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Direct numerical simulation (DNS) of pore-scale turbulence is performed in a unit cell of a face-
centered cubic lattice at three different pore Reynolds numbers (300, 500 and 1000). The pore-
geometry gives rise to very low porosity resulting in rapid acceleration and deceleration of the
flow in different regions. Eulerian statistics of mean velocity and turbulent kinetic energy (TKE)
are first described to provide a good understanding of the overall flow topology. In addition, the
spatial variances and probability density functions for the instantaneous and temporal fluctuation
velocities are computed to assess the higher order statistics. The flow field is then analyzed us-
ing angular Lagrangian multiscale statistics of fluid particles to study their directional change at
different time scales. Two power laws are observed for the evolution of the mean absolute angle
as a function of time lag demarking the early time and an intermediate, inertial range. The effect
of the geometric confinement on the asymptotic behavior of the angular statistics is examined in
detail. An asymptotic limit different than π/2 (corresponding to equidistribution of the mean angle,
observed for three-dimensional isotropic turbulence with periodic boundaries) or 2

3
π (observed for

two-dimensional wall-bounded turbulence) is obtained, representing the strong effect of geometric
confinement on turbulence. Besides, the probability density functions (PDFs) for the instantaneous
curvature angles are computed and the normalized PDFs are fit to a Fisher distribution. Fur-
thermore, a Monte Carlo-based stochastic model is developed to predict the asymptotic curvature
angle.
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I. Introduction

Packed bed reactors are routinely used for synthesis of basic chemicals and intermediates in the chemical and process
industries; e.g., packed-bed catalysis (Refs. [1, 2]), as well as in the nuclear applications; e.g., high temperature reactor
(HTR) cooling (Ref. [3]). Random packing of porous media is one of the arrangements used in practice that exhibit
typical flow Reynolds number on the order of 1000 or more. This results in unsteady inertial flows as well as transitional
or even fully developed turbulence within pore space. Contrary to conventional thought about low-speed fluid flow
in porous media, the inertial contribution to the flow field is often important in applications, and the inertial terms
can dramatically change the topology of the flow field (such as formation of jets, vortices, dead zones, etc. within
pores). These flow characteristics together with resultant dispersion properties, play a critical role in the transport
of reactants and products to and from active reaction sites. However, the mechanisms of how inertial and turbulent
flows affect the macroscopic quantities, such as friction factor or pressure drop, are poorly understood (Ref. [4]).

Dybbs and Edwards [5] used direct observations using index-matched porous media to report on the topological
characteristics of the microscale of the flow fields in the inertial range. They identified four distinct regimes for flow
through porous media based on the pore Reynolds number (Rep) defined as,

Rep =
UintDB

νγ

φ

1− φ
, (1)

where Uint is the interstitial velocity of flow in porous media, DB the bead diameter, νγ the kinematic viscosity of
fluid, and φ is the porosity. The flow regimes are described below:

1. Darcy or Creeping Flow Regime, Rep < 10: Under these conditions, the flow is dominated by viscous
forces. The drag force, on the other hand, makes little inertial contribution, which is proportional to the square
of the Reynolds number (Ref. [6]). It should be noted here that, although the flows are simple in this regime,
much attention has been received from different perspectives of theory, experiment and computation on this
flow regime.

2. The Steady Inertial (Non-Linear) Flow Regime, 10 < Rep < 150: A dramatic change in the character
of the flow has been observed to occur in this regime as inertial forces begin to dominate over viscous ones
(Refs. [7, 8]). The influence of the inertial term on the resulting flow field in porous media is similar in many
ways to the secondary flows that have been reported by Taylor and others for curved tubes (Refs. [9, 10]). Helical
and other complex flows have been observed experimentally (Ref. [7]) and predicted numerically (Refs. [6, 11–14])
in simple periodic media at these Reynolds numbers.

3. Unsteady Laminar Flow Regime, 150 < Rep < 350 : In this regime, the flow is no longer steady (Ref. [11]),
but it is not yet truly turbulent. Magnico [15] pointed out that increases in Reynolds number towards large
enough values result in steady helical vortexes in the form of tubes. Koch and Ladd [12] present 2-D numerical
simulations in a regular array of cylinders that exhibit quasi-periodic vortex shedding. Also there have been
direct experimental observations suggestive of vortex shedding (see Refs. [16–21]).

4. The Chaotic (Fully Developed Turbulence) Flow Regime, Re > 350+: Direct and indirect evidence
of sub-pore scale turbulence in porous media has been reported by several research groups (Refs. [14, 22–28]).
There is some inconsistency among the groups, with some reporting turbulent conditions occurring at relatively
low Reynolds numbers (Re ∼ 350+), whereas others have reported that turbulence was not observed till higher
Reynolds numbers (Re ∼ 1000). The disparity among diverse publications probably represents differences in
the geometry of the system under investigation, and of the definition of turbulence.

