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The spatial and orientation distributions of fibers in suspension were measured during oscillatory flow within
a circular pipe. The fibers were rigid and non-colloidal, and two aspect ratios (length L to diameter d ratios) of
L/d = 11 and 23 were tested; the suspending fluid was viscous, Newtonian, and density matched to the particles.
As with shear-induced migration of spheres in parabolic flows, fibers in the concentrated suspensions migrated
toward the center of the pipe. The migration was similar for the fibers, irrespective of the aspect ratio, at the
same dimensionless number density n0L2d (n0 is the number of fibers per unit volume of the bulk suspension),
rather than at the same volume fraction. The extent of migration was maximum at n0L2d = 0.84 for both aspect
ratios. The orientation distribution of the fibers was spatially dependent. Fibers near the center of the channel
aligned closely with the flow direction, while fibers near the pipe wall had an enhanced probability of aligning
in the vorticity direction.
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FIG. 1: (a) Photographs of the PMMA fibers of aspect ratio A = 11±2 and 23±2. (b) Sketch of the experimental apparatus.
Its major features include the syringe pump, which oscillates flow of the suspension in the pipe of radius R, and the laser sheet,

which fluoresces the suspending fluid and enables imaging with a digital camera. (c) The fiber orientation is defined by the
angle θ between its major axis and the vorticity direction and the angle ψ that the projection of the fiber makes onto the

flow-gradient plane with the gradient direction.

I. INTRODUCTION

Adding even a small volume fraction of fibers to a fluid can impact its rheological properties substantially [1], and such
additives are often used to improve the performance of materials such as fiber reinforced composites and concrete [2]. In
these applications, the spatial and orientation distribution of the particles strongly influence the rheology, and even the final
properties. While orientation distributions have been measured in steady and oscillatory shearing flows [3–5], few experiments
have investigated the spatial distribution of rigid fibers.

For spherical particles suspended at large concentration in unidirectional flows, shear-induced migration from regions of high
to low shear rates has been observed [6–14]. This transverse migration has been shown to be driven by spatial variations in the
normal stresses of the particle phase [15, 16]. However, these normal stresses are qualitatively different for suspensions of fibers
and spheres [17], and whether migration is similar for suspensions of different particle shapes is still relatively unknown. The one
experimental result available is qualitatively consistent with that found for spheres [18]. This experiment used non-Brownian,
neutrally-buoyant fibers suspended in a viscous fluid undergoing shear in a wide-gap Couette cell. The fibers migrated toward
the outer wall of the Couette cell, and the steady concentration profile was reported to be independent of the aspect ratio (fiber
length to diameter) over a range from 2 to 18.4 at identical volume fractions.

The objective of the present paper is to determine whether migration occurs for rigid fibers in a pressure-driven flow, and if so,
whether migration is toward the center, as expected for spheres, or not. To our knowledge, no measurements have been made for
pressure-driven flows, though the results of some calculations have been reported [19, 20]. The present experiments study two
aspect ratios and bulk concentrations spanning a factor of three. The imposed flow in the pipe is oscillatory, rather than steady;
studies of spheres in oscillatory pressure-driven flows [21, 22] indicate that the migration is similar, at least qualitatively, to the
migration in steady flows as long as the amplitude of displacement is much larger than the pipe radius. The fibers are shown
to concentrate along the centerline, and our measurements indicate that the migration depends upon the bulk concentration
(n0L2d), rather than the volume fraction (∝ n0Ld2). These results, as well as information for the orientation distribution, are
given in Section III after describing the measurement techniques in Section II.

