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Turbulence forcing techniques are often required in the numerical simulation of statistically sta-
tionary turbulent flows. However, the existing forcing techniques are not based on physics, but
rather arbitrary numerical methods that sustain the turbulent kinetic energy. In this work, a novel
forcing technique is devised to reproduce the centerline turbulent characteristics of round jets in a
triply periodic box. It is derived from the Navier-Stokes equations by applying a Reynolds decom-
position with the mean velocity of the axisymmetric jet. The result is an anisotropic linear forcing
term, which is intended to be used in a 3D box to create turbulence. Four direct numerical simula-
tions with different Reλ have been performed with the new forcing terms. The budget of the terms
in the kinetic energy equation is very close to the experimental measurement on the centerline. The
anisotropy, kinetic energy k, and dissipation rate ε of the simulations are also comparable to experi-
mental values. Finally, the kinetic energy spectrum in the axial direction, φ(κ1), is presented. With
appropriate normalizations, the spectrum agrees well with the round jet spectrum on its centerline.

I. INTRODUCTION

Turbulence, by nature, quickly loses its energy and dis-
sipates. In numerical simulations, however, stationary
turbulence is often required to obtain meaningful statis-
tics. For instance, it is needed in the simulations of turbu-
lent flows and scalar mixing processes in a triply periodic
box[1–7]. It can also be desired in geometries other than
triply periodic box; for example, Savard et al. [8], Polud-
nenko and Oran [9], and Hamlington et al. [10] needed
statistically stationary turbulence when examining tur-
bulent flames. In these cases, an artificial forcing scheme
must be used to prevent the turbulence from decaying.
Traditional forcing schemes have been implemented in

spectral space. Below is the Fourier-transformed incom-
pressible momentum equation.

∂û

∂t
+ û · ∇u = −1

ρ
∇̂p+ ν∇̂2u+ f̂ , (1)

where u is the velocity; ρ, density; p, pressure; and ν,
kinematic viscosity. The operator ·̂ denotes a Fourier

transformation. f̂ is the forcing term that prevents the
turbulence from decaying. In the literature, mainly three
categories of forcing schemes can be found.
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In the first category, a forcing term f̂(κ, t) =
c(κ, t)û(κ, t) is used for certain chosen wavenumber
shells. For example, Ghosal et al. [3] and Carati et

al. [4] applied the following forcing to all the modes in
the wavenumber shell |κ| ≤ κf :

f̂(κ, t) = ε
û(κ, t)

N |û(κ, t)|2 , (2)

where ε is the average dissipation rate, N is the number of
modes in the wavenumber shell, and κf is the maximum
wavenumber subjected to forcing. Both simulations of
Ghosal and Carati used κf = 2κmin, where κmin is the
minimum wavenumber determined by the domain size.
The second class of schemes maintains the energy of

certain wavenumber shells at a constant level for all
time steps. For instance, Chasnov [5] and Sullivan et
al. [6] kept the energy constant in the wavenumber shell
|κ| ≤ κf . Chasnov used κf = 2κmin and Sullivan used

κf = 2
√
2κmin. This method assumes that the higher

wavenumber flow structure should not be changed much,
and that the energy should pass down to the smaller
scales. Seror et al. [7] maintained the total kinetic en-
ergy at a constant level by injecting the lost energy into
the wavenumbers at |κ| ≤ 5κmin for each time step. This
was achieved by forcing

ûn+1(κ) =

√
1 +

∆E∫ κmax

κmin
E(κ)dκ

û∗(κ), (3)

where ûn+1(κ) is the Fourier coefficient at time (n+1)∆t
for |κ| ≤ 5κmin, and û∗(κ) is the Fourier coefficient
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computed by integrating the Navier-Stokes equation with
ûn(κ) as an initial condition. ∆E is the lost energy, and
κmax = 5κmin.
Stochastic schemes have also been devised for the forc-

ing term. Eswaran and Pope [11] developed the following
expression:

f̂(κ, t) = b̂(κ, t)−
κ
(
κ · b̂(κ, t)

)

κ · κ , (4)

where b̂ is a complex vector-valued stochastic process
based on Uhlenbeck-Ornstein random process [12]. This
expression is the projection of the stochastic process onto
the plane normal to κ. The forcing term is only applied
for |κ| ≤ κf . Two values of κf ,

√
2κmin and 2

√
2κmin,

were tested for the simulations of Eswaran and Pope.
Alvelius [13] also formulated a random force:

f̂ (κ, t) = Aran(κ, t)e1(κ) +Bran(κ, t)e2(κ), (5)

where e1 and e2 are unit vectors orthogonal to each other
and to κ, and Aran and Bran are random complex num-
bers determined by the prescribed force spectrum.
As shown above, there have been various forcing meth-

ods in spectral space to create statistically stationary tur-
bulence. However, these spectral forcing schemes are not
applicable to non-periodic boundary condition cases, and
it is difficult to implement in numerical simulations based
on the momentum equations in physical space. Further-
more, these methods are not developed to represent any
practical flows. They sustain the turbulent energy of
velocity fields, yet they are rather arbitrary numerical
methods.
The objective of the current study is to develop a forc-

ing scheme to produce a turbulent flow whose character-
istics resemble those of a practical flow. Any turbulent
flow can be chosen as a target. In this investigation,
however, we aim to reproduce the turbulence in the cen-
terline region of fully-developed turbulent round jets. In
other words, the purpose is to imitate the local turbulent
characteristics of axisymmetric jets at r = 0. It is not
our goal to derive a source term for the entire region of
a round jet.
The objective will be accomplished by adopting the

linear forcing term of Lungdren [14]. After a review of
Lundgren’s forcing scheme in Sec. II, we derive the new
forcing method in Sec. III. The results are presented in
Sec. IV.