Nearly all theoretical studies of dispersion in porous media have been on the condition of either (i) Stokes flow
(which neglects the influence of inertial contributions completely), or (ii) inertial flow without any turbulence effects.
Researchers typically rely on established empirical correlations for predicting transport and dispersive properties of
flow in fixed beds and ultimately in reactor design (Refs. [29, 30]). Development of Reynolds-averaged Navier Stokes
(RANS) models for flow at the pore-scale level has been attempted by many researchers (for instance in Refs. [31, 32]).
To name a few, the RANS k − ǫ model has been derived by time averaging the volume-averaged extended Darcy-
Forchheimer model equations (Ref. [33]), or by volume averaging the time-averaged Reynolds-averaged equation
(Refs. [34–36]), or by the double-decomposition technique developed based on exchangeability of volume-time or
time-volume averaging (Ref. [37]), or by modifying the Darcy-Forchheimer model (Ref. [32]). In these models, extra
terms requiring closure are obtained by conducting numerical experiments using simple geometries such as a periodic
array of rods and by using standard turbulence closure techniques based on a gradient diffusion hypothesis. However,
these models lack validation with experimental or DNS data. A majority of these models predict non-zero Reynolds
stress for laminar flows (Ref. [38]), making them inconsistent for applications over the full range of Re from laminar
to turbulent flows.
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Detailed, index-matched PIV data of turbulence in complex geometries of porous bed are difficult to obtain and
very rare. Recently, Refs. [23, 24] measured the turbulent flow field up to Rep = 4000 using the two-component PIV
method implementing the refractive index matching technique in a random packing bed; Ref. [25] used a similar way
to estimate the turbulent filtration in porous media. However, this method lacks in obtaining all velocity components,
pressure fluctuations, and complete three-dimensional spectral analysis of turbulence statistics.
Obtaining velocity and pressure data using high-fidelity, direct numerical simulations (DNS) to investigate three-

dimensional flow in complex porous media is thus critical to further advance reduced-order models especially in the
unsteady, inertial as well as transitional and fully turbulent regimes. Some numerical works have been performed
using the Lattice Boltzmann method (Ref. [22]) for weakly turbulent and chaotic flow in a periodic porous medium,
direct numerical simulations (Refs. [27, 28, 39]) for fully turbulent flows through packed beds, as well as large-eddy
simulations (Ref. [40]).
Since the last decade, much attention has been drawn to the quantification of Lagrangian statistics (Ref. [41])

in turbulence. Lagrangian description of turbulence has unique physical advantages that are specifically important
for mixing and dispersion studies in addition to the Eulerian statistics. The structural description of the statistical
dynamics of turbulence is well captured by studying the temporal correlations along fluid particle trajectories compared
to that from the investigation of spatial correlations of instantaneous velocity fields. Curvature of the flow trajectories
(for example, Refs. [42–45]) is dominated by the small-scale structures and velocity gradients; but contains only
little information on multiscale dynamics of turbulent flows. The multiscale dynamics can be obtained from the
standard Lagrangian structure functions, however, those then lack any direct information about the curvature of the
flow. Bos et al. [46] and Kadoch et al. [47] introduced a new approach to study the trajectory of a fluid particle by
computing the geometrical multiscale statistics. The curvature angle was defined by three adjacent points along a
trajectory as a function of the time lag. Its evolution with respect to time increments was computed for both 3D
isotropic turbulence and 2D forced turbulence with solid boundaries. For short time lags, the instantaneous angle is
directly related to the curvature and is found to vary linearly with the time lag. For large time lags, an asymptotic
limit of π/2 is approached, corresponding to the equidistribution of the angle, for unconfined flows such as isotropic
turbulence, owing to symmetry and equal probability of possible trajectories at long times. This asymptotic limit
can be easily used to study effects of geometric confinement on turbulence and resultant particle trajectories, making
these Lagrangian statistics well suited for flow through porous media. In addition, the variation of the angle varies
between the short and long-time limits contains the signature of the multiscale dynamics of turbulent flow.
In the present work, direct numerical simulation (DNS) of pore-scale turbulence is performed in a unit cell of a

face-centered cubic lattice at three different pore Reynolds numbers (300, 500 and 1000). The pore-geometry gives
rise to very low porosity resulting in rapid acceleration and deceleration of the flow in different regions. Hill and
Koch [22] studied the same geometry using the lattice-Boltzmann method for flows up to a Reynolds number of 300.
They investigated transition from steady inertial to weakly turbulent and chaotic flows within this configuration.
Their investigation focused on quantifying the transition process as well identifying inertial vortical flow structures.
In the present work, simulations are performed in the fully turbulent regime (with the lowest Reynolds number
investigated being similar to that of the highest Reynolds number studied by Hill and Koch [22]). This allows not
only to investigate whether the flow features observed in their study persist at higher Reynolds numbers, but also
to quantify the effects of geometric confinement on the turbulent flow and long-time dispersion by studying the
Lagrangian multiscale statistics. Additionally, a stochastic model using Monte Carlo simulations characterizing the
porous geometry in three-dimensions is developed and shown to predict this confinement effect on the asymptotic
behavior of the curvature angle.
The rest of the paper is arranged in the following way. Section II provides the details of the porous geometry,

