ or region where the instability exhibits highest sensitivity,
we confirm independently that the instability core lies in the separation bubble and not in the separation or
reattachment regions which can potentially host centrifugal instabilities.

Separately, beyond bifurcation, linear stability of the steady state flow on a 12◦/22◦ double wedge re-
veals several unstable mode families. The most unstable mode is a three-dimensional stationary mode, the
wavelength of which is close to that of experimentally observed wall temperature streaks. Interestingly, this
mode is distinct from the unstable mode observed on the 12◦/22◦ geometry. While the role of perturbation
modes at this turn angle requires further detailed analysis, the results give credence to the physical impor-
tance of three-dimensional instabilities in the recirculation region. Additionally, the presence of unstable low
frequency oscillatory modes can also provide insight into unsteadiness in shock-wave boundary-layer inter-
action. Improved understanding of three-dimensional structures in high-speed laminar compression-corner
flow can contribute towards transition prediction on technologically relevant geometries.
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VI. APPENDIX

A. Viscous flux matrices

In section II, the viscous flux is written in the form Fv
j = Mjk

∂
∂xk

V The viscous flux matrices Mij have
entries that contain the velocity components ui and transport coefficients µ, λ, κ and can be written in the
form

Mij = −


0 0 0 0 0
0 a11 a12 a13 0
0 a21 a22 a23 0
0 a31 a32 a33 0
0 b1 b2 b3 κδij

 (20)
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Shear Layer Boundary Layer

Reference Current Method

1a (0.127, 0.000) (0.127, 0.000)

2 (−0.040, 0.396) (−0.040, 0.396)

3b (−0.028, 1.479) (−0.029, 1.476)

M∞ (α, β) Reference Current Method

0.5 (0.1,0.0) (0.0022, 0.0291) (0.0022, 0.0289)

2.5 (0.06,0.1) (0.0006, 0.0367) (0.0005, 0.0361)

1.0 (0.1,0.1) (0.0013, 0.0380) (0.0008, 0.0395)

6.0 (0.08,0.08) (0.0010, 0.0724) (0.0007, 0.0705)

TABLE II. Comparison of the eigenvalues (ωi, ωr) with the reference values from literature. For the mixing layer the
eigenmodes corresponding to the value marked as a and b correspond to the shear mode and the acoustic mode.

FIG. 21. Linearly unstable global mode for ReD = 60,M = 0.1 flow past a circular cylinder.

where amn = µ(δijδmn + δinδjm) + λδimδjn, bn = umamn. The matrix M
VD

j that appears in the linearized
viscous flux is

M
VD

j =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 σ̄1j σ̄2j σ̄3j 0

 (21)

B. Verification of linear system

We compare unstable eigenvalues of 1D compressible flow temporal stability problem with the values
from literature. The reference values for the compressible shear layer with M∞ = 0.5, vorticity thickness
δ = 0.1 and Reδ = 1000 are taken from Mack and Schmid [46]. The corresponding eigenvalues obtained
using the present formulation are reported in Table II. The reference values for compressible boundary layer
cases are taken from Malik [68] and Theofilis and Colonius [69]. The results at various Mach numbers and
different streamwise-spanwise wavenumbers (α, β) are shown in Table II. Slight discrepancies in the values
for M∞ = 1.0 and 6.0 are observed due to different viscosity and gas properties used for the base flow profiles
in the reference.

Next, we move to a 2D problem and compute linearly unstable eigenmode for subsonic flow past a cylinder
of diameter D. The eigenmode for case ReD = 60 is shown. At this Re, the cylinder wake is unstable
and results in vortex shedding. The non-dimensional eigenvalues for this particular case are found to be
ωi = 0.05, ωr = 0.76, which compare closely with those reported in literature[70].

For verification with linear stability analysis of 2D laminar shock boundary layer interaction, we investigate
the impinging oblique shock configuration at M = 5.92 [30]. The most unstable eigenmode is obtained for
β = 0.25 with ωi/(2π) = 3.1 × 10−5. This is close to the value of ωi/(2π) = 3.6 × 10−5 obtained in the
reference. The two-dimensional steady base flow and the spanwise velocity component of the most unstable
perturbation eigenmode is plotted in Fig.22.