II. MATERIALS AND METHODS

Two batches of fibers were manufactured from fiber optic filaments with poly(methyl methacrylate) cores of diameter d =
0.46± 0.06 and 0.23± 0.02 mm. The filaments were soaked in dimethyl sulfoxide, mechanically wiped to remove the outer
fluorocarbon coating, and then cut into segments of length L = 5.2±0.2 mm to produce fibers with aspect ratios of A = L/d =
11±2 and 23±2. The fibers (see Fig. 1(a)) were suspended in a mixture of Triton X-100 (73% by mass), distilled water (11%),
and zinc chloride (16%). Fluorescent dye (Rhodamine 6G) was added to the mixture at a concentration of 9× 10−7 gm per
mL. This fluid was Newtonian, with a viscosity of 30 Poise at 25◦C, and the density and refractive index matched that of the
fibers. Suspensions were prepared at bulk concentrations of n0L2d between 0.42 and 3.00, where n0 was the number of rods
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per unit volume. Note that the dimensionless number density, n0L2d, is related to the bulk volume fraction, φ0, by the relation
n0L2d = 4Aφ0/π .

The experimental setup, similar to that used to study shear-induced migration of spheres [22], is shown in Fig. 1(b). The
suspension was loaded into an acrylic pipe of length 46.8 cm and radius R = 0.825 cm. The pipe was oriented vertically, and a
mesh screen was placed at the top and bottom ends to maintain a constant particle concentration within the testing section. The
pipe was connected to a syringe pump that cyclically displaced the fluid at a fixed amplitude, where the rate of volumetric fluid
displacement, as a function of time t, was (γ0R)(πR2)ωcos(ωt)/|cos(ωt)|. The strain amplitude was chosen to be γ0 = 15 in all
of the experiments in order to minimize possible end effects, while also having a net displacement that was large compared to
the pipe radius. The frequency ω used in the experiments gives a Reynolds number less than 10−3 and a Péclet number greater
than 109, meeting the conditions for a Stokes flow of non-Brownian particles. The maximum stress exerted by the flow on the
fibers was much smaller than the stress required to buckle a fiber [23], consequently the fibers were considered rigid.

The acrylic pipe was jacketed by a rectangular plexiglass box filled with suspending fluid that contained no particles or dye.
This jacket facilitated imaging the suspension by eliminating optical distortion caused by the curvature of the pipe. A laser sheet
of width 250 µm and wavelength 532 nm fluoresced the dyed fluid, but not the particles, in a vertical plane passing through the
center of the pipe. A shutter was mounted in front of the laser to prevent photobleaching caused by overexposure of the fluid and
a high-resolution camera recorded images of the illuminated plane. The shutter and camera were actuated by the microcontroller
used to operate the syringe pump.

The suspension was added to the inner circular pipe, gently mixed, and allowed to stand to enable any trapped air to escape
before starting each experiment. Forty images were taken with one second intervals at the beginning of each cycle. This
procedure was repeated at least three times for every set of conditions (bulk concentration and aspect ratio). Movies 1-3 [24] in
the supplemental material (SM) show many example images.

The experimental images were processed using classical image analysis (adaptive contrast enhancement, adaptive threshold-
ing, and removal of objects smaller than a defined size); see Fig. 2(a) for example results. Note that only the half of the image
closest to the laser was processed due to degradation of the image quality in the other half. Quantitative data was extracted from
the processed images, where the dark pixels represent the fibers. The areal fraction of dark pixels in each vertical row of pixels
was calculated and converted to a volume fraction φ(r) by assuming that the distribution is independent of the angular position
in the pipe. The volume fraction φ(r) was multiplied by 4A/π to give the position-dependent concentration n(r)L2d. To test the
image analysis, n(r) was integrated across the pipe radius to give nb; nb was calculated to be within 10% of the bulk value n0 for
all cases except n0L2d = 0.42, which gives a difference of 28%.