simulation parameters and the numerical approach. Section III presents the methodology for the angular Lagrangian
multiscale statistics. Mean velocity field, TKE distributions, variances and probability density functions for the
instantaneous and temporal fluctuating velocities, Lagrangian correlations, energy spectrum and the curvature angle
statistics are described in Section IV. In addition, a stochastic Monte Carlo-based model is developed which allows
to predict the asymptotic behavior of the curvature angle in porous geometries. Finally, summary and conclusions
are given in Section V.

II. Simulation setup

A. Porous geometry

A porous face-centered cubic (FCC) unit cell (Fig. 1) is used in this work. It has a half sphere entering at each face
of the cube, and a half quarter sphere at each corner. The face-centered cubic arrangement creates the lowest possible
porosity (φ), the ratio of the void volume (Vvoid) to the total volume (Vtotal), to be 0.26 for the structured packings.
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FIG. 1: (a) Schematic of a face-centered porous unit cubic cell; (b) same as (a) except some beads are removed and
a particle trajectory illustrates the definition of the curvature angle Θ between subsequent Lagrangian particle

increments.

Due to this extreme compactness, the flow through the unit cell experiences rapid expansion and contraction. A
pressure gradient is imposed to drive the flow through the bed and a triply periodic boundary condition is applied for
the unit cell. Majority of the flow enters the cubic cell through the upstream open corners, converges into the center
pore resulting in strong accelerations and decelerations, and then leaving the unit cell along downstream corners.

Hill and Koch [22] studied the same geometry using the Lattice-Boltzmann method for flows up to Rep = 300,
where the pore Reynolds number (Rep) is defined with the adoption of porosity as given in equation 1. In this work,
the flow at three pore Reynolds numbers, Rep = 300, 500 and 1000, is simulated using direct numerical simulation,
ranging from unsteady inertial to turbulent regions. Note that, the definition for Reynolds number used by Hill and
Koch [22] is different from the one used in the present work. In Hill and Koch [22], Re is defined as,

Re =
Ux a

νγ
. (2)

where, Ux is the spatial averaged velocity component in the x direction, which is the superficial velocity and can be
related with the interstitial velocity by Ux = Uintφ, and a is the radius of the bead. While in the current study, the
pore Reynolds number Rep is used as it includes the porosity (φ) and thus is more commonly used in porous media
literature. To be consistent, Re mentioned in Hill and Koch [22] has been converted to Rep in the current study. As
a result, the highest Reynolds number Hill and Koch [22] used based on their definition is 106, which corresponds to
Rep of almost 300.

B. Numerical Approach and Grid Convergence

The numerical approach is based on a fictitious domain method to handle arbitrarily shaped immersed objects
without requiring the need for body-fitted grids (Ref. [48]). Uniform Cartesian grids are used in the entire simulation
domain, including both fluid and solid phases. An additional body force is imposed on the solid part to enforce the
rigidity constraint and satisfy the no-slip boundary condition. The absence of highly skewed unstructured mesh at
the bead surface has been shown to accelerate the convergence and lower the uncertainty (Ref. [26]). The following
governing equations are solved over the entire domain, including the region within the solid bed, and a rigidity
constraint force, f , is applied that is non-zero only in the solid region.
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The governing equations read as:

∇ · u = 0, (3)

ργ

[

∂u

∂t
+ (u · ∇)u

]

= −∇p+ µγ∇
2u+ ργg + f , (4)

where u is the velocity vector (with components given by u = (ux, uy, uz), ργ the fluid density, µγ the fluid dynamic
viscosity, p the pressure, and g the gravitational acceleration.

A fully parallel, structured, collocated grid solver has been developed and thoroughly verified and validated for
a range of test cases including flow over a cylinder and sphere for different Reynolds numbers, flow over touching
spheres at different orientations, flow developed by an oscillating cylinder, among others. In addition, the flow solver
is validated by comparing the numerical predictions with PIV data for flow through a randomly oriented packed bed
(Ref. [49]). The details of the algorithm as well as very detailed verification and validation studies have been published
elsewhere (Ref. [48]). In addition, the solver was also used to perform direct one-to-one comparison with a body-fitted
solver with known second-order accuracy for steady inertial, unsteady inertial and turbulent flow through porous
media (Ref. [26]). The details of this comparison focused on issues such as grid resolution needed near the wall, issues
related to touching spheres and contact points, quality of solution compared with the body-fitted solver, comparison
with experimental work of Ref. [50] on flow through a packed array of half spheres and establishing the grid resolution
requirement per bead diameter for predicting the unsteady flow-field in packed porous beds within 5% uncertainty
based on the grid convergence index (GCI). Turbulent flow at a pore Reynolds number of 600 was also computed in
the same configuration and compared with the body-fitted approach to obtain very good predictive capability of the
present fictitious domain solver. This same solver was also used to study turbulent flow in a randomly packed bed of
51 spheres capturing complex pore-scale flow features in agreement with published data (Refs. [26, 51]).