Additionally, we also report the most unstable eigenmode obtained for an impinging oblique shock con-
figuration at M = 2.15 [29]. At an impingement angle of 33◦, the flow is predicted to be unstable in the
reference, with the spanwise wavelength of the dominant mode being 0.8, when non-dimensionalized by the
free-stream velocity and separation length. We obtain an unstable stationary (zero-frequency) perturbation
eigenmode at that wavenumber with a non-dimensionalized growth rate of 0.12. However, this value is not
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FIG. 22. Least stable global mode with wavenumber β = 0.25 obtained for oblique shock boundary layer interaction
at M = 5.92 [30]

FIG. 23. Least stable global mode with wavenumber βLsep = 0.8 obtained for oblique shock boundary layer interaction
at M = 2.15 [29]

consistent with the growth rate reported in the reference. The discrepancy is most likely due to inade-
quate grid resolution in the reference (5K points) compared to 140K cells used for the present study. The
two-dimensional steady base flow and the spanwise velocity component of the most unstable perturbation
eigenmode for this case is plotted in Fig. 23.

The discretized linear system for small perturbation in the presence of shocks is also investigated. The
transmission coefficient of planar acoustic perturbations interacting with a normal shock are compared with
the analytical result[71]. A second order symmetric scheme does not work in this problem as it involves
numerical time integration. We therefore use a third order upwind method for spatial discretization and
SSPRK2 for time marching the discretized linear equations. Note that no limiters are employed. The results
compare fairly for normal shocks upto Mach 3.

C. Grid refinement

A grid refinement study is carried out for the eigenvalues presented in the paper. For each grid, a different
base flow is computed and the corresponding global eigenvalue problem solved. This is more strict than
a grid refinement study of the eigenvalue problem with a base flow at fixed resolution. The normalized
velocity and temperature profiles for θ = 8◦ base flow are plotted in Fig.25. The values for max(−u)/uedge

FIG. 24. (Left) schematic of acoustic perturbation/normal shock interaction and comparison of analytical transmis-
sion coefficient with that computed using third order upwind discretization of linearized Euler equations in conserved
variables.
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FIG. 25. Non-dimensional velocity (red) and temperature profiles (blue) on three grids of increasing resolution (short
dash-105K, long dash-155K, solid-185K); ξ is the co-ordinate along the surface with ξ=0 at separation.

FIG. 26. Grid convergence of the growth rates for θ = 8◦ (left) and θ = 10◦ (right) case.

and max(−ρu)/ρuedge at θ = 8◦ are 0.108 and 0.036 respectively. The figure shows profiles of fields on three
grids with increasing sizes N = 105K, 155K, 185K cells. We find that the length of the recirculation bubble
does not vary with increasing grid resolution. The maximum difference between the velocities predicted by
the finest grids is within 10% at the compression corner, ξ/L = 10. The quantity of interest, i.e. the growth
rate corresponding to the most unstable spanwise wavelength λz is grid converged (Fig. 26) for both cases,
θ = 8◦ and 10◦.

In θ = 8◦ case, we evaluate two methods of increasing the grid resolution: increasing streamwise ξ and wall-
normal η resolution simultaneously and increasing the streamwise ξ resolution only, at a fixed wall-normal
η resolution. The base grid size is N = 105K grid cells. N = 105K grid has 200 points in the wall-normal
direction, with ∆η = 2 µm at the wall and ∆η = 1 mm in the freestream. Consider Fig. 26(left). The grids
N = 57K, 165K correspond to simultaneous change in ξ and η resolution by a factor of 1.25. Separately, the
grids N = 80K, 155K, 185K demonstrate the sensitivity of the eigenvalues to the streamwise spacing at a
fixed wall-normal resolution. We note that with increasing grid resolution, the most unstable eigenvalue can
increase or decrease depending on λz. Perception of an unusual trend where eigenvalues of high spanwise
wavenumber modes converge faster than low wavenumber modes is merely a consequence of this result.
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