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Abstract
The response of initially isotropic turbulence to a strong magnetic field in the low magnetic

Reynolds number regime has been studied using direct numerical simulations on elongated so-

lution domains that are necessary for reliable results at long evolution times. Most results are

obtained using a 16384× 20482 periodic domain of aspect ratio 8, without numerical forcing, after

a pre-simulation that creates the desired initial conditions before the magnetic field is applied. At

early times, velocity fluctuations parallel to the magnetic field becomes dominant as a result of

Joule dissipation being weaker in this direction. However, this anisotropy is reversed after several

large-eddy time scales. Statistics of the velocity gradients indicate a strong trend towards local ax-

isymmetry and quasi-two-dimensionality, with reduced intermittency. Scale-dependent anisotropy

is studied in spectral space in terms of a wavenumber (k1) along the magnetic field and a radial

wavenumber (kr) in the orthogonal plane. Axisymmetric spectra show that the Joule dissipation

plays a dominant role in causing kinetic energy to be concentrated in a narrow spectral region

at very low values of k1, which would not be captured if the domain were cubic. Simulations

spanning over two orders of magnitude variation in the magnetic interaction parameter (N) show

that Reynolds stress anisotropy scales with the Joule time only for a short initial period. At large

N , accelerated development of anisotropy leads to an even greater need for elongated domains

which have not been employed frequently in the literature. Overall the results in this work pro-

vide both a confirmation of trends seen in simulations on cubic domains at earlier times and new

observations at later times where the benefits of an elongated domain are clearly evident. A clear

parameterization of Reynolds number effects still awaits larger simulations at inevitably higher

cost.
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I. INTRODUCTION

The study of magnetohydrodynamic (MHD) turbulence of an electrically conducting fluid
subjected to a magnetic field has numerous applications ranging from metallurgical process-
ing to astrophysical phenomena1,2. The motion of the fluid produces an electric field, and
hence a current, which modifies the character of the flow field dramatically through the
Lorentz force that points in a direction orthogonal to both the electric current and magnetic
field vectors. In general, the resulting flow phenomena depend strongly on the the magnetic
Reynolds number (Rm), which is a measure of the strength of advective transport to that
of diffusion of the magnetic field. However, in most terrestrial applications, including con-
vection in the Earth’s core, and nuclear reactor design, Rm is much smaller than unity —
in which case the velocity field has only a minimal effect on the magnetic field. The main
interest is then in how the velocity field is (in a one-way coupling) modified by the magnetic
field. For MHD turbulence in this low magnetic Reynolds number regime the strength of
MHD effects is expected to be a function of how the time scale of the magnetic field compares
with the time scale(s) of the turbulence itself.

Since liquid metals are opaque and corrosive, experiments in MHD turbulence are much
more difficult than those involving ordinary fluids. As a result, direct numerical simulations,
if formulated properly and executed efficiently, have particular appeal for understanding the
fundamentals in this subject3. A number of authors have simulated MHD turbulence in a
simplified geometry, namely a three-dimensional (3D) periodic domain, with (e.g. Refs. 4–7)
or without (e.g. Refs. 8–10) numerical forcing that supplies energy to the large scales. These
studies have shown, for instance, that length scales under MHD can grow rapidly, and that
Joule dissipation arising from the Lorentz force causes the energetics of the flow to differ sub-
stantially from classical isotropic turbulence. However, although the use of (different types
of) forcing as a means of achieving stationarity at high Reynolds number in hydrodynamic
turbulence11,12 is well accepted, for MHD turbulence this may interfere with the physical
effects of the Lorentz force, which acts at all scales. On the other hand, if the turbulence
is allowed to decay without energy input the Reynolds number in numerical simulations
often becomes quite low, especially if the range of scales is limited by a desire to minimize
effects of finite domain size9. At the same time, although (for this reason) computational
requirements for MHD turbulence are greater than those for hydrodynamic turbulence, sim-
ulations of MHD turbulence have generally not yet reached the grid resolutions deployed
for the latter (such as in Ref. 13 and higher). Furthermore, in view of preferential growth
of large-eddy length scales along the direction of the imposed magnetic field, cubic solution
domains widely employed in the literature are physically not optimal.

The basic premise of our work in this paper is to improve understanding of MHD tur-
bulence by conducting simulations of higher resolution than achieved before in this subject,
using elongated solution domains of large aspect ratio, with initial flow conditions that are
representative of natural, unforced isotropic turbulence. Our first focus is on the anisotropy
that develops at various scales as a result of the Lorentz force, through a dissipative mech-
anism which (unlike viscous dissipation) is inherently anisotropic. Previous works in the
literature14,15 have in fact suggested a trend towards quasi two-dimensionality (hereafter
Q2D for short) if the magnetic field is sufficiently strong. To analyze the anisotropy we
consider the single-point Reynolds stress tensor, the statistics of velocity gradients under
constraints due to axisymmetry16, as well as evolution of spectral quantities in Fourier
space17. Anisotropy also implies that both magnitude and orientation in wavenumber space
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are important. We mainly use the tools of one-dimensional and axisymmetric spectra18

which can provide information complementary to other descriptions such as a decomposi-
tion into toroidal and poloidal contributions10, ring-to-ring energy transfer17,19, as well as
wavelet analyses20.

Our second focus is to quantify the effects of the strength of the imposed magnetic field,
through the magnetic interaction parameter (N), defined as the ratio of a large-eddy time
scale of an initial turbulence state to the time scale (called Joule time) of the magnetic field.
Although other authors have reported results for values of N much larger than unity before,
we show that simulation results at large N can be unreliable (except perhaps at early times)
unless domain size requirements are addressed rigorously. For example, use of elongated
domains allows us to compare our results with an asymptotic prediction by Moffatt21 for
anisotropy development in the limit of infinitely large N . A more general question is whether
changes in turbulence statistics scale with the Joule time of the magnetic field. For the study
of effects of larger N the use of elongated domains to minimize the confinement effects on
the turbulence structure due to insufficient domain size is even more important. It may
be noted that such confinement effects may be avoided entirely in an alternative approach
based on spectral closures10,22, while other phenomena such as Hartmann layers are present
in flows with actual solid boundaries23–25. However we shall not consider those effects in this
work.

In this paper we present results from a number of simulations. In each case, a pre-
simulation of decaying isotropic turbulence is first performed to provide physically realistic
initial conditions prior to the activation of the magnetic field. The domain aspect ratio
is varied from 1 to 64, and the magnetic interaction parameter is varied from 1 to 256.
The highest grid resolution employed is 16384× 20482, for simulations where the pre-MHD
Taylor-scale Reynolds number is 98. At early times velocity fluctuations parallel to the
imposed magnetic field are larger than those in the orthogonal directions, but the inequality
is reversed at later times. In the literature this anisotropy reversal has been interpreted10 as
the result of polarization in spectral space. However we attempt to provide a more detailed
analysis, over a range of values of N as stated above. In particular, we examine the direct
and indirect effects of the Joule dissipation in the evolution of different terms in the Reynolds
stress budget, and the development of Q2D behavior as well as departures from local isotropy
at the small scales. We also present results on one-dimensional and axisymmetric spectra18

of the turbulence kinetic energy as well as specific terms in the spectral energy budget,
including nonlinear spectral transfer and contributions from pressure-strain correlations.

The remaining sections of this paper are organized as follows. In Sec. II we give a brief
summary of our technical approach, including equations and numerical methods. In Sec. III
we discuss the use of pre-simulations on domains of appropriate size and aspect ratio to
obtain initial conditions for our MHD simulations. A basic assessment of the effects of aspect
ratio on the development of basic quantities such as the turbulence kinetic energy and viscous
and Joule dissipation rates is also given. The bulk of our numerical results is presented
in Sec. IV, mainly using a 16384 × 20482 simulation with N = 1. Separate subsections are
devoted to studies of Reynolds stress anisotropy, statistics of the small scales, and spectral
characteristics as a function of wavenumbers parallel and perpendicular to the imposed
magnetic field. In Sec. V we address the effects of larger values of N , using two separate
series of simulations at resolutions 4096 × 5122 and 16384 × 20482. Finally in Sec. VI we
summarize the conclusions of this work and briefly point to additional investigations which
will be reported separately in the future.