II. REVIEW OF LUNDGREN’S LINEAR

FORCING TERM AND MOTIVATION

The linear forcing scheme, suggested by Lundgren [14]
and further explored by Rosales and Meneveau [15], is
different from the other spectral schemes. The essen-
tial difference, as described at the end of Sec. I, is that
the forcing term is applied in physical space instead of

in spectral space. Since the forcing term of the current
study takes a similar form, this linear method is reviewed
in detail first.
Let’s consider the Reynolds decomposition, u = u+u′,

where u is the mean velocity, and u′ is the fluctuating
velocity. The momentum equation for the velocity fluc-
tuation can be obtained from the original Navier-Stokes
equation after substracting the mean of the equation:

NS (u+ u′)−NS (u+ u′). (6)

This gives

∂u′

∂t
+ u · ∇u′ + u′ · ∇u + u′ · ∇u′ −∇ · u′u′

= −1

ρ
∇p′ + ν∇2u′, (7)

where NS is the set of Navier-Stokes equations, and
p′ is the pressure fluctuation. The overline · denotes
ensemble-averaging.
The third term, u′ · ∇u, appears as an energy pro-

duction term in the kinetic energy equation. Lundgren
argued that since this production term is proportional
to u′, a source term in physical space should have the
following form,

f = Au′, (8)

where A is an arbitrary constant. Then, the resultant
momentum equation is

∂u′

∂t
+ u′ · ∇u′ = −1

ρ
∇p′ + ν∇2u′ +Au′ (9)

This isotropic source term provides a continuous energy
injection at all scales, maintaining the turbulence at a
statistically stationary state.
The kinetic energy equation can be derived by multi-

plying u′ to equation (9):

∂k

∂t
+ u′ · ∇k = −1

ρ
∇ · u′p′ + ν∇2k − ε+ 2Ak, (10)

where k = 1
2u

′ · u′ is the kinetic energy, ε = 2νSijSij

is the energy dissipation rate, and Sij = 1
2

(
∂u′

i

∂xj
+

∂u′

j

∂xi

)

is the strain-rate tensor. Since spatial derivatives of the
volumetric average quantities are zero for statistically ho-
mogeneous flows, the following relation can be derived:

∂〈k〉
∂t

= −〈ε〉+ 2A〈k〉, (11)

where 〈 · 〉 is the volumetric averaging. In homoge-
neous flows, volume-averaging is equivalent to ensemble-
averaging. Then, it follows that A determines the ratio
of the average turbulent kinetic energy to the average
energy dissipation rate for statistically stationary turbu-
lence; i.e.,

A =
〈ε〉
2〈k〉 . (12)
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Lundgren examined one term in Eq. (7), and proposed
a generic expression, f = Au′, for the forcing term in
Eq. (8). However, all the terms in Eq. (7) could be ex-
amined by using mean velocity information of practical
turbulent flows.

III. PROPOSED FORCING TERM

The new forcing term is meant to replicate the turbu-
lent characteristics of round jets in a triply periodic cubic
box, in which the flow is statistically homogeneous with
zero mean velocity. A periodic geometry is convenient to
compute statistics and perform spectral analyses.

A. Review of turbulent jets

A typical turbulent jet consists of three zones: the po-
tential core, the transition zone, and the fully-developed
self-similar zone. The velocity in the self-similar zone can
be expressed as a function of the centerline velocity, Uc,
and the similarity variable, η = r/x, where r is the radial
distance and x is the axial distance. It has been shown
that Uc scales as 1/x in the self-similar region by many
experiments [16–20].

Abramovich [21] and Pope [16] used a stream function
theory to describe the mean velocity of axisymmetric tur-
bulent jets. The result is shown below:

ux = Uc
F ′ (η)

η
, (13)

ur = Uc

[
F ′ (η)− 1

η
F (η)

]
, (14)

where F (η) is a function to be determined. Abramovich
and Pope used different expressions for F (η) to fit the
experimental velocity profiles. However, the two expres-
sions yield the same velocity gradient matrix, when eval-
uated at the centerline of a certain location xo:

∇u (x = xo, η = 0) =



−Uc

xo
0 0

0 1
2
Uc

xo
0

0 0 1
2
Uc

xo


 . (15)

In the self-similar region, the fluctuating velocity is also
a function of the centerline velocity and the similarity
variable only. More importantly,

√
〈u′

i
2〉 = Ucfi (η) , (16)

as demonstrated by many experiments [16–20]. Thus,√
〈u′

i
2〉/Uc must only be a function of η. The summation

convention over repeated indices is not adopted here.