Information about the orientation distribution was also extracted from the processed images. The angles θ and ψ (see Fig.
1(c)) can be calculated from the observable length and angle in the plane of the laser sheet, respectively, for cases where the
laser sheet intersects the center of mass of a fiber. In all other cases, the velocity gradient and vorticity directions evaluated at the
center of mass of a fiber do not correspond to the velocity gradient and vorticity directions in the plane of the laser sheet since
the flow occurs within a cylinder. Consequently, we report the probability distributions of θ ′ and ψ ′, the observed angles relative
to the gradient and vorticity directions at the point where the fiber intersects the laser sheet rather than at its center. Note that a
value of ψ ′ cannot be determined if θ ′ < 34◦ for A = 11 and θ ′ < 24◦ for A = 23, so these cases were excluded when calculating
the probability distribution P(ψ ′). Also, the length observed in the images can represent multiple values of θ ′ for fibers closely
aligned with the flow direction, hence all instances of θ ′ > 82◦ for A = 11 and θ ′ > 85◦ for A = 23 were lumped into the same
data point (bin) when calculating P(θ ′).

III. RESULTS

Figure 2(a) shows processed images for n0L2d = 0.84 and A = 11 which qualitatively illustrate that the spatial distribution
of fibers moves from a roughly uniform one at γ = 0 to one with particles preferentially located near the center of the pipe
(r/R = 0) for γ = 900. This shear-induced migration was quantified by calculating the radially dependent areal fraction of
dark pixels from each image and averaging over multiple experimental runs. These areal fractions are plotted in the graphs
of Fig. 2(a) after having converted them to local concentrations, n(r/R)L2d. As strain accumulated, the particle concentration
increased in the center of the pipe and decreased near the walls, showing evidence of shear-induced migration for suspensions for
this set of conditions. Likewise, Fig. 2(b) shows examples of processed images and the spatial distribution of fibers for a larger
concentration of n0L2d = 3.00 at A= 11. The initial distribution at γ = 0 exhibits a difference between the concentrations n(r/R)
at the center and wall. Still, some migration of particles toward the center of the pipe was observed as the strain accumulated.

A single metric, the extent of migration, was used to evaluate the rate of migration and to compare the final particle distribution
over different aspect ratios and bulk concentrations n0L2d. The extent of migration is (nr=0−nr=1)/nb, where nr=0 is the number
density in a region of width R/16 at the center of the pipe and nr=1 is the number density in a region of width R/16 near the wall
of the pipe.

Figure 3(a) shows the extent of migration as a function of the accumulated strain for A = 11 and 23 for multiple bulk concen-
trations. The values shown correspond to a moving mean over a strain of 75 that has been averaged over multiple experimental
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FIG. 2: Concentration, n(r/R)L2d, versus position, r/R, for (a) n0L2d = 0.84 and (b) n0L2d = 3.00 at four values of the
accumulated strain γ . Results are for A = 11 and the error bars represent the standard error computed across multiple

experimental runs. Example images from the initial and last oscillations showing the processed results from r/R = 0, on the left
side of each image, to r/R = 1, on the right side of each image. Accompanying Movies 4 and 5 [24] show comparisons

between the original and processed images, as well as n(r/R)L2d, for both bulk concentrations at every oscillation. The solid
red line in each plot shows the concentration versus position averaged over accumulated strains that correspond to steady state.
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FIG. 3: (a) Extent of migration versus accumulated strain, γ , for A = 11 (red) and A = 23 (blue) at multiple bulk concentrations.
(b) Extent of migration at steady state versus n0L2d for A = 11 and 23, where the averaging was performed over accumulated

strains larger than those marked by the filled circles or squares in (a). The error bars represent the standard deviations computed
across multiple experiments. The inset shows the concentration versus position averaged over accumulated strains that

correspond to steady state for n0L2d = 0.42 and A = 11 (red line) and n0L2d = 0.84 and A = 23 (blue line); in both cases,
φ0 ≈ 0.03.
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FIG. 4: Probability of finding a particle at (a) an angle ψ ′ and (b) an angle θ ′ for the center (0 < r < R/3), middle
(R/3 < r < 2R/3), and near-wall portions (2R/3 < r < R) of the pipe. Results are shown for n0L2d = 0.84 and aspect ratios of

A = 11 (red circles) and 23 (blue squares).

runs. The extent of migration increases with accumulated strain until it reaches a steady value (even though the fluctuations
are large), and the more concentrated suspensions attain a steady particle distribution at lower accumulated strains. Figure 3(b)
shows the dependence of the extent of migration on bulk concentration at steady state for both A = 11 and 23. Irrespective of
the aspect ratio, the steady value of the extent of migration was found to be the same within the experimental error at the same
value of n0L2d. Note also that the rates of migration are similar for the two aspect ratios.