3



II. BACKGROUND AND NUMERICAL PROCEDURES

Davidson26 gives a detailed derivation of MHD equations. If B is the magnetic field then
the Lorentz force is (J × B) per unit volume, where J = ∇ × B/µ is the current density,
and µ is the permeability of free space. By decomposing the Lorentz force into irrotational
and solenoidal contributions we can write the momentum equation for velocity fluctuations
u (with no mean velocity) in the form

Du

Dt
= −1

ρ
∇(p+

B2

2µ
) + ν∇2u +

1

ρµ
B · ∇B (1)

where D/Dt denotes the material derivative operator, ρ is the fluid density, p is the (hy-
drodynamic) pressure, B ≡ |B|, µ is the permeability of free space, and ν is the kinematic
viscosity. We let B = B0 + b, where B0 is steady and uniform, and b is the fluctuating
magnetic field. The magnetic Reynolds number Rm may be defined as UL/ζ where U and L
are typical velocity and length scales of the flow, and ζ = 1/(µσ) is the magnetic diffusivity
(and σ is the electrical conductivity). If Rm � 1 the magnetic field fluctuation is weak (i.e.
|b| � |B0), and the resulting quasi-static approximation gives b = ∇−2[−(1/ζ)B0 · ∇u].
This relation can be used to obtain the Lorentz force. The momentum equation then be-
comes

∂u/∂t+ u · ∇u = −(1/ρ)∇(p+B2/2µ)− (σ/ρ)[(B0 · ∇)2(∇−2u)] + ν∇2u , (2)

which can be readily transformed to Fourier space. By letting B0 be aligned with one of
the coordinate axes (say, x, or equivalently, x1) and projecting onto a plane perpendicular
to the wave-vector k to enforce incompressibility, we obtain the equation

∂û(k)/∂t = −[û · ∇u]⊥k − (σ/ρ)B2
0(kx/k)2û− νk2û (3)

where k is the magnitude of k, and overhats denote Fourier coefficients, and the subscript
⊥ k denotes the projection operator. The second term on the right of Eq. (3) is the origin of
the Joule dissipation effect, which provides magnetic damping in various applications. Since
(unlike viscous dissipation) Joule dissipation depends on orientation in wavenumber space
but not scale size, it tends to induce anisotropy, at all scales. Numerically, since the Lorentz
force in Eq. (3) is (like the viscous term) linear in the velocity, in Fourier pseudo-spectral
algorithms it can be treated exactly via an integration factor for integration in time, at no
significant extra cost regardless of the magnetic field. We use a second-order Runge Kutta
scheme, in which aliasing errors are controlled by truncation and phase shifting techniques27.
The simulations have been performed with a massively parallel DNS code, that uses a two-
dimensional domain decomposition to facilitate large CPU core counts, and can also allow
shared memory multi-threading among multiple cores per node. Results reported in this
paper were almost exclusively obtained using the computational resources at the Texas
Advanced Computing Center (TACC). The computational cost per time step for the largest
simulation at 16384×20482 resolution is similar to that for a 40963 grid which has the same
number of grid points.

In this work we study anisotropy development using several scale-dependent quantities in
physical and spectral spaces, beginning with the Reynolds stress tensor, which evolves by

d〈uiuj〉/dt = (2/ρ)〈psij〉 − 〈Jij〉 − 〈εij〉 (4)
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where sij ≡ (∂ui/∂xj + ∂uj/∂xi)/2 is the strain rate tensor, and angled brackets represent
averaging in space, and terms on the right are the pressure-strain correlation, Joule and
viscous dissipation tensors respectively. The last two terms can be related to the velocity
spectrum tensor Φij(k) (whose integral is the Reynolds stress) by

〈Jij〉 = 2(σB2
0/ρ)

∫∫∫
(kx/k)2Φij(k) dk ; 〈εij〉 = 2ν

∫∫∫
k2Φij(k) dk . (5)

Taking half of the traces of these relations gives the dissipation rates, via

〈J〉 = 2(σB2
0/ρ)

∫∫∫
(kx/k)2E(k) dk ; 〈ε〉 = 2ν

∫∫∫
k2E(k) dk , (6)

where E(k) = 1
2
Φii(k) is the 3D energy spectrum.

Since MHD turbulence has very different length scales in different directions, representa-
tion of anisotropy as a function of wavenumber magnitude k in wavenumber space would not
be satisfactory. Instead, we note that the turbulence studied is axisymmetric, with rotational
symmetry28 around the direction of the imposed magnetic field. As in Ref. 18 we may thus
represent the spectral content of the turbulence as a function of one-dimensional wavenum-
ber k1 (same as kx, along the direction of the magnetic field) and a “radial” wavenumber

kr =
√
k22 + k23 in the transverse plane. In this coordinate system kr = k sinφ where

0 ≤ φ ≤ π is the co-latitude with respect to the k1 axis, and 0 ≤ θ ≤ 2π is the polar angle
within the k2 − k3 plane. The axisymmetric spectrum tensor can be formed by integrating
the velocity spectrum tensor over all values of θ, i.e.

Aij(k1, kr) =

∫ 2π

0

Φij(k)kr dθ . (7)

The velocity spectrum in one dimension can also be recovered by

Φij(k1) = 2

∫ ∞
0

Aij(k1, kr) dkr (8)

where the factor of 2 accounts for contributions from both positive and negative k1. Half of
the trace of Aij(k1, kr) gives the axisymmetric energy spectrum, EA(k1, kr). If the turbulence
is isotropic a contour plot of EA(k1, kr)/ sinφ29 would show a pattern of concentric circles.
Any deviation from such circular contours (except caused by a limited number of Fourier
modes at low k1 or low kr) is then an indicator of anisotropy. A radial spectrum in kr can
also be defined, such that

Φ′ij(kr) =

∫ ∞
0

Aij(k1, kr) dk1 . (9)

In practice, the upper limits of the integrals in Eqs. (8) and (9) are replaced by the highest
wavenumbers in k1 or kr represented in the code after treatment for aliasing errors27.

III. INITIAL CONDITIONS AND DOMAIN ASPECT RATIO

To study the response of isotropic turbulence to the magnetic field it is important to begin
with a physically realistic isotropic state — that can be represented well in an anisotropic
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FIG. 1. (a) Taylor-scale Reynolds number and (b) flatness factor of longitudinal velocity gradients

in pre-simulations where ny = nz = 256, 512, 1024, 2048 (from bottom to top). With nx = Λny,

results for Λ = 1 and Λ = 8 are indicated by solid lines and dashed lines respectively. The time

axis (t′) is normalized by initial values of K and 〈ε〉 in the pre-simulation. The meanings of the

circles on each curve are addressed in the text.

domain of non-unity aspect ratio, with minimal numerical distortion. A pre-simulation
where isotropic turbulence is allowed to evolve naturally is typically required. Here we
present a summary of these pre-simulations and an assessment of how high an aspect ratio
is required for reliable results.

We consider solution domains of lengths L0x, L0y L0z in x, y, z directions with nx, ny and
nz grid points respectively. The magnetic field is applied in the x direction, on elongated
domains of aspect ratio Λ = L0x/L0y > 1, while L0y = L0z. In each direction the number of
grid points is proportional to the length of the solution domain, so that the grid spacings ∆x,
∆y and ∆z are all equal. This ensures small-scale motions are equally well resolved in every
coordinate direction, with the same highest wavenumbers in each. We set L0y = L0z = 2π
units, with Λ increased from unity in powers of 2, as desired.

To achieve the objective of minimum numerical distortion, the large eddies prior to acti-
vation of the magnetic field must be very small compared with the dimensions of the solution
domain. The purpose of the pre-simulations is to allow the turbulence to develop naturally
towards a well-developed state, with initial parameters chosen to minimize numerical arti-
facts. We initialize the flow as a Gaussian velocity field with an energy spectrum function
(which is the integral of E(k) over a spherical shell of radius k in wavenumber space) of the
form30

E(k) = CK〈ε〉2/3 k−5/3fL(kL)fη(kη) (10)

where CK ≈ 1.62 (Ref. 31) is the Kolmogorov constant for E(k), L and η are initial (longi-
tudinal) integral and Kolmogorov scales respectively, and fL(·) and fη(·) are semi-empirical
fitting functions. As the turbulence decays all the length scales are expected to grow. It is
important to choose L here to be very small compared to the domain size in all directions, so
that even at the end of the pre-simulation ample room remains for the large scales to grow
during the subsequent MHD simulation. The pre-simulation can be considered complete
when the kinetic energy shows a power-law decay while the Reynolds number drops slowly,
and when clear non-Gaussianity in the velocity gradients has developed.

Figure 1 shows the evolution of Taylor-scale Reynolds number (Rλ) and flatness factor of
longitudinal velocity gradients in several pre-simulations that began at different Reynolds
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numbers, with L taken to be 1/48 of the shortest sides of the domain. The gradient flatness
increases from 3.0, towards a maximum and then decreases as a result of a slowly decreasing
Reynolds number. Solid and dashed lines for pre-simulations on cubic and elongated domains
with Λ = 8 (and nx = Λny) are in close agreement, thus showing that a proper isotropic
state has been attained on an anisotropic solution domain. Velocity fields at time instants
marked by solid circles are used as initial conditions for our MHD simulations.