B. Derivation of the forcing term

Theoretically, Eq. (13)–(15) can be applied to Eq. (7),
to remove the u terms and obtain the momentum equa-
tion for the fluctuating velocities. However, the resulting
turbulent flow would not be statistically homogeneous;
indeed, u′ decreases as 1/x in a turbulent jet. It is thus
preferable to normalize first u′ with x/xo. Then,

u∗ =
x

xo
u′ =

x

xo
(u− u), (17)

where u is the original velocity of the jet, and the as-
terisk · ∗ denotes the normalized quantity. With this
normalization, the continuity equation, when evaluated
at x = xo, would have a non-zero term on the right hand
side as below:

∇ · u∗ =
u∗
x

xo
. (18)

Although it is possible to perform a numerical simula-
tion with an extra term in the continuity equation, it is
preferred not to, for practical reasons. Thus, we propose
the following normalization in lieu of Eq. (17):

u∗
x =

x

xo
(ux − ux) exp

(
1− x

xo

)

u∗
i =

x

xo
(ui − ui) (19)

ui denotes either of the transverse velocities.
Now, Eqs. (13)–(15), and (19) can be applied to

Eq. (7). The terms are evaluated on the centerline at
a certain location xo, leading to the following equations.

• Continuity

∇ · u∗ = 0 (20)

• Longitudinal direction

Du∗
x

Dt
+ u∗ · ∇u∗

x +
1

ρ

∂p

∂x
− ν∇2u∗

x (21)

=∇ · u∗u∗
x + ν

u∗
x

x2
o

+
Uc

xo
u∗
x

• Transverse directions

Du∗
i

Dt
+ u∗ · ∇u∗

i +
1

ρ

∂p

∂xi
− ν∇2u∗

i (22)

=∇ · u∗u∗
i + ν

[
2
u∗
i

x2
o

− 2

xo

∂u∗
i

∂x

]
− u∗

xu
∗
i

xo
+

u∗
xu

∗
i

xo
+

1

2

Uc

xo
u∗
i

The vector notation applies to all three directions, and u∗
i

and xi apply to either of the transverse directions. The
material derivative is defined as D

Dt ≡ ∂
∂t + Uc

∂
∂x , which

provides the effect of a Galilean transformation. This D
Dt

will be used as the time derivative in the computations.
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Several terms on the right-hand side (RHS) of Eq. (21)
and (22) are negligible, as compared to the other terms.
First, νu∗

i /x
2
o ≪ Ucu

∗
i /xo for high Reynolds number

flows. In fact, the ratio Ucxo/ν is proportional to the
jet Reynolds number ReD = UoD/ν, based on the exit
nozzle velocity, Uo, and the nozzle diameter, D [21]. Sim-

ilarly, ν
xo

∂u∗

i

∂x ≪ u∗ · ∇u∗
i . The ratio of the two terms is

of the same magnitude as the local turbulent Reynolds
number. In addition, ∇ · u∗u∗

i and u∗
xu

∗
i /xo appear as

u∗
i∇ · u∗u∗

i and u∗
i u

∗
xu

∗
i /xo, respectively, in the kinetic

energy equation. They do not contribute to the mean
kinetic energy, because u∗

i ≡ 0. u∗
xu

∗
i /xo, on the other

hand, appears as u∗
xu

∗2
i /xo in the kinetic energy equa-

tion. The magnitude of u∗
xu

∗2
i /xo can be compared to

that of 1
2
Uc

xo
u∗2
i . According to experiments [19, 20, 36],

the value of u′
xu

′2
i /U

3
c is 0.0010 ∼ 0.0017, and that of

u′2
i /U

2
c is 0.036∼ 0.050. Then, the ratio of u′

xu
′2
i /xo to

1
2
Uc

xo
u′2
i ranges from 0.040 to 0.094. Although the gov-

erning equations are for the normalized quantities, u∗
i ,

we will assume here that turbulent parameters of u∗
i are

comparable to those of u′
i. Thus, we will conclude that

u∗
xu

∗
i /xo is also negligible. With these simplifications,

the only terms significantly contributing to the produc-
tion of kinetic energy are Uc

xo
u∗
x in Eq. (21) and 1

2
Uc

xo
u∗
i in

Eq. (22). Thus, only these RHS terms in the momentum
equations are retained; the other terms are removed.

The final governing equations for u∗ are as follows.

• Continuity

∇ · u∗ = 0, (23)

• Longitudinal direction

Du∗
x

Dt
+ u∗ · ∇u∗

x +
1

ρ

∂p

∂x
− ν∇2u∗

x =
Uc

xo
u∗
x, (24)

• Transverse directions

Du∗
i

Dt
+ u∗ · ∇u∗

i +
1

ρ

∂p

∂xi
− ν∇2u∗

i =
1

2

Uc

xo
u∗
i , (25)

• Ensemble-averaged kinetic energy

D〈k∗〉
Dt

= −〈ε∗〉+ Uc

xo
〈k∗ + u∗2

x

2
〉, (26)

where 〈ε∗〉 = 2ν〈S∗
ijS

∗
ij〉 = ν〈∂u

∗

i

∂xj

∂u∗

i

∂xj
〉 is the energy dis-

sipation rate, and S∗
ij =

1
2

(
∂u∗

i

∂xj
+

∂u∗

j

∂xi

)
is the strain-rate

tensor. It is important to note that the magnitude of the
source terms is determined by two simple experimental
parameters, Uc and xo.