For the present studies, the flow is driven by a pressure drop as a body force in a triple periodic domain. According
to Hill and Koch [22], a constant pressure gradient ∇P , whose magnitude is proportional to the non-dimentional body
force F , is used to drive the flow,

|∇P | =
18 µγ c Uint

D2
B

F , (5)

where, µγ is the dynamic viscosity of the fluid and c the solid volume fraction, defined as 2
3
π(DB/L)

3 (L is the length
of the unit cube). The body force F changes with the pore Reynolds number according to the linear fit obtained
by Hill and Koch [22] and is given as,

F = 365 + 10.9

(

1− φ

2
Rep

)

(27 < Rep < 216) , (6)

F = 462 + 9.85

(

1− φ

2
Rep

)

(Rep ≥ 216) . (7)

As shown in Table I, a posteriori calculation of body force needed to balance the shear stress on the sphere surfaces
for different Reynolds numbers exhibits a good agreement with the above correlation, even for the range of Reynolds
numbers studied in the present work.

TABLE I: Comparison of the body force obtained from correlation 7 and that obtained from the shear stress on
sphere surfaces to maintain same Reynolds numbers.

❍
❍
❍
❍
❍

F
Rep 300 500 1000

Eq. (7) (Ref. [22]) 1506 2284 4106

Present study 1575 2362 4198

Using the pressure drop given in Eq. (5) and performing an overall momentum balance on the bed, one can estimate
the wall shear stresses. If we neglect the form drag (assuming viscous drag dominates), the estimated wall stress (τw)
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is the maximum possible value for a given Rep

∆P

L
= τw

(

1− φ

φ

)

6

DB
; Friction Velocity, uτ =

√

τw
ρ

≈ 0.5 ‖〈Uint〉‖ . (8)

Requiring the first grid point to be within y+ = yuτ/ν = 1, this indicates that the distance of the first grid point
normal to the sphere surface is given as y ≈ 2DB/Rep. Recently, Gunjal et al. [52] conducted Reynolds averaged
Navier-Stokes (RANS) simulations in face-centered cubic arrangements of packed spheres to show that the ratio of
surface drag to total drag was on the order of 0.21 for Rep up to 1000. Taking this factor into account, modifies the
estimate for near-wall grid resolution for Rep = 1000 to roughly 200 points in each direction per bead to completely
resolve all scales. Note that this estimate is based on assuming all pressure drop to be equal to the viscous drag. This
provides an overestimation of the resolution requirement.

To obtain a more direct estimate on grid resolution requirements in the present DNS simulations, 3D DNS studies
were performed at Rep = 500, 1000 in a unit cell of face-centered cubic (FCC) spheres with systematic grid refinement
study using 48, 64, 96, 112, 128 and 144 grid points per bead diameter DB. A grid converged solution was obtained for
first-order (mean flow) as well as second-order statistics (turbulent kinetic energy, TKE) for Rep = 500 at a resolution
of DB/96. For Rep = 1000, the mean flow converged at DB/144, whereas, TKE was showed small changes compared
to coarser mesh. This indicates that for the high Rep simulations of up to Rep = 1000, a grid converged solution
can be expected with a resolution of around DB/150. In order to obtain a high resolution DNS study and provide
sufficient resolution in the bead contact region, a refined grid based on DB/δ = 250 (δ is the grid resolution in one
direction) was used to resolve the pore-scale flow structures, which results in 3533 degrees of freedom for each case.
Ref. [14] has performed a grid convergence study on the same geometry and concluded that the current grid resolution
provides a good representation of the flow field. In wall units, δ+ is estimated to be less than 1 for Rep = 300, close
to 1 for Rep = 500 and about 2 for Rep = 1000.