Grid points 2048× 2562 4096× 5122 8192× 10242 16384× 20482

ν 0.0028 0.0011 0.000437 0.0001732

nR 3 2 3 2

(Rλ)b 36 62 105 173

(Rλ)0 21 35 61 98

u′ 0.393 0.350 0.428 0.383

v′ 0.394 0.351 0.430 0.385

w′ 0.394 0.350 0.430 0.386

L1/L2 1.999 1.941 2.026 1.981

〈(∇‖u)2〉/〈(∇⊥u)2〉 0.5001 0.4998 0.5000 0.4999

µ3 of ∇‖u -0.497 -0.508 -0.519 -0.529

µ4 of ∇‖u 3.863 4.174 4.701 5.212

L0‖/L1 130 134 166 163

L0⊥/L1 16.3 16.8 20.8 20.4

∆x/η 1.479 1.302 1.519 1.356

TABLE I. Parameters of pre-simulations for domains of aspect ratio 8 (with shortest side fixed at

2π): viscosity, Taylor-scale Reynolds number (Rλ)b before the pre-simulation begins, followed by

various parameters (as discussed in the text) at the end of the pre-simulation.

Table I shows parameters for pre-simulations on domains of aspect ratio Λ = 8. As in
simulations of forced isotropic turbulence32, higher Reynolds numbers are obtained on finer
grids by reducing the viscosity (ν). Ensemble averaging is taken over modest number (nR)
of realizations initialized with different random number seeds. It is clear that, despite the
solution domain being highly anisotropic, the component r.m.s velocities, the ratio between
longitudinal (L1) and transverse (L2) integral length scales, and the ratio between mean-
squared longitudinal (∇‖u) and transverse (∇⊥u) velocity gradient fluctuations all agree
very well with results in incompressible isotropic turbulence. The skewness (µ3) and flatness
(µ4) factors of∇‖u are also close to values at comparable Reynolds numbers in simulations of
forced isotropic turbulence33. The ratios of domain sizes to the integral length scales at the
end of the pre-simulation are sufficiently large for the large scales to develop naturally under
a magnetic field in the x direction. Resolution of the Kolmogorov scale is also adequate,
and is expected to improve further as the turbulence continues to decay.

For a given pre-MHD turbulence state subjected to a magnetic field of strength B0 in a
fluid of density ρ and conductivity σ, MHD effects can be characterized by the magnetic
interaction parameter (N) as the ratio of a large-eddy time scale to the Joule time τJ ≡
ρ/(σB2

0). We use the eddy turnover time TE = L11/u
′ where L11 is a longitudinal length

scale and u′ is the r.m.s. velocity as the large-eddy time scale. Other definitions (such as
K/〈ε〉) have been used by others as well but that will not change our results significantly.
We note that some theoretical results are known for N of order unity5,9 as well as N →∞21.
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Grid Λ nR (Rλ)0 N

2563 1 3 21 0.5,1,2

512× 2562 2 3 21 1

1024× 2562 4 3 21 1

2048× 2562 8 3 21 1

4096× 2562 16 3 21 1

8192× 2562 32 4 21 1

16384× 2562 64 3 21 1

4096× 5122 8 2 34 0.5,1,2,4,8,16,32,64,128,256

2048× 2562 8 3 21 1

4096× 5122 8 2 34 0.5,1,2,4,8,16,32,64,128,256

8192× 10242 8 3 59 0.1,0.5,1,2,5,10

16384× 20482 8 2 98 1,2,4,8

20483 1 1 98 1,8

TABLE II. Table of parameters for production MHD simulations studied in this paper.

Stronger magnetic fields with shorter time scales lead to faster growth of the large-eddy
length scales and hence turbulence statistics becoming contaminated by finite domain size
effects earlier. We generally use data only at times before at least one integral length scale in
the x direction exceeds 1/4 of L0x. For the same physical parameters a domain with larger
Λ allows reliable results to be obtained for a longer period of time. Table II gives a list of
the key simulations in this work, grouped into three categories used to study dependence
on domain aspect ratio, magnetic interaction parameter and pre-MHD Reynolds number
respectively. In our simulations, as the integral length scales grow while the turbulence
decays, the value of N if based on instantaneous values of TE can increase by 2 orders of
magnitude of more (even more so than in simulations with forcing4,17). For convenience,
and since the magnetic field itself is fixed, we use values of N based on the value of TE just
before the magnetic field is applied.

Figure 2 gives, in three frames, a basic characterization of effects of MHD in our simula-
tions. When the magnetic field is turned on (at time t0), the kinetic energy decreases more
quickly (as a direct result of the Joule dissipation) than in freely decaying isotropic turbu-
lence but reverts later to power-law behavior. The integral length scales grow rapidly: in
particular, L11 is seen to grow to 4.6 and beyond (which is 6 times of L22), which would not
have been captured if the solution domain were a cube of size (2π)3. Anisotropy reflected
by nonzero values of the Reynolds stress anisotropy tensor bij = 〈uiuj〉/(2K) − (1/3)δij,
develops quickly when the magnetic field is turned on. At short times t − t0 b11 > 0 while
b22 ≈ b33 < 0, but this anisotropy is reversed at later times.

To help quantify the sensitivity of numerical results to the domain aspect ratio, in Fig. 3
we compare the evolution of (a) longitudinal integral length scale (L11), (b) Joule dissipation
and (c) viscous dissipation for simulations at Λ from 1 to 64 (in powers of 2), with (Rλ)0
and N held fixed (at 21 and 1 respectively). In this and all subsequent figures we define
normalized time t∗ as (t − t0)/(TE)0 where the subscript 0 refers to pre-MHD conditions.
Since L11 is an integral of the two-point correlation for spatial separation rx from 0 to 1

2
L0x

its maximum possible value is 1
2
L0x which is marked by short horizontal bars in frame (a).

At early times, all curves agree closely with each other. (Conversely, the benefits of larger Λ
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t′ t′ t− t0

(a) (b) (c)

FIG. 2. (a) Turbulence kinetic energy (K), (b) integral length scales L11 and L22 of velocity

components u1 and u2, and (c) Reynolds stress anisotropy tensor elements (b11 (red), b22 and b33
(blue)) in 8192× 10242 simulation on a 16π× (2π)2 domain with N = 1. Time t is measured from

the beginning of the pre-simulation, and the magnetic field is turned on at t = t0. In (a) and (b)

solid lines represent the pre-simulation (if extended), while dashed line represents MHD results. In

(b) L11 L22 under the magnetic field are indicated by long and short dashed lines respectively.

(a) (b) (c)

❇
❇
❇
❇❇▼

✡
✡
✡✡✣

✡
✡

✡✡✢

t∗ t∗ t∗

FIG. 3. (a) L11/π, (b) 〈J〉/〈J〉0, (c) 〈ε〉/〈ε〉0 versus normalized time t∗ = (t− t0)/(TE)0 since when

the magnetic field is turned on. Domain aspect ratio Λ increases from 1 to 64 in the direction of

the arrow. Short horizontal bars in (a) mark maximum possible values for each Λ.

may not be apparent if only results at early times were considered.) However, for Λ = 1 or
2 the growth of L11 is clearly constrained by the domain size at later times. It also appears
that most results converge (or nearly so) for Λ ≥ 8, at least up to the times shown in the
figure.

In Fig. 3 it is worth noting that simulations of low Λ tend to underestimate the Joule
dissipation (〈J〉) but overestimate the viscous dissipation (〈ε〉). This observation can be
explained by the forms of the integrands present in the definitions in Eq. (6). The value of
〈J〉 is determined by a selective sampling of the energy in each Fourier mode, via the factor
(kx/k)2 which is largest for wavevectors pointing in or closely aligned with the kx direction in
wavenumber space. The 3D spectrum E(k) itself takes largest values at low wavenumbers.
In a domain of finite length 2πΛ in the x direction the lowest nonzero kx is 1/Λ. As a result,
if Λ is low then some of the Fourier modes that should, via the factor (kx/k)2, contribute
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Λ=1 Λ=8 Λ=64 Λ=1 Λ=8 Λ=64

k1 k1 k1 k1 k1 k1

krkr

FIG. 4. Contour plots of axisymmetric spectra of Joule dissipation (left frames) and viscous

dissipation (right frames), from late-time data in simulations with three different aspect ratios,

corresponding to grid resolutions 2563, 2048× 2562 and 16384× 2562, with N = 1 and (Rλ)0 = 21.

the most to 〈J〉 would not have been represented in the simulation.

In Fig 4 we compare the axisymmetric spectra (as functions of k1 and kr) in simulations
at Λ = 1, 8 and 64 corresponding to conditions in Fig. 3. In the leftmost frame the space
corresponding to 0 < kx < 1 is empty because no Fourier modes exist in that range when
Λ = 1. This leads to an underestimate of 〈J〉 as suggested above. In contrast, for the
viscous dissipation, because of the incompressibility condition u ⊥ k in wavenumber space
substantial contributions in the range 0 < k1 < 1 arise from wavenumber modes of nonzero
k⊥. This effect leads to a slight overestimate of 〈ε〉, although the effect is weak because most
of the spectral content of viscous dissipation lies at higher wavenumbers. As in the case of
Fig. 3, differences between Λ = 8 and 64 in Fig. 4 are very small. We conclude that Λ = 8
is likely to be adequate for minimizing effects of finite domain size in the simulation data
presented in this paper.