Data on the orientation distribution for steady state conditions is presented in Fig. 4 for n0L2d = 0.84, the concentration at
which the extent of migration was maximum (see Fig. 3(b)). Probability distributions for both ψ ′ and θ ′ are shown in each
of three radial bins of equal size, where the integrated distribution has been normalized to one in each bin. Differences in the
orientations between experiments at A = 11 and 23 are small, and are within the measurement errors. A large proportion of
fibers have a value of ψ ′ near to 90◦, and few near 0◦, which is consistent with preferential fiber alignment in the flow, rather
than the gradient, direction. This tendency to align with the axial flow is strongest for 2R/3 < r < R, where the wall constrains
the allowable orientations. The wall also impacts the distribution of θ ′; as seen in Fig. 4(b), it shifts towards zero as the radial
position increases. This implies that the fibers near the wall have an enhanced probability of aligning with the vorticity direction
of the flow.

IV. DISCUSSION AND CONCLUSIONS

In this work, quantitative measurements of the spatial distribution of rigid fibers in a parabolic flow show that the particles
migrate toward the center of the pipe. This is qualitatively consistent with observations of shear-induced migration of spheres,
where particles concentrate in regions of low shear-rate. Figure 3 shows that the migration in our experiments scales with the
bulk concentration, n0L2d: comparing on the basis of volume fraction would result in similar values for the extent of migration
at volume fractions different by factors of approximately 2, the ratio of the aspect ratios studied here. This differs with the
conclusion from measurements in Couette flows [18] that fiber migration scales with volume fraction irrespective of the aspect
ratio, though those experiments used a narrower and higher concentration range of φ = 0.3 to 0.4 than used here (φ = 0.03
to 0.21). Predictions [19] using a continuum model relying on constitutive laws [6, 25] show that migration depends only
upon the volume fraction in Couette flows, but depends on the aspect ratio at the same volume fraction in parabolic flows.
Stokesian dynamics simulations of spherical doublets in a pressure-driven flow predicted migration similar to that of spheres,
when compared at the same bulk volume fractions [20], but the aspect ratio was much lower than those examined here.

The measured extent of migration is maximum at n0L2d = 0.84, as shown in Fig. 3(b). As n0L2d surpasses one, the extent
of migration likely becomes increasingly hindered by the difficulty of packing additional particles in the central region of the
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pipe. A similar phenomena occurs for shear-induced migration of spheres, where concentrations observed at the center of the
pipe do not exceed maximum random packing. For rigid fibers, a similar constraint would be a severe one, since the maximum
random packing scales as 1/A for large aspect ratios [26]. In our experiments, the maximum number density measured at the
center of the pipe was n(r/R = 0) = 4/L2d (see Fig. 2(b)), or equivalently φ(r/R = 0) = 0.29. This falls below an estimate of
φ ≈ 0.4 [27] at which a collection of spherocylinders with A = 11 can remain randomly oriented. Still, bundles of rigid fibers
having highly correlated alignments can be seen in the experimental images (see image in Fig. 2(b) and Movie 3 [24]). The
occurrence of oriented crystallites suggests that the migration and shearing flow may be promoting a transition toward a nematic
phase. Moreover, this phase transition would enable concentrations beyond the limit of maximum random packing.