III. Lagrangian angular multiscale statistics

A. Definition of the Lagrangian angular statistics

The geometric confinement effects on the flow structures have received much attention recently (Ref. [47]), partic-
ularly for turbulent flows in porous media (Refs. [27, 40]). Angular multiscale statistics of fluid particle trajectories
(Ref. [46]) are obtained to quantify the effect of confinement on the flow from a Lagrangian point of view. Following
a fluid particle in the Lagrangian frame, an angle, Θ, formed by consecutive particle locations (see Fig. 1b), as a
function of time lag is related to the coarse-grained curvature of the fluid particle paths. To calculate this angle, three
equal-time lag (τ) points along the trajectory are chosen, and the instantaneous curvature angle Θ is defined as the
angle between two position vectors constructed consecutively by these three points using the following equation,

cos
(

Θ(t, τ)
)

=
δX(x(t0), t, τ) · δX(x(t0), t+ τ, τ)

|δX(x(t0), t, τ)||δX(x(t0), t+ τ, τ)|
, (9)

where δX(x(t0), t, τ) = X(x0, t)−X(x0, t− τ) is the spatial increment and X(x0, t) is the position of a fluid particle
at time t, which is initially injected at x0. The cosine of the angle describes the directional change of the particle
with time lag and thus characterizes the multiscale feature of turbulent flows.

As discussed in Ref. [46], the major focus of the analyses will be on the average absolute angle

θ(τ) ≡ 〈|Θ(t, τ)|〉, (10)

and the probability density functions (PDFs) of Θ(t, τ). Two power laws and an asymptotic behavior are expected
to characterize the evolution of the mean absolute angle as a function of time lag τ as illustrated in Fig 2. At
short time increments (0 < τ < τK), the averaged angle is linearly proportional to the time lag with the constant
of proportionality dependent on the curvature of the trajectory, corresponding to the ballistic regime, where the
angle can be predicted by truncating the Taylor series expansion of the smooth trajectories under the conditions
that both velocity and the perpendicular acceleration do not depend on τ . At intermediate times (τK < τ < TL),
an inertial range is observed, especially for high Reynolds number flows, where the mean angle shows a linear trend
with respect to the square root of τ . This can be explained using the Kolmogorov phenomenology, due to the fact
that now the acceleration depends on τ . Thus, the inertial region is bounded by the Kolmogorov time scale (τK)
and the integral time scale (TL). At large time lags (τ >> TL), it has been shown in isotropic turbulence that the
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FIG. 2: Illustration of the two power laws and the asymptotic limit of the mean curvature angle θ evolution over
time lags in log-log scale, where τK is the Kolmogorov time scale and TL the integral time scale (reproduced

according to Bos et al. [46]).

mean curvature angle approaches π/2 indicating that all directions are equally probable in the asymptotic limit. It
is hypothesized that this evolution of the mean curvature angle may change in the presence of wall (solid surfaces
of beads) confinement, owing to the limited directions that a fluid particle can traverse. Ref. [47] has shown that
in a confined two-dimensional turbulent flow field, the geometric confinement does have impact on the directional
change of fluid particles and the asymptotic limit angle was found to be 2

3
π. In this work, this hypothesis is being

tested in the three-dimensional turbulence field inside of a porous cubic cell. The asymptotic average absolute angle
is determined to quantify the effect of confinement. The evolution of cos(θ) and the PDFs of (1 − cos(Θ)) at three
different Rep are compared to show the influence of the Reynolds number.

B. Particle tracking algorithm

Each tracer particle is injected at the center of a control volume at t0. The initial Lagrangian tracer location
X(xcv, t0) is the same as xcv, the center coordinates of the control volume which contains the tracer. In the following,
X0 is used to represent X(xcv, t0) for simplicity. The fluid velocity ucv(t0) at corresponding xcv is used as particle
velocity v(X0, t0) at the first time step to advance tracers. After the initial time step, the particle velocity v(X0, ti) is
calculated using tri-linear interpolation of the Eulerian velocity field u(ti) to the particle location, and a fourth-order
Runge-Kutta (RK4) scheme is implemented to advance the tracer locations in time.

In this study, 10,000 particles are randomly released at the same time and tracked to collect the trajectories. The
lifetime of each tracer is about 10 times the Lagrangian integral time scale, which ensures that the multiscale features
could be well captured.

IV. Results and discussion

In this section, the Eulerian statistics of the mean and rms (root mean square) velocity fields inside the pore
are first described briefly. The statistics are used to estimate the integral length scales and their variation with
increasing Reynolds number. In addition, the variance and probability density function of the instantaneous and
fluctuation velocity fields over the entire computational domain are computed to contrast the trends with studies at
lower Reynolds numbers conducted by Hill and Koch [22].

The Lagrangian statistics including auto-correlations, integral time scales, and energy spectra are described next
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for the three Reynolds numbers followed by the angular multiscale statistics. Finally, a Monte Carlo based stochastic
model is presented and applied to predict the asymptotic limit of the curvature angle for the present geometry.