IV. ANISOTROPY DEVELOPMENT UNDER A MAGNETIC FIELD

Our prime focus of investigation in this paper is the nature of anisotropy development
resulting from the magnetic field and its Lorentz force. We consider both quantities sensitive
to the large scales and those sensitive to the small scales, followed by a more complete
description of scale dependence in spectral space. Most of the results in this section are
taken by a simulation with 16384 × 20482 grid points, aspect ratio Λ = 8, and interaction
parameter N = 1. Time evolution is expressed in terms of the normalized time t∗ which
was first used in Fig. 3 (Sec. III). Questions of dependence on N and scaling with respect
to Joule time are considered later in Sec. V.
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Normal stress parallel to the magnetic field

t∗ b11 〈u21〉 2〈(p/ρ)s11〉 〈J11〉 〈ε11〉 relaxation db11/dt

0.00 −0.00126 0.14800 −8.052× 10−4 7.221× 10−2 1.334× 10−1 −2.537× 10−1 0.10600

1.08 0.03424 0.05275 −6.272× 10−3 1.756× 10−2 2.249× 10−2 −4.862× 10−2 0.01600

2.06 0.03890 0.02889 −2.656× 10−3 7.676× 10−3 7.602× 10−3 −1.776× 10−2 −0.00223

4.87 0.01321 0.01017 −3.842× 10−4 1.688× 10−3 1.200× 10−3 −2.837× 10−3 −0.01490

6.86 −0.01141 0.00646 −1.368× 10−4 8.525× 10−4 5.688× 10−4 −1.262× 10−3 −0.01480

12.58 −0.07078 0.00269 −4.342× 10−6 2.239× 10−4 1.517× 10−4 −2.779× 10−4 −0.00996

26.25 −0.14950 0.00083 5.204× 10−6 3.791× 10−5 2.845× 10−5 −3.994× 10−5 −0.00469

41.52 −0.19210 0.00039 2.780× 10−6 1.155× 10−5 9.121× 10−6 −1.168× 10−5 −0.00226

Normal stress perpendicular to the magnetic field

t∗ b22 〈u22〉 2〈(p/ρ)s22〉 〈J22〉 〈ε22〉 relaxation db22/dt

0.00 0.00063 0.14890 4.026× 10−4 1.460× 10−1 1.334× 10−1 −2.546× 10−1 −0.05330

1.08 −0.01712 0.04538 3.136× 10−3 2.727× 10−2 1.884× 10−2 −4.536× 10−2 −0.00800

2.06 −0.01945 0.02436 1.328× 10−3 1.056× 10−2 5.658× 10−3 −1.643× 10−2 0.00112

4.87 −0.00661 0.00959 1.921× 10−4 1.982× 10−3 6.658× 10−4 −2.744× 10−3 0.00742

6.86 0.00571 0.00680 6.838× 10−5 9.752× 10−4 2.744× 10−4 −1.285× 10−3 0.00738

12.58 0.03539 0.00378 2.171× 10−6 2.792× 10−4 6.230× 10−5 −3.342× 10−4 0.00498

26.25 0.07475 0.00185 −2.602× 10−6 6.269× 10−5 1.275× 10−5 −6.541× 10−5 0.00235

41.52 0.09604 0.00118 −1.390× 10−6 2.581× 10−5 5.214× 10−6 −2.467× 10−5 0.00113

TABLE III. Development of terms in the Reynolds stress budget and anisotropy tensor element,

from 16384× 20482 simulation with Λ = 8, N = 1. The data are listed at several normalized time

instants (which are not uniformly spaced).

A. Reynolds stress budget and anisotropy tensor

The Reynolds stress transport equation including the Joule dissipation tensor has already
been given in Eq. (4). The corresponding equation for the anisotropy tensor elements is

dbij
dt

=
1

2K

[
2〈(p/ρ)sij〉 − 〈Jij〉 − 〈εij〉 −

〈uiuj〉
K

dK

dt

]
, (11)

where the last term represents a relaxation, or restoring effect. In Table III we show,
at selected normalized times t∗, values of the anisotropy tensor elements, mean-squared
velocities, various terms in the Reynolds stress equation, and rate of change of anisotropy,
in directions parallel and perpendicular to the magnetic field. In the perpendicular direction
we have averaged over two coordinate components. At t∗ = 0 the anisotropy is very weak and
nonzero only because of sampling errors. However for the Joule dissipation, initially (because
of MHD is applied to an isotropic state) 〈J22〉 ≈ 2〈J11〉. This causes 〈u22〉 to decrease faster
than 〈u21〉, such that the anisotropy tensor elements b11 and b22 quickly become positive and
negative, respectively. As the turbulence structure adjusts over time, 〈J22〉 remains stronger
than 〈J11〉 but their difference becomes less dominant. The anisotropizing effect of Joule
dissipation is resisted by the behavior of viscous dissipation which is however relatively weak,
while the re-distributive pressure-strain correlation is even weaker. It can be seen that at
time t∗ ∼ 1 − 2 the relaxation term in Eq. (11) becomes strong enough such that both

11



db11/dt and db22/dt undergo a change in sign, to be followed by b11 and b22 themselves at
t∗ ≈ 6.

An important question is (e.g. Refs. 22 and 34) whether a strong magnetic field would
cause the turbulence to take on a Q2D, or perhaps two-dimensional, three-component (2D-
3C) character, where the three velocity components are comparable in magnitude but de-
pendence on one coordinate becomes extremely weak. If strict two-dimensionality occurs
then the anisotropy tensor elements would take the values b11 = −1/3 and b22 = b33 = 1/6.
Data at later times in our simulations are qualitatively consistent with development of Q2D
behavior. However for a given N the answer to this question requires a study of asymptotic
behavior at large times for which domains of extremely large aspect ratios are required to
avoid eventual contamination by finite domain-size effects. It is also possible that a higher
Reynolds number with a wider range of scales may lead to different outcomes.

B. Small scales and velocity gradient statistics

Since the Lorentz force acts directly at all scale sizes, the small scales are expected to
deviate from the classical picture of local isotropy at high Reynolds number. At the same
time, because of axisymmetry due to the magnetic field it is useful to distinguish between the
statistics of velocity gradients taken in directions parallel or perpendicular to the imposed
magnetic field. We introduce the notations u‖,‖, u‖,⊥, u⊥,‖, u

L
⊥,⊥, uT⊥,⊥, where subscripts ‖

and ⊥ refer to directions along and perpendicular to the magnetic field respectively, and the
last two of these refer to longitudinal and transverse velocity gradients in the orthogonal
plane. (In our simulations, for example, statistics of uT⊥,⊥ are obtained by taking samples
over from ∂u2/∂x3 and ∂u3/∂x2.) Likewise, for vorticity we distinguish between the statistics
of ω‖ and ω⊥ in the respective directions.

(a) (b) (c)

t∗ t∗t∗

FIG. 5. Development of anisotropy of velocity gradient and vorticity variances, for the same

simulation as in Table III. (a) 〈u2‖,‖〉 (•), 〈u2‖,⊥〉 (�), 〈u2⊥,‖〉 (4), 〈(uL⊥,⊥)2〉 (�), 〈(uT⊥,⊥)2〉 (◦),
all normalized by 〈ε〉/15ν; (b) Ratios between variance of velocity gradients: 〈u2‖,‖〉/〈(u

L
⊥,⊥)2〉 (•),

〈u2⊥,‖〉/〈u
2
‖,⊥〉 (�), for 2〈u2‖,‖〉/〈u

2
‖,⊥〉 (4), 〈u2‖,⊥〉/〈(u

T
⊥,⊥)2〉 (�), 2〈(uL⊥,⊥)2〉/〈(uT⊥,⊥)2〉 (◦); (c) 〈ω2

‖〉
(solid lines) and 〈ω2

⊥〉 (dashed lines), both normalized by 〈ωiωi〉.

Figure 5 shows information from the same simulation as in Table III, on (a) the departure
of gradient variances from standard isotropy relations, (b) the ratio between variances of
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different velocity gradients, and (c) the relative contributions from different vorticity com-
ponents to mean-squared vorticity. In both (a) and (b) it is clear that gradients in the
parallel direction become much smaller than those in the perpendicular directions. This
implies dependence on x1 becomes weak compared to x2 and x3. The strong decreases seen
in u‖,‖ and u⊥,‖ are accompanied by a strong increase in u‖,⊥, while the variance of u⊥,⊥
shows relatively little change. However at sufficiently large times the transverse gradient in
the orthogonal plane, i.e. uT⊥,⊥ ultimately becomes the largest. All of these observations
are consistent with a trend towards two-dimensionality in the small scales. In fact for in-
compressible isotropic turbulence in two dimensions30,35 the ratio between the mean-squares
of transverse to longitudinal velocity gradients is 3.0, which is consistent with the ratio
2〈(uL⊥,⊥)2〉/〈(uT⊥,⊥)2〉 approaching 2/3 closely as seen in frame (b) of this figure. In addition,
Q2D behavior in the velocity gradients implies that one vorticity component (ω‖) becomes
highly dominant, as seen in frame (c) especially at later times. This observation is consistent
with the emergence of elongated vortical structures along the direction of the magnetic field,
which can be explained by the principle of conservation of angular momentum36.