The sources of this forcing term are summarized below:

• Longitudinal direction

Production : −u′ · ∇ux

∣∣
x=xo

=
Uc

xo

xo

x
e

x
xo

−1u∗
x

∣∣∣∣
x=xo

=
Uc

xo
u∗
x (27)

Advection : −u · ∇u′
x

∣∣
x=xo

= −Uc
∂

∂x

(xo

x
e

x
xo

−1u∗
x

)∣∣∣∣
x=xo

=
Uc

xo
u∗
x − Uc

xo
u∗
x −

✚
✚
✚✚

Uc
∂u∗

x

∂x
(28)

• Transverse directions

Production : −u′ · ∇ui

∣∣
x=xo

= −1

2

Uc

xo

xo

x
u∗
i

∣∣∣∣
x=xo

= −1

2

Uc

xo
u∗
i (29)

Advection : −u · ∇u′
i

∣∣
x=xo

= −Uc
∂

∂x

(xo

x
u∗
i

)∣∣∣∣
x=xo

=
Uc

xo
u∗
i −

✚
✚
✚✚

Uc
∂u∗

i

∂x
(30)

The Uc
∂u∗

i

∂x terms do not appear in the governing equa-

tions, as they are combined with
∂u∗

i

∂t to make
Du∗

i

Dt .
Essentially, the source term from production is gener-

ated by the gradient of the mean flow, ∇u. The source
term from advection, on the other hand, is generated by
two normalizations, xo

x and the exponential one. Since
u′ decreases as the mean flow travels in x-direction, the
xo

x normalization is intended to convert this advection
effect into a source term. Thus, this normalization will
be called advection normalization. The e(x/xo−1) normal-
ization is a mathematical technique to remove the extra
source term in the continuity equation, Eq. (18). This
will be called continuity normalization. All three contri-
butions are summarized in Table I.
The source terms from the mean flow make this forcing

scheme seem as simulating an axisymmetric expansion,
but the two normalizations are essential to the deriva-
tion. The first normalization takes into account the de-
crease of u′ along the axial direction, and the second one
maintains its continuity. The source terms from the two
normalizations, with a combination with the mean flow
terms, create turbulence in a 3D box that is similar to
the centerline of a round jet.

TABLE I. Sources of the forcing term

Mean flow Advection
normalization

Continuity
normalization

Longitudinal
Uc

xo
u∗
x

Uc

xo
u∗
x −

Uc

xo
u∗
x

Transverse −
1

2

Uc

xo
u∗
i

Uc

xo
u∗
i 0
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C. Properties of the forcing scheme

Three key observations must be made about the de-
rived forcing scheme.
First, this current forcing term is the result of apply-

ing the physical laws of a practical turbulent flow. The
other forcing schemes introduced in Sec. I did not di-
rectly reflect the physical situations, but rather devised
some arbitrary numerical methods to maintain the turbu-
lence. Even Lundgren’s linear forcing scheme introduced
in Sec. II was theoretical; it was not specific to any flow
configurations. The isotropic turbulence generated by
this forcing is not close to any practical types of flows.
In the present derivation, on the other hand, the physics
of a practical flow is considered.
Second, the resultant source term is a linear forcing

term. It may have been expected from the form of the
term u′·∇u that the source term should be linear, but the
additional normalizations also yield linear terms. Also,
this new source term is a forcing term in physical space,
not in spectral space. This physical forcing also injects
energy throughout all the scales. It is essentially different
from other spectral forcing schemes that often restrict the
energy injection to narrow wavenumber regions.
Third, the forcing term is anisotropic; it is twice

as strong in one direction as in the other directions.
Lundgren’s forcing term is also linear, but it is isotropic.
Real flows rarely approach isotropy at the large scale.
The anisotropic forcing in the current study is qualita-
tively consistent with the anisotropy of turbulent jets, in
which the fluctuating velocity is stronger in one direction.

D. A priori analysis and simulation procedure

As detailed in [2], for triply periodic direct numerical
simulations (DNS) with Lundgren’s linear source term in
physical space, the average values of some turbulent pa-
rameters, such as the kinetic energy k and the dissipation
rate ε, can be predicted by analyzing the kinetic energy
equation. The same analysis is applied to the current
investigation.
First, applying the condition of statistical stationarity(
∂
∂t = 0

)
on the kinetic energy equation, Eq. (26) reduces

to

〈ε∗〉 = Uc

xo
〈k∗ + u∗2

x

2
〉. (31)

It shows the balance between energy dissipation and en-
ergy production.
Let ko and εo denote the expected values for the ki-

netic energy and dissipation rate, respectively. Also, the
integral length scale is defined as

l ≡ (〈u′ · u′〉/3)3/2
εo

=

(
2
3ko
)3/2

εo
. (32)

Using this definition with Eq.(31), ko and εo may be ex-
pressed as:

ko =
27

8

Uc
2

xo
2

(
1 +

〈u∗2
x 〉

〈u∗2〉

)2

l2, (33)

and

εo =
27

8

Uc
3

xo
3

(
1 +

〈u∗2
x 〉

〈u∗2〉

)3

l2, (34)

where Uc and xo are input values related to a particu-
lar experimental setup. The ratio 〈u∗2

x 〉/〈u∗2〉 and the
integral length scale are outputs of the numerical simu-
lations, which are unknown a priori. As will be shown
later in Sec. IVB, they are found to be constant across
a wide range of Reynolds numbers, and given by

l ≈ 0.24L (35)