A. Porous flow description

As described earlier in the simulation setup, the flow through the triply periodic domain is driven by a body force
in the flow direction based on the correlations given by Eq. (7). After an initial transient, a stationary state is reached
and the computation is continued for several flow through times (Tf ) over which statistics are collected. Tf is defined
as,

Tf =
L

Uint
. (11)

where L is the length of the unit cube. For each case, the flow was first computed for several flow through times
to ensure that a stationary state has been reached. This is confirmed by monitoring the total kinetic energy in the
domain, which starts out to be a large value and then decreases and remains more or less constant after an initial
transient period. This initial transient period was about 130Tf for the lowest and about 80Tf for the largest Reynolds
number studied. After a stationary state has been established, the computations were performed for additional 80Tf
for each Reynolds number to collect flow statistics which was found to be large enough to obtain converged statistics.
The distribution of Eulerian statistics of mean and turbulence kinetic energy inside the pore is illustrated below. The

compactness and confinement of the porous bed geometry gives rise to regions of intense acceleration and deceleration
as the flow enters the central pore from corners and then leaves at the corners on the other end. To visualize the flow
field, the contours for time-averaged velocity component in the streamwise direction and the turbulent kinetic energy
distributions at the center slice of the XY plane (Fig. 1b) are plotted in Fig. 3.
The mean velocity field normalized by Uint, shown in Figs. 3a, 3c and 3e, illustrates an almost identical distribution

for all Reynolds numbers. The mean flow enters the center pore from the left hand side corners and starts to accelerate
due to the geometric confinement, then decelerates and leaves the pore by the corners at the right hand side. The
uniform pattern of mean velocity distribution indicates that the largest flow motion in the pore is solely determined by
the geometry. Even if the mean flowfield for all three Reynolds number is very similar, the situation is quite different
for TKE. Observing from Figs. 3b, 3d and 3f, the TKE distributions, normalized by Uint

2, are varying substantially
with increasing Reynolds number. First, the amount of TKE magnifies largely under the effect of the stronger velocity
fluctuations. Second, the distributions of TKE, although remaining in a semi-similar pattern, are moderately mutating
with rising Rep, especially in the center of the pore where the area with low TKE region is diminished apparently
at higher Rep. This is suggesting that the inertial term in the Navier-Stokes equation is playing an important role
for higher Reynolds number flows in the porous media. To summarize, the mean velocity field, i.e. the large scale
motion, keeps the same distribution with increasing Reynolds number; while the generation of TKE, representing the
small scale motions, is greatly enlarged and its distribution is noticeably altered. The multiscale nature of turbulence
inside of porous bed is revealed by such visualizations.

B. Flow field statistics

In order to quantify the observations from the previous section, the statistics of the instantaneous velocity (u) and
the temporal fluctuating velocity (u′) are investigated in detail by computing the spatial variance and the probability
density functions at different Reynolds numbers. Similar to the temporal fluctuation velocity computed by using
Reynolds-averaging,

u′ = u−U, (12)

where U is the temporal average, the spatial fluctuation of any quantity ψ is defined by

ψ̃ = ψ − 〈ψ〉γ , (13)

where ψ̃ is the spatial fluctuation of ψ, 〈〉 represents spatial averaging and the superscribed γ indicates the averaging
is performed in the fluid domain only. Hill and Koch [22] conducted a similar analysis for lower Reynolds numbers;
however, their results were restricted to only the instantaneous velocity fields for the steady and weakly turbulent
flow regimes. For the current study, the statistics, including the spatial PDFs and variances are first sampled in the
fluid domain at multiple time instances over about 10Tf , and then time-averaged.
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(a) (b)

(c) (d)

(e) (f)

FIG. 3: Visualization of mean velocity in streamwise direction (Ux) and TKE distributions at three Reynolds
numbers. Top, Rep = 300; center, Rep = 500; bottom, Rep = 1000. The left side column shows velocity contour,

and the right hand side TKE.
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1. Spatial variance

Following Hill and Koch [22], the spatial variance for instantaneous velocity is referred to as R and defined by,

Rij(t) = 〈ũiũj〉
γ
/U2

int (14)

The streamwise and spanwise components of the variances are given by the diagonal part of Rij as,

R|| = R11 and R⊥ = (R22 +R33)/2 (15)

where the subscript || represents streamwise and ⊥ spanwise directions, respectively. For the temporal fluctuation

velocity, the spatial variances in the streamwise and spanwise directions, i.e. Rf
|| and R

f
⊥, are defined in a similar way

as Eqs. (14) and (15).

Rep R|| R⊥ R
f

|| R
f

⊥

300 by Ref. [22] 0.518 0.660 – –

300 0.5546 0.7084 0.1440 0.1964

500 0.6125 0.7474 0.2218 0.2867

1000 0.6646 0.7758 0.2801 0.3500

TABLE II: Time-averaged spatial variances of the instantaneous and temporal fluctuating velocities in the
streamwise and spanwise directions at three different Reynolds numbers; the over bar means time-averaging; the first
line are the data reported by Hill & Koch (2002) at the same Reynolds number of Rep = 300 at one time instant.