(a) (b) (c)

t∗ t∗t∗

FIG. 6. Development of anisotropy of velocity gradient and vorticity variances under a magnetic

field, on domains with aspect ratio Λ = 1 (red), 8 (green) and 64 (blue) with the shortest dimension

having 256 grid points. (a) 〈u2⊥,‖〉 (4), 〈(uT⊥,⊥)2〉 (◦), all normalized by 〈ε〉/15ν; (b) Ratios between

variance of velocity gradients: 2〈u2‖,‖〉/〈u
2
‖,⊥〉 (4), 〈u2‖,⊥〉/〈(u

T
‖,⊥)2〉 (�), 2〈(uL⊥,⊥)2〉/〈(uT⊥,⊥)2〉 (◦);

(c) 〈ω2
‖〉 (solid lines) and 〈ω2

⊥〉 (dashed lines), both normalized by 〈ωiωi〉.

Since velocity gradient statistics are dominated by the small scales, one may ask if they
may be not highly sensitive to effects of finite domain size nor forcing applied at the large
scales. Indeed, several authors4,8,22,37 who used cubic domains or simulated forced MHD
turbulence have reported results which are qualitatively similar those in Fig. 5. To check
for domain size effects in Fig. 6 we compare several results obtained from domains of Λ = 1,
8, 64 (which were also used for other comparisons in Fig. 3 and 4). Clearly, despite good
agreement at early times substantial discrepancies are seen at later times. The differences
seen indicate that Q2D character at later times is not as well-defined in the case of Λ = 1.
This is not surprising, since the confining effects of a finite domain size tends to prevent
the flow structure to be extended in the parallel direction to greater lengths, thus acting to
maintain a degree of dependence of the fluctuating velocity on the x1 coordinate. Indeed, it
is possible that more substantial domain size effects would arise in past simulations in the
literature if they were extended to longer times.
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(a) (b)

(c)

(d)

(e)

(f)

(g)

FIG. 7. Visualizations of normalized enstrophy Ω/〈Ω〉 showing development of coherent vortical

structures in MHD turbulence in domains of different aspect ratios. The brighest red and darkest

blue represent Ω/〈Ω〉 > 10 and < 0.05 respectively. Each frame is a pair of 2 images in y − z
(square, on left) and x − z planes (rectangle, on right.) Frames (a) and (b) are from 20483 grid

with Λ = 1, with N = 1, at t∗ = 12.58 and 41.52 respectively; while frames (c), (d), (e) are from

16384 × 20482 grid with Λ = 8, with N = 1, at t∗ = 0, 12.58 and 41.52. Frames (f) and (g) are

similar to (d) and (e), but from simulation at N = 8.

As we emphasized earlier in this paper, a long domain in the direction of magnetic field
(i.e. one of large aspect ratio) is important in allowing the turbulence structure to evolve
naturally. This effect can also be seen by visualization of the enstrophy (Ω, vorticity squared)
within two-dimensional cuts taken in planes perpendicular or parallel to the magnetic field.
For isotropic turbulence vortical structures are dominated by smaller scales and randomly
oriented in space, but we expect them to be stretched out along the direction of the magnetic
field. In Fig. 7, comparison of frames (a) and (b) (at two different times) for Λ = 1 shows
that eventually some of the coherent vortical structures become as long as the domain itself
(but, due to the nature of periodic boundary conditions, are not allowed to grow any further).
This observation is reminiscent of past simulations where later-time results become strongly
distorted by the confinement effects of periodic domains of finite size4,7. In contrast, frames
(c,d,e) show clearly that an elongated domain (with Λ = 8) along the magnetic field allows
the vortex filaments to grow beyond the limit imposed by a domain with Λ = 1. This
contrast shows clearly the benefit of an elongated domain even for supposedly small-scale
quantities such as the vorticity. The strong preferential orientation of the observed vortical
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structures also indicates strong anisotropy. It is also not surprising that this effect is even
stronger for larger N , such as in frames (f,g) (for N = 8) versus frames (d,e) (for N = 1).
The effects of large N will be addressed further in Sec. V.

Local axisymmetry for small-scale statistics has some interesting implications for the di-
agonal elements of the dissipation tensor (εij ≡ 2ν〈(∂ui/∂xk)(∂uj/∂xk)〉) as well as those
of the vorticity covariance tensor (〈ωiωj〉, whose trace gives the enstrophy, 〈Ω〉). In par-
ticular, application of relations for locally axisymmetric turbulence derived by George &
Hussein16 leads to the dissipation rates of velocity components parallel and perpendicular
to the magnetic field and vorticity component variances being given by

ε‖ = 〈(u‖,‖)2〉+ 2〈(u‖,⊥)2〉 , (12)

ε⊥ = 〈(u⊥,‖)2〉+ (1/3)〈(u‖,‖)2〉+ (4/3)〈(uT⊥,⊥)2〉 , (13)

〈ω2
‖〉 = −(1/3)〈u2‖,‖〉+ (8/3)〈(uT⊥,⊥)2〉 , (14)

〈ω2
⊥〉 = 〈u2‖,‖〉+ 〈u2⊥,‖〉+ 〈(u‖,⊥)2〉 . (15)

(a) (b)

t∗t∗

FIG. 8. (a) Evolution of ε‖/〈ω2
⊥〉 (4), ε⊥/〈ω2

‖〉 (©) and (ε‖/ε⊥)(〈ω2
‖〉/〈ω

2
⊥〉) (�). Horizontal dashed

lines are at values 0.5 and 2.0. (b) Anisotropy tensor elements d‖ = ε‖/(2ε) − 1/3 for dissipation

(N), v‖ = 〈Ω‖〉/〈Ω〉 − 1/3 for vorticity covariance (•), and their sum d‖ + v‖ (dashed line).

Since in MHD turbulence velocity gradients along the parallel direction are strongly
suppressed, the relations above can be simplified by keeping the respective last terms which
involve gradients in the perpendicular direction. We then obtain

ε‖/〈Ω⊥〉 ≈ 2 , ε⊥/〈Ω‖〉 ≈ 1/2 (16)

(where, for brevity, we denote ω2
‖ and ω2

⊥ by Ω‖ and Ω⊥ with Ω = Ω‖ + 2Ω⊥) and hence

(ε‖/ε⊥)(〈Ω‖〉/〈Ω⊥〉) ≈ 4 . (17)

Equation (17) gives a relationship between elements of the anisotropy tensors for dissipation
and vorticity covariance satisfying local axisymmetry: namely with d‖ = ε‖/(2ε)− 1/3 and
v‖ = 〈Ω‖〉/〈Ω〉 − 1/3, if 〈Ω‖〉/〈Ω⊥〉 = 4/(ε‖/ε⊥) an algebraic rearrangement leads to

d‖ + v‖ = 1/3 . (18)
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t∗ u‖,‖ uL⊥,⊥ u‖,‖ uL⊥,⊥ u‖,⊥ u⊥,‖ uT⊥,⊥
µ3 µ3 µ4 µ4 µ4 µ4 µ4

0 -0.5290 -0.5286 5.230 5.227 7.345 7.343 7.348

1.08 -0.4611 -0.5507 4.941 4.963 6.593 6.928 6.836

2.06 -0.4173 -0.5605 4.929 4.925 6.427 6.936 6.710

4.87 -0.3309 -0.5299 5.183 4.708 6.333 7.269 6.274

6.86 -0.2783 -0.4844 5.463 4.490 6.452 7.404 5.919

12.58 -0.2138 -0.3443 5.994 3.950 6.894 6.499 5.237

26.25 -0.1023 -0.1643 5.429 3.419 6.940 4.830 4.444

41.52 -0.0211 -0.0901 4.894 3.179 6.480 4.438 4.115

61.44 0.0839 -0.0556 5.553 3.320 6.341 4.222 3.822

TABLE IV. Skewness (µ3) and flatness (µ4) factors of the velocity gradients, classified according

to statistical axisymmetry as referenced earlier in Sec. IV.B.

Figure 8 shows comparisons of DNS data with (a) Eqs.(16)-(17) and (b) anisotropy tensor
elements for the dissipation and vorticity covariance with Eq. (18). Both frames of this
figure indicate very good agreement with the asymptotic results at large times.