Migration of spherical particles in parabolic flows has been reported for volume fractions as low as 20%, but not at 10% [22].
Data shown here indicates that migration can occur in suspensions of fibers at volume fractions as low as φ ≈ 0.03. This includes
results for n0L2d = 0.84 and A = 23, as indicated in Fig. 3(b) and its inset where the concentration profile is shown. Migration
might occur for spheres at volume fractions of 10%, or even less, but the total strain required for spheres to attain a steady profile
increases drastically as the concentration drops and also depends strongly on the ratio of particle size to pipe size. Similarly, Fig.
3(a) demonstrates that rigid fibers require a larger total strain at smaller values of n0L2d to attain a steady concentration profile.
The rate of migration was similar for the two batches of fibers having identical lengths, but diameters different by a factor of
about two.

For dilute conditions, fibers rotating lengthwise in shearing flows can contact the bounding walls, generating an irreversible
force and associated depletion layer of thickness ≈ L/2 [28]. For the ratio of R/L studied here, this “pole-vault” motion would
cause a deficit of particles for r/R > 0.68, and there would be no significant concentration gradient for r/R < 0.68 in the absence
of a shear-induced migration. For concentrations beyond dilute, the “pole-vault” motion might still lead to a depletion region
even though the motion becomes hindered by contacts with other fibers. No evidence of a clear depletion layer is seen in the
concentration data, nor any of the visualizations (see movies [24]). Even in the most dilute case of n0L2d = 0.42 and A = 11,
where a depletion layer would be most evident, there is no significant migration relative to the measured fluctuations in the mean
concentrations as seen in the inset of Fig. 3(b).

Measurements of the orientation distributions (see Fig. 4) are largely consistent with expectations of fiber alignment with the
flow, rather than the gradient, direction in steady shearing flows. The confinement of the rigid fibers is notably impacting the
orientations near the wall: the probability distribution of ψ ′ shifts strongly toward flow alignment as the radial position moves
near to the wall. Likewise, there is a shift toward vorticity alignment as the radial position moves toward the wall, as seen by
comparing the results for 2R/3 < r < R with the other two regions as seen in Fig. 4(b). However, confinement is strong in these
experiments and it is assumed to affect orientation in simple shear flows. The enhanced vorticity alignment for fibers near the
bounding walls of the pipe is indeed reminiscent of the vorticity alignment observed in oscillatory shear flows [5, 29] for highly
confined suspensions. A tendency to align in the voriticity direction has not been reported for steady shearing flows of rigid
fibers [3, 4], consequently it may be that the oscillations in the pipe flow are driving the vorticity alignment.

Likewise, the oscillations may be impacting the spatial distribution of the particles. Experiments utilizing strain amplitudes
less than 15 exhibited less migration at the same concentration, accumulated strain, and aspect ratio. This difference in results
can be attributed to the rearrangement of the microstructure with the flow upon shear reversal, a problem which also occurs in the
oscillatory study of spheres [22]. Note that the strain required for a fiber of aspect ratio 11 to complete a full Jeffrey orbit [30],
as evaluated at the mean rate of shear in the pipe flow, exceeds the strain amplitude used in the experiments reported here by
about 30%. However, a strain equivalent to that required for a full Jeffrey orbit is not necessarily required for the microstructure
to reach steady state at high concentrations. Experiments with a strain amplitude larger than 15 were not conducted for the fibers
due to the limitation imposed by the total length of the pipe; the extent of migration may increase as the strain amplitude is
increased.

In conclusion, the present work demonstrates that, as observed with spheres, fibers migrate toward the center of the pipe in
parabolic flows. Our measurements suggest that φ0A (∝ n0L2d), rather than simply the volume fraction fraction φ0, controls the
extent of migration, and the migration is seen to be maximized at n0L2d ≈ 1. An important output is that the fiber orientation
varies spatially, with the orientation of the fibers in the near-wall region aligning more strongly in the flow direction than at the
center. However, there is also an enhanced probability of fibers near the wall aligning in the vorticity direction. Additional exper-
iments or simulations are1 needed to explore the role of the confinement on the extent of migration and orientation distribution,
and confirm whether or not the oscillatory experiments presented here produce the same migration as a steady pipe flow.
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