Table II shows the time-averaged spatial variances for the instantaneous and fluctuating velocities in both streamwise
and spanwise directions. A reasonable agreement of the variances at Rep = 300 is found between the current study
and Hill and Koch [22]. The small differences may be attributed to (i) the time-averaging, which may have removed
some of the temporal fluctuations, and (ii) the grid resolution, which was much coarser in Hill and Koch [22] so that
some very small velocities near the solid wall may not be completely resolved in their work.
Observing from Table II, the variance of the instantaneous velocity is larger than that corresponding to the fluctu-

ating velocity for all Reynolds numbers. In addition, the variance values in the streamwise direction are smaller than
that in the spanwise directions. This is also confirmed by the PDFs in Fig.4, as discussed further below, which shows
that the instantaneous velocity in the streamwise direction has an asymmetric distribution with the tail on the left
hand side being much smaller than that on the right hand side; while the PDF for velocity in the spanwise direction
generally follows the Gaussian distribution. This is owing to the fact that the mean flow is strong in the streamwise
direction, while almost zero in the other directions.
The variance of the temporal fluctuating velocity increases significantly with increasing Reynolds number. This

indicates that the turbulence is more intensified, which is consistent with the observations from Figs. 3b, 3d and 3f.
The spatial variances for the instantaneous velocity, on the other hand, in both streamwise and spanwise directions
increase only slightly with respect to Reynolds number, which is consistent with the results reported in Hill and Koch
[22]. The explanation is that the major part of the variances of instantaneous velocity components in a closely packed
bed should come from the velocities near the bead surface, which essentially are very weak due to the no-slip boundary
condition.

2. Probability density function

The probability density functions for the instantaneous and temporal fluctuating velocities are provided in Figs. 4
and 5, respectively. The variances in Table II are used to normalize the PDFs so that they have unit standard
deviations. Owing to the periodicity, the statistics in y and z directions should be the same (which was verified) and
hence only the PDFs of velocity in y direction are shown. The figures on the right hand side column are showing the
same data as on the left, except that they are plotted in the lin-log scale.
a. Instantaneous velocity

The PDFs for the instantaneous velocity components in the streamwise and spanwise directions are given in Fig. 4.
One common feature of the PDFs for both velocity components in the streamwise and spanwise directions is the
distinguished peak in the PDF at zero of abscissa. It is also observed that the corresponding probability decreases
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(a) (b)

(c) (d)

FIG. 4: PDFs of the instantaneous velocity component in x direction (a), and (b) showing the same data as (a) but
in the lin-log scale; (c) and (d) are showing the velocity component in y direction, where the solid line represents the

Gaussian distribution with zero mean and unit standard deviation.

with increasing Reynolds number suggesting that at lower Reynolds numbers, there is higher probability for small
values of velocity.

Close observation of Figs. 4a and 4b shows some similar trends as reported by Hill and Koch [22] for the velocity
in the main flow direction (x direction). At higher Reynolds number, more x component velocities in the upstream
direction are detected. This can be observed at the left tail of the PDFs, especially in Fig. 4b. It is the result of
stronger recirculation as well as due to large amount of vortices generated with one of the components perpendicular
to the x direction. A secondary peak is detected at about 1.5 times the standard deviation (see Fig. 4a), and the
corresponding probability becomes higher for larger Reynolds numbers. These characteristics of the PDF are not as
pronounced at the lower Reynolds number flows studied by Hill and Koch [22] and potentially result from the stronger
fluctuations owing to unsteady inertial effects at higher Reynolds numbers. In addition, a near-exponential decay, at
a rate faster than the Gaussian distribution, is observed at the right hand side tail of the PDFs, especially for lower
Reynolds numbers; and the decay rate is closer to the Gaussian distribution at higher Reynolds numbers.

The PDFs of instantaneous velocities in the spanwise direction, shown in Figs. 4c and 4d, are symmetric with a peak
at the center. They decently follow the Gaussian distribution until about three times the standard deviation in both
positive and negative abscissas. Then they continue to decay, but at a rate that is noticeably larger than the Gaussian
case. Similar to what has been noted for the streamwise velocity, at lower Reynolds numbers, the decay rate is more
likely an exponential function; while for higher Reynolds numbers it is closer to the Gaussian distribution. This shows



12

that the decay rates of the tails of the velocity field are Reynolds number dependent for the range considered in the
present study. Hill and Koch [22] conjectured that the exponential decay at lower Reynolds numbers is because of
the distribution of the pore size and not dependent upon the Reynolds number. However, as shown in the present
study, with increasing Reynolds numbers, the flow structures and length scales become smaller even in the main flow
direction. This isotropization of the velocity field at higher Rep is more clearly seen in the PDFs of the fluctuating
velocity rather than the instantaneous velocity. At lower Reynolds numbers, the flow structures are elongated in the
main flow direction, and give rise to larger fluctuating velocities.
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FIG. 5: The PDFs for fluctuating velocity components in x direction (a), and (b) showing the same data as (a) but
in the lin-log scale; (c) and (d) are showing the velocity component in y direction, where the solid line represents the

Gaussian distribution with zero mean and unit standard deviation.

b. Temporal fluctuating velocity

Fig. 5 illustrates the PDFs for the temporal fluctuation velocity components in the streamwise and spanwise
directions. Similar to Fig. 4, the figures on the right column are in linear-log scale showing the same data as those on
the left.