In addition to second moments, third and fourth moments of the velocity gradients pro-
vide important information on nonlinear processes contributing to spectral transfer and
intermittency. In 3D isotropic turbulence the longitudinal velocity gradient has a negative
skewness of order -0.5 while the transverse velocity gradients have a higher flatness factor
(that increases with the Reynolds number). Table IV shows the skewnesses of u‖,‖ and uL⊥,⊥
as well as the flatness factors of all five independent components of the velocity gradients
under conditions of axisymmetry. It can be seen that the skewnesses are much reduced,
which is consistent with the absence of a forward energy cascade in 2D turbulence. The
flatnesses of gradients of u‖ show no drastic change but those of the gradients of u⊥ are
strongly reduced. This apparent reduction of intermittency in the plane perpendicular to
the magnetic field is also consistent with the general absence of intermittency (at least at
high Reynolds numbers) in 2D turbulence38,39.

C. Anisotropy in spectral space

Results in the two preceding subsections indicate both the large scales and the small
scales deviate (differently) from isotropy in response to the magnetic field. To characterize
anisotropy as a function of scale size it is natural to use a spectral (wavenumber) space de-
scription. However, since the observed anisotropy is strong, both magnitude and orientation
in wavenumber space should be considered. Information on orientation can be expressed by
using the angle between the wavevector k and the k1 axis, or by using both k1 and kr simul-
taneously. In practice, the first approach tends to give noisy results at low wavenumbers,
since Fourier modes on a Cartesian grid are not uniformly distributed with respect to this
nor other angles. We have found simultaneous use of k1 and kr to be more convenient. We
examine how one-dimensional (1D) spectra (which depend on k1 and kr separately) and the
axisymmetric energy spectrum (which depend on k1 and kr jointly) evolve, as the cumulative
result of various physical processes represented in the spectral budget equations.

In isotropic turbulence 1D spectra can be classified as longitudinal and transverse, which
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FIG. 9. Compensated 1D spectra k1Eαα(k1): solid and dashed lines for α=1 and α=2 respectively.

From (a) to (c): at t∗ = 0, 2.06, 26.25, normalized by the instantaneous kinetic energy.

are related to each other through a constraint based on incompressibility. The reversal
of the Reynolds stress anisotropy noted in Sec. IV.A suggests a qualitative change in how
longitudinal and transverse spectra compare with each other, especially at low wavenumbers.
Figure 9 shows the 1D spectra of u1 and u2, as a function of k1. The scales chosen in the
plot here are such that the integral under the curves (in log-linear scales) is equal to the
variance of u1 or u2 normalized by K(t). At t∗ = 0 the areas under the two spectra are
nearly equal, as required for isotropic turbulence. Subsequently, both spectra are shifted
towards smaller k1, as energy is increasingly concentrated in motions with a large length
scale in the x1 direction. At t∗ = 2.06, when 〈u21〉 has become larger than 〈u22〉 (Table III) the
spectrum of u1 is higher than that of u2 up to k1 = 20. In contrast, at a later time t∗ = 26.25
when the anisotropy has reversed, the spectrum E22(k1) has shifted so strongly to low k1
that it is at least twice of E11(k1) for k1 < 1. Since integral length scales are proportional
to the ratio of 1D spectrum at zero wavenumber to the mean-squared velocity, the features
seen at this later time are consistent with a strong growth of integral length scales in the x1
direction (for all velocity components). Furthermore, Fourier modes of k1 < 1 are present
only because the solution domain employed is longer than 2π in the x1 direction — thus
confirming again the importance of using larger or elongated solution domains in the study
of MHD effects.

To understand the evolution of the 1D spectra, we need to compute various terms in the
spectral evolution equations. For each Fourier mode with wavevector k, the energy spectrum
tensor Eij(k) ≡ 1

2
〈û∗i (k)ûj(k) + û∗j(k)ûi(k)〉 (where asterisks for Fourier coefficients denote

complex conjugates) evolves by

dEij(k)/dt = −DV
ij(k)−DJ

ij(k) + Πij(k) + Tij(k) (19)

where terms on the r.h.s. defined by

DV
ij(k) = 2νk2Eij(k) (20)

DJ
ij(k) = 2(σB2

0/ρ) (k1/k)2Eij(k) (21)

Πij(k) = iki〈û∗j(k)p̂(k)〉 − ikj〈û∗i (k)p̂(k)〉 (22)

Tij(k) = −
[
〈ikmû∗i (k)ûjum〉+ 〈ikmû∗j(k)ûium〉

]
(23)

represent viscous dissipation, Joule dissipation, redistribution due to pressure fluctuations
and nonlinear spectral transfer respectively. For each term, a 1D spectrum can be formed by
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summing up contributions in the k2− k3 plane at fixed k1, while an axisymmetric spectrum
can be formed by summing over annular rings within this plane.

(a) (b)

(c) (d)

(e) (f)

k1 k1

FIG. 10. Terms contributing to the evolution of 1D compensated spectra: (a), (c) and (e) for

d
(
k1E11(k1)

)
/dt, (b), (d) and (f) for d

(
k1E22(k1)

)
/dt, at normalized times (from top to bottom)

t∗ = 0, 2.06, 26.25. Different curves denote time rate of change (black), viscous dissipation (red),

Joule dissipation (blue), non-linear transfer (green) and pressure strain correlation (magenta). All

are normalized by the instantaneous viscous dissipation.

Figure 10 shows the budget of terms in Eq. (19) for the 1D spectra E11(k1) (in frames
(a,c,e)) and E22(k1) (in frames (b,d,f)). In general the calculation of spectral quantities at
low wavenumber can be affected by errors associated with the number of Fourier modes
in a designated wavenumber interval being relatively small. For each given k1 this effect
is more significant if the 1D spectrum concerned is dominated by modes with small kr. A
slight degree of jaggedness is indeed apparent in all curves except for the viscous dissipation,
which is dominated by modes of relatively large kr. At t∗ = 0 the rates of change of E11(k1)
and E22(k2) differ mainly as a result of differences between DJ

11(k1) and DJ
22(k1), consistent

with the relation 〈J22〉 ≈ 2〈J11〉 as discussed in Sec. IV.A. The resulting difference between
the rates of change of the two 1D spectra is such that E22(k1) starts to fall more rapidly than
E11(k1) over a broad wavenumber range, leading to a degree of anisotropy that depends on
scale size in the direction of the magnetic field.

It can be seen from frames (c) and (d) above that at t∗ = 2.06 spectral transfer (green
lines) of u2 from low to high k1 is significantly weaker than that of u1. Reduced transfer of
u2 from low k1 to high k1 has the effect of slowing down the rate of decrease of E22(k1) in
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time. Since this trend is opposite to that observed at t∗ = 0, this contributes to a gradual
weakening, and eventually reversal of anisotropy at later times. At t∗ = 26.25 all the
spectral activity has moved to considerably lower wavenumbers, while the Joule dissipation
becomes highly dominant. Finally we note that while pressure-strain correlation term (lines
in magenta) is not dominant at any of the three time instants shown, its general effect is
to re-distribute energy from the velocity component with more energy to that with less, as
reflected in the general change in sign between frames (c,d) and (e,f).
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FIG. 11. Evolution of (left) compensated 1D transfer spectra of (a) k1T11(k1), (c) k1T22(k1), and

(right) compensated radial transfer spectra of (b) krT11(kr), (d) krT22(kr). All the spectra shown

are normalized by instantaneous viscous dissipation. Lines in red, green, blue and black denote

times t∗ = 0, 2.06, 6.86 and 26.25 respectively.

A more direct illustration of changes in spectral transfer due to the magnetic field is given
in Fig. 11, which shows 1D and radial transfer spectra at different times in each frame. In
general, as MHD effects cause the turbulence length scales to grow, wavenumber ranges
of significant transfer activity are shifted from higher to lower wavenumbers. As this shift
to lower wavenumbers continues, energy also becomes increasingly dominated by a small
number of Fourier modes, leading to numerical noise which is reflected by the jagged nature
of lines in black in this figure. Despite this noise much of the spectral transfer is recognized
as being of a “forward cascading” nature, i.e., negative at the lowest few k1 or kr values
but generally positive for higher wavenumbers. However there is an important exception,
in frame (d), where at late times krT22(kr) is positive at the first few values of kr. This
indicates occurrence of backward transfer in the plane perpendicular to the magnetic field.
This backward energy transfer in velocity perpendicular to the velocity field has also been
reported in forced simulations40, and is consistent with the transfer characteristics found
in two-dimensional three-component turbulence22,41. In addition, in this frame, transfer
activity at intermediate to higher radial wavenumbers generally becomes weaker in time.
This reduction of spectral transfer is consistent with weakened non-Gaussianity for velocity
gradients in the orthogonal plane as seen earlier in Table IV.
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(a) (b) (c)

kr

k1 k1k1

FIG. 12. Contours of axisymmetric energy spectrum EA(k1, kr) at times (from left to right)

t∗ = 2.06, 6.86, 26.25. Contour levels are set at logarithmically-spaced intervals, decreasing by

successive factors of 10 outwards from near the origin. (Note the differences among different

frames in the upper limits of the coordinate axes shown. In frame (a) maximum values of both k1
and kr are both 960.)