〈u∗2
x 〉

〈u∗2〉 ≈ 0.49, (36)

where L is the computational domain width. The integral
length scale evaluated from any 3D box of turbulence is
a function of the box size, and the ratio of l to L is deter-
mined by the forcing term. Rosales and Meneveau [15]
found that l ≈ 0.19L, when Lundgren’s linear forcing
term is used. For spectral methods, l/L ranges from 0.15
to 0.30.
It is well accepted that the integral length scale is

proportional to the downstream distance. According to
Pope [16], l ≈ 0.0962xo in a turbulent jet experiment.
However, it should be noted that this approximation
varies by experiments, mainly due to the different es-
timations of ε, as later shown in Sec. IVD. In this study,
l = 0.0962xo is used to determine the domain width.
Since we want the periodic DNS to have the same inte-
gral length scale as the experiments, we should set the
size of the computational domain as

L = 0.399xo. (37)

The procedure of conducting the DNS in the current
investigation can be summarized as follows:

• Find the centerline velocity Uc and the axial loca-
tion xo of the target experiment

• Use the ratio of Uc and xo to determine the source
term for the DNS

• Use xo to determine the length of the DNS cubic
box, as L = 0.399xo

• Perform the DNS in a triply periodic configuration

These various a priori values are compared against actual
values from turbulent jet experiments and simulations in
Sec. IVD.
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TABLE II. Relevant parameters of the target experiments and the corresponding simulations

Target experiments Simulation parameters

Uc[m/s] xo[m] ReD N L[m] Reλ

DNS1 0.0796 0.232 3000 192 0.0932 76
DNS2 2.06 0.239 5500 256 0.0920 99
DNS3 1.36 0.732 11000 512 0.294 140
DNS4 1.95 1.60 37000 1024 0.640 255

E. Reynolds numbers

The root mean square velocity fluctuation, urms, the
Taylor-microscale, λ, and the Taylor-microscale Reynolds
number, Reλ, are defined as:

urms =

√
2k

3
, (38)

λ =

√
15

ν

ε
urms, (39)

Reλ =
λurms

ν
. (40)

The entire turbulent flow can be represented by Reλ.
Once appropriate normalizations are applied to the di-
mensional parameters, Reλ is the only free input param-
eter for the triply periodic DNS [2, 15]. Reλ can also be
predicted a priori, as ko and εo are predicted in Sec. III D:

Reoλ =

√
45

2ν

Uc

xo

(
1 +

〈u∗2
x 〉

〈u∗2〉

)
l2. (41)

Reoλ is related to the number of grid points in each
direction, N , and the spatial resolution determined by
the dimensionless parameter κmaxηk [22]. κmax is the

maximum wavenumber, and ηk =
(
ν3/ε

)1/4
is the Kol-

mogorov length scale. According to Yeung and Pope [23],
κmaxηk = 1.0 is adequate for low-order velocity statis-
tics, but at least κmaxηk = 1.5 is needed for higher-
order quantities such as dissipation. Since the current
study examines higher-order statistics as well as low-
order ones, we want κmaxηk ≥ 1.5. In a triply periodic
DNS, κmax = πN/L. Then, the number of grid points is
constrained by the Reynolds number.

N ≥ 1.5

15
1

4π

L

l
Reoλ

3

2 . (42)

This relation has been used a priori to determine proper
grid resolutions for DNS 1-4 in Sec. IVA.
Finally, the Reynolds number ReD of the target ex-

periment can be related to Reλ of the DNS. Since the
ratio Ucxo/ν is proportional to the jet Reynolds num-
ber ReD [21], Ucxo/ν = CReD, where C is a constant
typically ranging from 5 to 7 in turbulent round jet ex-
periments [19, 20, 24–27]. Then, it follows from Eq .(41)
that

Reoλ =

√
45

2
C

(
l

xo

)2 (
1 +

〈u∗2
x 〉

〈u∗2〉

)
ReD. (43)

This form of relation in a turbulent jet, Reλ ∼ Re
1/2
D ,

was also suggested by Antonia et al.[28].

IV. RESULTS

A. Simulation framework and parameters

The governing equations, Eqs. (23)–(26), are solved
using the NGA [29] code. NGA is a three-dimensional
finite difference solver suitable for variable density, low
Mach number, laminar and turbulent flows. It solves
the continuity and Navier-Stokes equations in physical
space, not in spectral space, while discretely conserving
kinetic energy. The Courant-Friedrichs-Lewy condition,
CFL ≤ 0.8, has been imposed for all the simulations in
the current paper.
The initial velocity fields are randomly generated, fol-

lowing the method used by Eswaran and Pope [11]. The
velocity fields are subject to the continuity constraint and
conformed to a specified Passot-Pouquet energy spec-
trum [30]. A detailed explanation can be found in [31].
Four simulations have been conducted at different

Reynolds numbers. The relevant parameters are shown
in Table II. The target experiment of DNS1 is Webster
et al. [26]; DNS2, Vouros and Panidis [25]; DNS3, Pan-
chapakesan and Lumley [19]; and DNS4, Antonia and
Zhao [32]. Any experiment could be selected, but the
limiting factor is the Reynolds number.
As stated in Sec. III D, Uc and xo of each experi-

ment are used to determine the domain width and forcing
terms for the simulation. Reλ is estimated a priori ac-
cording to Eq. (41). Finally, N is determined according
to Eq. (42).

B. Temporal fluctuations

After a transient period, the turbulence statistics un-
der the linear forcing technique asymptotically reaches
a unique solution [15]. Rosales and Meneveau noticed
that the turbulent statistics are subject to large oscilla-
tions around their respective average values, even when
the flow becomes statistically stationary. For the purpose
of reducing the magnitudes of such oscillations while re-
taining the underlying physics, Carroll and Blanquart [2]
proposed a modification to the linear forcing terms. Since
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FIG. 1. Temporal fluctuations of turbulent parameters: (a) ratio of the integral length scale, l, to the domain width, L; (b)
anisotropy 〈u∗2

x 〉/〈u∗2〉; (c) the volume-averaged kinetic energy, 〈k∗〉, with respect to the expected value, ko; (d) the volume-
averaged dissipation rate, 〈ε∗〉, with respect to the expected value, εo. The parameters are plotted as a function of the time
normalized by the a priori eddy time scale, τo.

TABLE III. Mean values and standard deviations (Mean±SD) of turbulent parameters over the statistically stationary region

l/L 〈u∗2
x 〉/〈u∗2〉 〈k∗〉/ko 〈ε∗〉/εo

DNS1 0.238 ± 0.002 0.504 ± 0.002 0.986 ± 0.011 0.996 ± 0.006
DNS2 0.242 ± 0.002 0.493 ± 0.004 0.992 ± 0.012 1.009 ± 0.012
DNS3 0.239 ± 0.002 0.485 ± 0.003 1.002 ± 0.011 1.001 ± 0.007
DNS4 0.244 ± 0.002 0.490 ± 0.002 1.000 ± 0.008 0.991 ± 0.007

the current study also uses linearly forcing terms, albeit
anisotropic, the same modification is used for the simu-
lations DNS 1-4:

• Longitudinal direction

εo

〈k∗ + u∗2
x

2 〉
u∗
x, (44)

• Transverse directions

1

2

εo

〈k∗ + u∗2
x

2 〉
u∗
i . (45)

Figure 1 shows l, 〈u∗2
x 〉/〈u∗2〉, 〈k∗〉/ko, and 〈ε∗〉/εo, as

a function of the normalized time, t/τo, where τo = ko/εo.
τo is the eddy time scale determined a priori. The quan-
tities are spatially averaged over the cubic box at each
time step. All of the turbulent parameters reach statis-
tical stationarity after a transient period. The length of
the transient periods appears to depend on Reλ; simula-
tions with higher Reλ have shorter transient periods. For
DNS1 with Reλ = 76, stationary conditions are attained
approximately at t/τo = 6; for DNS 4 with Reλ = 255,
t/τo = 3.
The mean values of the turbulent parameters and the

magnitudes of fluctuations over the statistically station-

ary periods are shown in Table III. The standard devia-
tions are small enough to assume that the velocity fields
have reached statistical stationarity.

The mean value of l/L is about 0.24, and the mean
value of 〈u∗2

x 〉/〈u∗2〉 is about 0.49. It indicates that the
mean values of the two parameters are independent of
Reλ, despite the small variations. In addition, Fig. 1 (c)
and (d) display the temporal evolution of 〈k∗〉 and 〈ε∗〉
with their respective expected values. Regardless of Reλ,
the kinetic energy and dissipation rate indeed fluctuate
around their expected values with relatively small ampli-
tudes, when the system reaches statistical stationarity.
Thus, it shows that the calculations for ko and εo are
quite accurate.

C. Validation against experimental data

- energy budget

We need to ensure that the simulation quantities, such
as k∗ and ε∗, are indeed equivalent to the experimen-
tal counterparts, k and ε. We start with the turbulent
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kinetic energy equation:

k =
1

2
u′ · u′

∣∣∣∣
x=xo

=
1

2

[(xo

x
e(

x
xo

−1)u∗
x

)2
+
(xo

x
u∗
y

)2
+
(xo

x
u∗
z

)2]∣∣∣∣
x=xo

=
1

2
u∗ · u∗ = k∗ (46)

To examine the dissipation rate, let us consider the ki-
netic energy equation for the full jet derived from Eq. (7).
Neglecting the pressure term and viscous diffusion, we
can write the ensemble-averaged energy equation as

−〈u′ · ∇u · u′〉 − u · ∇〈k〉 − ∇ · 〈u′k〉 − εk = 0. (47)

These four terms are named production, advection, dif-
fusion, and dissipation terms from left to right [19]. The
production term is the same for experiment and simula-
tion:

−〈u′ · ∇u · u′〉|x=xo
= −〈u∗ · ∇u · u∗〉 (48)

=
Uc

xo
ko

(
3
〈u′2

x 〉
〈u′2〉 − 1

)
. (49)

For the advection term, we only apply the advection nor-
malization, because continuity normalization is a math-
ematical technique to make the flow divergence-free, and
therefore should not be related to the advection term.
Then,