We now turn our attention to axisymmetric spectra, which give more detailed information
of energy distribution in Fourier space. Figure 12 shows contour lines of the axisymmetric
energy spectrum EA(k1, kr) at three different times (from left to right). As noted in Sec. III,
departure from circular contours indicate anisotropy. At t∗ = 2.06 most contours are at
least mildly non-circular: e.g. the curve in red (second counting from outwards) intersects
the wavenumber axes at k1 ≈ 720 but at kr ≈ 820 respectively. To facilitate comparisons
in time we have used the same contour levels at different times. However at later times
we have had to zoom on lower and lower wavenumbers in order to see all the important
features. The contour lines are seen to increasingly deviate from circles. In frame (c) we
also observe that the contour lines bend backwards towards smaller k1 in the region where
kr is also small, showing that energy is increasingly concentrated in Fourier modes with low
k1, i.e. in the plane orthogonal to the magnetic field. These trends are consistent with those
seen in forced simulations40.

Since the magnetic field causes energy to be concentrated at low wavenumbers, we show
in Fig. 13 some zoomed-in details for the same spectral region at different times in the
simulation. At t∗ = 2.06 (frame (b)), a departure from isotropy is already evident. At
t∗ = 6.86 (frame (c)) the property of contour lines (at the boundaries between color-coded
regions) bending backwards towards k1 ≈ 0 at low kr is well developed. At the last time
instant shown (frame (d)) it is clear that energy is increasingly concentrated in a narrow
crescent-like region with very small k1 but a large ratio between kr and k1. These results also
reaffirm the importance of representing spectral regions of k1 < 1 properly using a domain
which is long in the x1 direction.

To illustrate the effects of different terms in the spectral budget equation on the change of
axisymmetric energy spectrum, we show in Fig. 14 the axisymmetric spectrum of each term
in Eq. (19). (The pressure-strain correlation term is not shown since it is traceless and does
not contribute to changes in the kinetic energy.) To facilitate comparisons between these
different terms we have placed frames at a given time horizontally next to each other, and
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FIG. 13. Axisymmetric spectra of TKE. From left to right, t∗ = 0, 2.06, 6.86, 26.25.

in contrast to the arrangement in Fig. 13 we now use different upper limits on the kr axis
at different times. In Fig. 14, even at t∗ = 0 the rate of change (frame (a)) already shows
anisotropic character, in which the contours extend to larger k1 than kr. This behavior is
due to that of the Joule dissipation, which (frame (c)) favors modes of larger k1 for a given k
if the initial velocity field is isotropic. For axisymmetric spectrum of energy transfer, while
color contours are used to indicate magnitudes of positive transfers, blank regions indicate
negative values — i.e. those modes which are losing energy as a result of the nonlinear
interactions. Some degree of noise is present because the transfer is nearly zero in between
spectral regions where the spectral transfer is primarily positive or negative respectively.
Nevertheless in frame (d) modes losing energy (with negative transfer) can be seen to lie
mostly in regions of low k1 and low kr, which is consistent with a conventional forward
energy cascade.

As time proceeds, down successive rows of Fig. 14, all the axisymmetric spectra undergo
substantial changes in both magnitude and shape. A most striking feature is that the spectra
for Joule dissipation changes from one that favors modes lying close to the k1 axis to one
that favor modes lying close to the kr axis. At late times (frame (o)) the Joule dissipation
largely resides in a narrow strip next to the kr axis. The spectrum of viscous dissipation also
follows a similar pattern, but later, since it responds to the magnetic field only indirectly
via changes in the energy spectrum itself. Zones of negative spectral transfer almost become
mostly restricted to the narrow strip near the kr axis — but it extends to higher values of kr
than seen in zones of highest activity in the other terms. In both frames (l) and (p), at very
small k1, there is a narrow range of kr where a decrease of kr leads to a change from negative
to positive transfer, which can be taken as a directional form of reverse cascade. Previous
studies3,8,14,42 have also suggested angular transfers from spectral regions with kr > k1 to
kr < k1. Finally, it may be noted that the contour pattern in frame (m) of this figure (for the
rate of change at t∗ = 26.25) is qualitatively similar to that of the energy itself in frame (d)
of Fig. 13. This suggests the shape of the energy spectrum is unlikely to change dramatically
if the simulation were to be extended to longer times.

Although viscous dissipation is not the most important term in the discussion above it
is worth noting that, as we follow the sequence of frames (b-f-j-n) in Fig. 14 this spectrum
increasingly decreases with the wavenumber. In DNS, even in those with forcing, since the
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FIG. 14. Axisymmetric spectra of the terms in the energy budget equation. From left to right:

(negative of) rate of change, viscous dissipation, Joule dissipation, and positive values of spectral

transfer. From top to bottom t∗ = 0, 2.06, 6.86, 26.25.
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range of scales is limited, viscous dissipation spectrum usually peaks at a modest wavenum-
ber. At t∗ = 0 this peak is well within the pale-orange region in frame (b). Subsequently,
since energy and dissipation spectra are related by a kinematic factor of 2νk2, as the en-
ergy spectrum becomes heavily concentrated at the lowest wavenumbers, the same feature
occurs in the dissipation spectrum, as well. This explains why in frame (n) we see a strong
decrease with increasing wavenumber, especially with respect to k1 since length scales grow
most strongly in this direction.

V. EFFECTS OF THE MAGNETIC INTERACTION PARAMETER

In Sec. IV above we had focused on the case of N = 1, i.e. for the ratio of pre-MHD eddy
turnover time TE = L11/u

′ to Joule time τJ ≡ ρ/(σB2
0) to be equal to unity. If N > 1 then

the Lorentz force operates at a time scale shorter than the large eddy turnover time, such
that the effects of the magnetic field are felt rapidly. As may be expected, a larger N will
lead to a more rapid growth of integral length scales, which means numerical requirements
in the form of elongated solution domains will become more demanding. Consequently we
present data only at modestly large values of N while ensuring numerical results are not
grossly contaminated by the effects of finite domain size. In this section we are mainly
interested in whether the time evolution of some single-point statistics might scale with the
Joule time (which is fixed in time), and how the evolution of some spectral quantities may
depend qualitatively on N .

t/τJ t/τJ

b11
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1
1
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x
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FIG. 15. Evolution of (a) normalized integral length scale and (b) Reynolds stress anisotropy tensor

element, in the direction of the magnetic field, with arrows pointing in the direction of increasing

N (0.5, 1, 2, 4, 8, . . . , 256). In (a), sloping dashed line has slope of 0.5, horizontal dashed lines are

at heights 0.25 and 0.5. In (b), solid circles indicate time instants when L11 exceeds 1/4 of L0x as

seen in (a). The upper dashed line is at height 1/6.

It is useful to compare results over a series of simulations where the initial turbulence
state is the same but N is varied systematically. Per Table II, we have performed such
calculations for 10 different values of N , from 0.5 to 256 (in powers of 2), but at a lower
grid resolution of 4096 × 5122 and a lower pre-MHD Reynolds number. Figure 15 shows
the evolution of the integral length scale along the direction of the magnetic field, and the
anisotropy tensor element b11, versus time normalized by τJ . Scaling with Joule time would

23



t/τJ t/τJ

〈u
2 ‖
,‖
〉/
〈(
u
L ⊥
,⊥
)2
〉

〈(
u
L ⊥
,⊥
)2
〉/
〈(
u
T ⊥
,⊥
)2
〉(a) (b)

�
�

�✠

�
�

�✠

FIG. 16. Evolution of (a) 〈u2‖,‖〉/〈(u
L
⊥,⊥)2〉, (b) 〈(uL⊥,⊥)2〉/〈(uT⊥,⊥)2〉. Arrows point in the direction

of increasing N (1, 2, 4, 8), for the same 16384 × 20482 domain of Λ = 8. In (b) the horizontal

dashed line denotes 1/3, which is the value in 2D isotropic turbulence.

be indicated if curves for a wide range of N were to coincide. In both frames of this figure
this scaling appears to hold better at large N but only at early times up to t = O(τJ). In
frame (a) a straight line of slope 0.5 on log-log scales is used to compare with a prediction
by Okamoto9 that the ratio L11/L0x should be proportional to (t/τJ)1/2 at large N and
large t/τJ . A modest degree of agreement is seen, but results at later times may also be
contaminated by domain size effects as L11 grows past 1/4 of L0x and eventually ceases to
increase any further upon reaching its maximum possible value of L0x/2. In (b), at large
N anisotropy is clearly very strong, with b11 almost reaching 1/6, which is the limiting value
corresponding to the result 〈u21〉 = 2〈u22〉 predicted by the theory of Moffatt21 which assumes
both viscous and nonlinear transfer effects to be vanishingly small. Another effect of large N
is that the integral length scales grow extremely fast, eventually even reaching its maximum
value of half of the length of the solution domain. Some of the less well-defined features in
the curves for b11 at late times (beyond those values of t/τJ marked by the solid circles on
each line) are probably the result of finite domain size effects.