−u · ∇〈k〉|x=xo
= −u · ∇〈x

2
o

x2
k∗〉
∣∣∣∣
x=xo

(50)

= u ·✘✘✘∇〈k∗〉 + 2
Uc

xo
ko. (51)

The diffusion term is zero for both experiments and sim-
ulations, because these third-order moments are zero:

−∇ · 〈u′k〉|x=xo
= −∇ ·✘✘✘✘〈u∗k∗〉 + 3

2xo
✘✘✘✘〈u∗

xk
∗〉 = 0.(52)

Finally, the dissipation term is simply the negation of the
sum of the other terms:

εk|x=xo
= − (u · ∇〈k〉+ 〈u′ · ∇u · u′〉+∇ · 〈u′k〉)|x=xo

=
Uc

xo
ko

(
1 + 3

〈u′2
x 〉

〈u′2〉

)
. (53)

With the expression for ko from Eq. (33) and
〈u′2

x 〉/〈u′2〉 ≈ 0.49 from Eq. (36), these four terms are
directly compared against experimental values of Pan-
chapakesan and Lumley [19] in Fig. 2. Each term is nor-
malized by U3

c /r1/2. The half-width of a round jet, r1/2,

is the radial distance where the axial velocity is 1
2Uc. Ac-

cording to Panchapakesan and Lumley, r1/2 = 0.096xo.
Since the target flow of the current study is the centerline
region of a round jet, the estimated values for each term
are plotted as points at η = 0. Despite small differences,
all of the four terms agree well with the experimental
measures.

0 0.05 0.1 0.15 0.2 0.25
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Advection

Production

Diffusion

Epsilon

Current

FIG. 2. Energy budget comparison. Each term is normalized
by U3

c /r1/2. The lines are experimental data from P&Lu [19],
and the points are the estimated values from Eqs. (48)–(53).

Note that the expression for εk in Eq. (53) is different
from the expression for εo in Eq. (34). The difference
is caused by the continuity normalization, which creates
an extra term through u · ∇〈k〉. In other words, εk is
equivalent to the sum of εo = 2νS∗

ijS
∗
ij computed from

our DNS and the additional term from the continuity

normalization; i.e.,

εk = εo + 2
Uc

xo
ko

( 〈u′2
x 〉

〈u′2〉

)
. (54)

D. Validation against experimental data

- single point values

As demonstrated in Sec. IVB and Sec. IVC, the fol-
lowing values are the results of the DNS with the present
source term:

ko
U2
c

≈ 0.0698, (55)

εk
U3
c /xo

≈ 0.171. (56)

The three normalized scalar quantities,
〈u′2

x 〉
〈u′2〉 ,

k
U2

c
, and

εk
U3

c /xo
, are plotted as a function of ReD in Fig. 3.

Boersma(98) and Boersma(04) are DNS data, and the
rest are experiments. A dashed line is used to represent
values of the current study for all the Reynolds numbers,
since the results are independent of the Reynolds number.
For the energy dissipation rate, εk is used instead of εo,
because εk is the quantity equivalent to the dissipation
in experiments.
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FIG. 3. Single point values comparison: (a) anisotropy
〈u′2

x 〉

〈u′2〉
; (b) normalized kinetic energy k

U2
c
; (c) normalized dissipation rate

εk
U3

c /xo
. Boersma(98) [33] and Boersma(04) [34] are DNS. P&Li [35], P&Lu [19], Antonia [32], Romano [27], Xu [18], W&F [24],

Burattini [17], and Darisse [36] are experiments.

One should first acknowledge that the published values
do not completely agree with one another, even among
experiments or computations. Instead, there seem to
be some ranges of values for the respective parameters;

0.40− 0.58 for
〈u′2

x 〉
〈u′2〉 ; 0.05− 0.09 for k

U2
c
; and 0.08− 0.23

for εk
U3

c /xo
. Possible reasons for these differences include

the state of the boundary layer on the nozzle wall, differ-
ences in the experimental techniques, and different ways
to estimate derivatives. The value of each parameter for
the current study lies within its respective range. Lund-

gren’s forcing scheme would have
〈u′2

x 〉
〈u′2〉 = 0.33, below the

experimental values.
In addition, the origins of the forcing term are exam-

ined again in Fig. 4. Mean only uses the forcing term
from ∇u. Thus, the forcing term is the first column of
Table I: f = Uc

xo
〈ux,− 1

2uy,− 1
2uz〉. Mean+Adv uses the

forcing term from ∇u and the advection normalization;
thus, the forcing term is the sum of the first and second
columns of Table I: f = Uc

xo
〈2ux,

1
2uy,

1
2uz〉. All uses the

original forcing term derived in Sec. III B.

TABLE IV. Examination of the origins of the forcing term:
time-averaged values of turbulent parameters.

〈u∗2
x 〉/〈u∗2〉 k/U2

c

All 0.49 0.070
Mean 0.73 0.056

Mean+Adv 0.60 0.12
Experiments 0.40 − 0.58 0.05− 0.09

The time-averaged values from 10τo to 50τo are dis-
played in Table IV. Also, the ranges for the experimental
values are shown. Among the three forcing terms, only
the original All forcing produces the turbulent character-
istics of round jets correctly. These plots and table above

help to show that the two normalizations are essential to
create the right turbulence.