The results in Fig. 15 show how the large scale motions respond to magnetic fields of
different strengths (even if the integral scales are still shorter than 1/4 of the domain size).
To examine how the small scales respond we next show in Fig. 16 some ratios of the variances
of velocity gradients. Since our main interest in the small scales is in departures from local
isotropy, we revert back from 4096 × 5122 simulations in Fig. 15 to 16384 × 20483 with a
higher pre-MHD Reynolds number. In both frames of Fig. 16 the main effect of a larger N is
to accelerate, beyond slightly more than 0.1 τJ , the transition from a state of local isotropy
to a new asymptotic state of anisotropy. In frame (a) the ratio between longitudinal gradient
variances beyond about 30 τJ is almost independent of N . In frame (b) the ratio between
longitudinal and transverse gradient variances in the orthogonal plane drops to values close
to 1/3 (the value for 2D turbulence), although oscillations (presumably arising from finite
domain size effects) develop from about 30 τJ onwards. These results are consistent with a
trend towards a Q2D state, whose development is hastened by stronger magnetic fields.

For spectral characteristics, in Fig. 17 we compare the spectral budget for 1D spectra
(similar to those in Fig. 10) obtained with N = 1 versus N = 8. In frames (a) and (c) it
is seen that at large N the Joule dissipation dominates the rate of change of the spectrum
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FIG. 17. Terms contributing to the evolution of 1D compensated spectra of: d
(
k1E11(k1)

)
/dt:

(a) t∗ = 0, with N = 1; (b) t∗ = 3.29, with N = 1; (c) t∗ = 0, with N = 8; (d) t∗ = 3.29,

with N = 8. Different curves denote time rate of change (black), viscous dissipation (red), Joule

dissipation (blue), non-linear transfer (green) and pressure strain correlation (magenta). All curves

are normalized by the instantaneous viscous dissipation.

immediately from t∗ = 0 onwards. At later times (here t∗ = 3.29 corresponds to a time close
to maximum anisotropy) the bulk of the spectral activity is clearly shifted to lower values
of k1. While both spectral transfer and viscous dissipation become more significant, for k1
about 8 onwards these two contributions appear to cancel out each other, so that the Joule
dissipation still dominates the rate of change overall.

Finally, in Fig. 18 we show axisymmetric spectra of different terms in the spectral energy
budget equation, at N = 8 in a manner similar to N = 1 results in Fig. 14. Frames a-d and
e-h of Fig. 18 can be compared with frames a-d and m-p of Fig. 14 respectively, with the
same color map being used in both figures. Comparison between frames (a) and (c) shows
that at t∗ = 0 the initial rate of change in regions of strongest activity is dominated by the
Joule dissipation, except at very low k1 and at higher values of kr. The contours in frame
(c) have the same shape as those in frame (c) of fig. 14 but are at higher contour levels
and hence shown in a different color. At the later time of t∗ = 26.25 all four frames in the
bottom row are very similar in shape, being concentrated in zones of low k1 and large kr.
For spectral transfer a narrow crescent-like region of negative values (in white) near the kr
axis persists but is now confined to yet smaller values of k1.

VI. CONCLUSIONS

In this paper we have presented results from direct numerical simulations of decaying
magnetohydrodynamic (MHD) turbulence to study the response of isotropic turbulence to
a strong external magnetic field, in the limit of low magnetic Reynolds number (Rm). This
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FIG. 18. Axisymmetric spectra of the terms in the energy budget equation at N = 8. From left

to right: (negative of) rate of change, viscous dissipation, Joule dissipation, and positive values of

spectral transfer. Top row for results at t∗ = 0, bottom row for t∗ = 26.25.

type of flow, to which a quasi-static approximation applies, is applicable to many terres-
trial applications including small-scale flow in planetary cores and industrial applications
involving liquid metals. Although this subject has been studied by other authors before,
preferential growth of large-eddy length scales in the direction of the magnetic field implies
that accurate results cannot be readily obtained, especially at later times, unless the so-
lution domain is very long in this direction. We have used elongated solution domains of
aspect ratio 8 for most purposes, and in some cases up to 64. The largest number of grid
points was 16384 × 20482, which is much higher than in most previous works for this flow.
The strength of the magnetic field is quantified by the magnetic interaction parameter (N)
which is the ratio of pre-MHD eddy-turnover time to the Joule time of the magnetic field. A
pre-simulation is conducted in a manner that minimizes any effects of numerical distortion.
To facilitate a natural response to the magnetic field, no forcing is applied.

In low-Rm MHD turbulence the velocity field is modified by the magnetic field via the
Lorentz force, which introduces anisotropy at all scales through the Joule dissipation. With
the magnetic field in the x1 direction, a reversal of Reynolds stress anisotropy is observed
in which as 〈u21〉 > 〈u22〉 at early times but 〈u21〉 < 〈u22〉 later. Analysis of the Reynolds
stress budget shows initially the larger Joule dissipation for u2 leads to 〈u21〉 > 〈u22〉, whereas
relaxation terms are responsible for the reversal. The small scales also become anisotropic
although velocity gradient statistics follow constraints based on a state of local axisymme-
try. In the direction of the magnetic field velocity gradients become much weaker while the
vorticity component is dominant. The property of local axisymmetry leads to some interest-

26



ing relations between different components of the dissipation and vorticity-variance tensors.
Both large and small scales display trends towards quasi two-dimensionality, including great
contrast between integral length scales in different directions, a ratio close to 3 between the
mean squares of longitudinal and transverse velocity gradients in the plane, and a reduced
intermittency typical of 2D turbulence.

We have also studied in detail anisotropy in spectral space, as a function of wavenumbers
parallel and perpendicular (k1 and kr respectively) to the magnetic field, through the use of
1D and axisymmetric spectra. As expected, the most important contribution in the spectral
dynamics comes from the Joule dissipation, which is counteracted by viscous dissipation,
nonlinear transfer, and pressure-strain effects. As the turbulence evolves 1D spectra in k1
become increasingly concentrated in regions of low k1, especially for the spectra of u2 at
later times. Radial spectra for u2 in kr show signs of a backward transfer in regions of small
kr. Axisymmetric spectra as a function of k1 and kr simultaneously show that turbulence
kinetic energy is increasingly concentrated in a narrow crescent-like region with very small
k1 but kr � k1. The crescent-like shape results from the anisotropic axisymmetric spectra
of Joule dissipation which tends to selectively remove energy from modes in spectral regions
where k1 > kr.

While most of the effort in this paper has been focused on simulations with N = 1, we
have included results at larger N , which leads to a stronger Joule dissipation and faster
growth of length scales in the direction of the magnetic field. Simulations conducted with
the same initial turbulence state but N varied over two orders of magnitude indicate that the
development of Reynolds stress anisotropy scales with Joule time for about 1 τJ , and peak
anisotropy approaches values predicted at infinitely large N (before a reversal occurs). Other
effects of large N include accelerated development of local axisymmetry for statistics of the
velocity gradients, and increased dominance of Joule dissipation in the spectral dynamics.

In summary, we wish to emphasize that although previous works on the subject of this
paper have been useful, numerical constraints arising from the physics of the effects of
a magnetic field must be given careful consideration. In general, our present results on
elongated domains confirm those seen in prior work on cubic domains of finite size up to a
certain time span, but also provide new information at later times where results on cubic
domains could be overwhelmed by numerical confinement effects. For example, from Fig. 3
one may infer that although results from simulations on cubic domains and on elongated
domains may be largely in agreement as far as early or even intermediate times are concerned,
the benefits of elonagated domains are very substantial if long-time behaviors are to be
established with confidence. Figure 7 also shows quite clearly that the development of
vortical structures under the magnetic field cannot be represented quite faithfully unless the
domain is sufficiently long, the contrasts being increasingly dramatic at later times. Several
of the key results in this paper, including relations between contributions to dissipation and
enstrophy from derivatives in different directions (Eq. 18), and the behavior of axisymmetric
spectra at low wavenumbers (Fig. 14) of various terms in the spectrum tensor equation can
be captured accurately only on elongated domains at long simulation times.

In this work, while the bulk of the computing power have been devoted to the use of
elongated dimains, the Reynolds numbers for the (unforced) isotropic turbulence states to
which the magnetic field is applied have been modest. An important future goal is thus to
simulate MHD effects acting on initially isotropic turbulence with an inertial range, which
will require yet-larger simulations of greater computational cost. In addition, other funda-
mental questions include how turbulent mixing is affected by the magnetic field, and how
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an initially anisotropic turbulent flow may respond. The first of these questions is related to
studies of turbulent mixing at Schmidt number much lower than unity43 which is typical for
liquid metals. The second can be coupled to the study of changes in turbulence structure of
fluids passed through axisymmetric contraction or other changes of cross-section18. Results
from simulations designed to address these questions will be reported separately.
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