E. Validation against experimental data

- energy spectra

The energy spectrum is compared against the experi-
ment of Burattini et al. [17]. The one-dimensional energy
spectrum, φ(κ1), is defined as:

∫ ∞

0

φ(κ1)dκ1 = k, (57)

where κ1 is the wavenumber in the longitudinal direc-
tion. φ(κ1) is the Fourier transformed function of the
spatial correlation function 〈u′(x) · u′(x + r1)〉, where
〈 · 〉 is the volumetric averaging, and r1 is a vector in the
longitudinal direction.

This spatial energy spectrum, φ(κ1), can be easily com-
puted in the triply periodic DNS. Since the governing
equations in this study are in the Lagrangian reference
frame, the spatial energy spectrum of our DNS can be
compared to the temporal energy spectrum of an experi-
ment, which assumes Taylor’s frozen turbulence hypoth-
esis [37]. The energy spectra from Burattini et al. and
DNS4 are displayed in Fig. 5. The two spectra agree with
each other very well in the inertial-convective subrange
as well as in the dissipative subrange. The small devi-
ation in the high wavenumber region may be caused by
the estimation of η in the experiment.

Burattini et al. obtained the relation, φ ∼ κ−1.52, by
using a least squares fit to the spectrum in the inertial
subrange. We use the following model spectrum from
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the longitudinal direction. uk = (νε)1/4 is the Kolmogorov
velocity scale.

Pope [16] to determine the power-law scaling:

φ(κ) = αε2/3κ−nfL(κL)fη(κηk), (58)

fη(κηk) = exp
(
−β
[(
(κηk)

4 + c4η
)1/4 − cη

])
, (59)

fL(κL) =

(
κL

((κL)2 + cL)
1/2

)11/3

, (60)

where α is a constant and L = k3/2/ε. For high Reynolds
numbers, cη = 0.2, β = 4.7, and cL = 6.78 should be
appropriate, according to Pope [16]. A least-squares fit is
used over the inertial subrange and the dissipation range
with Eq.(58) to determine C = 2.69 and n = 1.50.

The scalings from Burattini et al. and our study are
very close to each other, different from the high-Reynolds

number theoretical prediction of Kolmogorov [38]. The
Reynolds numbers of both Burattini’s experiment and
DNS4 might not be high enough to reach n = −5/3,
which is obtained as a result of assuming a very large
Re.

V. CONCLUSION

Existing forcing schemes are numerical methods that
successfully prevent the turbulence from decaying, but
they were not derived by using the information of a spe-
cific flow. In contrast, the purpose of this work was to
derive a forcing technique based on the physical proper-
ties of a practical turbulent flow. Reynolds decomposi-
tion with the mean velocity of a turbulent round jet was
used to find the momentum equations for the fluctuat-
ing velocity. The resulting forcing terms are found to be
anisotropic linear forcing terms in physical space.
First, the anisotropy 〈u′2

x 〉/〈u′2〉, kinetic energy k, and
dissipation rate εk were compared against multiple exper-
iments. DNS results were found to be within the range
of experimental values. Then, the energy budget terms
were compared against experimental values at the cen-
terline of a turbulent round jet. Finally, the spectrum
computed from the DNS data of the current study agrees
well with that of Burattini et al., including the scaling of
about κ−1.5 in the inertial-convective region. Thus, it
seems appropriate to conclude that the proposed forcing
terms successfully produce the turbulent characteristics
of a turbulent round jet in a triply periodic box.
The essence of this work is to show the possibility that

a forcing technique (for 3D periodic box turbulence) can
be based on the physics of a practical flow, instead of
being an arbitrary numerical method as all the previous
ones. The current forcing term is focused on the center-
line of a jet in the self-similar region. It is also developed
to be used only in a 3D periodic box of turbulence. We
developed a forcing scheme for this local area on purpose,
so that the forcing terms are simple and clear. By using
similar derivation methods, however, more forcing terms
can be discovered for different flow geometries.

[1] Phares L Carroll, Siddhartha Verma, and Guillaume
Blanquart, “A novel forcing technique to simulate turbu-

lent mixing in a decaying scalar field,” Physics of Fluids



11

25, 095102 (2013).
[2] Phares L Carroll and Guillaume Blanquart, “A proposed

modification to Lundgren’s physical space velocity forc-
ing method for isotropic turbulence,” Physics of Fluids
25, 105114 (2013).

[3] Sandip Ghosal, Thomas S Lund, Parviz Moin, and Knut
Akselvoll, “A dynamic localization model for large-eddy
simulation of turbulent flows,” Journal of Fluid Mechan-
ics 286, 229–255 (1995).

[4] Daniele Carati, Sandip Ghosal, and Parviz Moin, “On
the representation of backscatter in dynamic localization
models,” Physics of Fluids 7, 606–616 (1995).

[5] Jeffrey R Chasnov, “Simulation of the Kolmogorov iner-
tial subrange using an improved subgrid model,” Physics
of Fluids A: Fluid Dynamics 3, 188–200 (1991).

[6] Neal P Sullivan, Shankar Mahalingam, and Robert M
Kerr, “Deterministic forcing of homogeneous, isotropic
turbulence,” Physics of Fluids 6, 1612–1614 (1994).

[7] Christelle Seror, Pierre Sagaut, Christophe Bailly, and
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