It can be observed that, except the spikes at the center, the PDFs for the fluctuating velocity in both streamwise
and spanwise directions follow the Gaussian distribution until about three standard deviations. After that, the PDFs
fall down at rates slower than the Gaussian distribution, unlike the PDFs of instantaneous velocity. However, similar
to the instantaneous velocity, the PDFs at higher Reynolds number are closer to the Gaussian distribution, whereas
for lower Rep, it follows an exponential decay. These are consistent with the hypothesis that with increasing Rep,
the length scales and flow structures in all directions become smaller thus decreasing the magnitude of fluctuations
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in velocity. In addition, distinct peaks are seen at the zero of the abscissa just like the instantaneous velocity and the
value of the probability of the peaks decreases with increasing Rep, indicating that the turbulence is greatly enhanced
by the unsteady inertial effects. Moreover, an asymmetric distribution is detected from Figs. 5a and 5b for PDFs of
velocity fluctuations in the main flow direction, whereas the PDFs are mostly symmetric for spanwise directions, as
shown in Figs.5c and 5d.

C. Lagrangian auto-correlation and energy spectrum
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FIG. 6: Lagrangian auto-correlation with X axis normalized by the corresponding integral time scale TL
11, (a)

Rep = 300, (b) Rep = 500 and (c) Rep = 1000, where is ρL11, ρL22 and ρL33; (d) energy
spectrum of ρL11 for all three Reynolds numbers.

Lagrangian statistics are more important in the sense of dispersion analysis for flow through porous media. Ac-
cording to Ref. [53], turbulent dispersion is easier to understand physically within the Lagrangian framework. In this
section, fluid tracer particles are tracked to obtain the Lagrangian trajectories. Tracer trajectories are then used to
calculate Lagrangian velocity auto-correlations and energy spectrum.

The Lagrangian auto-correlations are computed according to Eq. (16) (Ref. [54]),

ρLij(τ) =
〈v′i(X0, t) v

′
j(X0, t+ τ)〉

[

〈vi′2(X0, t)〉 〈vj ′2(X0, t+ τ)〉
]1/2 (16)

where ρLij is the Lagrangian auto-correlation, v′i the i-th component of the particle fluctuation velocity and 〈〉 represents
ensemble averaging. The results are plotted in Figs. 6 (a to c), where the abscissa, i.e. the time lag τ , is normalized by
the corresponding Lagrangian integral time scale, TL

11 computed by integrating the auto-correlation over the abscissa
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as,

TL
11 =

∫

ρL11(τ ≥ 0)dτ. (17)

It is observed that the correlations in the spanwise directions decorrelate much faster than those in the streamwise
direction regardless of the Reynolds number. Also, the correlation in the streamwise direction decorrelates at about
4 times of TL

11 monotonically. Since the integral time scale (TL
11) decreases greatly with respect to Reynolds number,

the correlations for the largest Reynolds number, Rep = 1000, fall down much quicker than the other two. The time
scale separation in distinct flow directions and also for different Reynolds numbers characterize the multiscale nature
of turbulence in porous bed.
Table III shows the normalized Eulerian integral length and Lagrangian integral time scales, obtained from the

respective auto-correlations, for the three Reynolds numbers studied here. The integral length scale is scaled with the
bead diameter (DB). It is observed that even for the lower Rep case, the integral length scale is only about 10% of the
sphere diameter, indicating that the coherent structures are confined within the pore. Such observation supports the
pore scale prevalence hypothesis (PSPH) and the results reported in Jin et al. [28]. This implies that, the turbulence
in the pore-scale is strongly affected by the porosity, and restrained by the pore size.
The integral time scale normalized by the flow time scale based on the interstitial velocity and the bead diameter,

is also given in the Table III. Since the integral time scale is smaller than this flow time scale, this suggests that the
Lagrangian coherent structures are restricted by the pore size. As a result, the single periodic unit cell considered in
the present work appears to be sufficient for the Reynolds numbers studied. However, the time scale shows that for
smaller Reynolds numbers the integral time scale approaches the flow time scale. Hence for lower Reynolds numbers,
larger computational domains may become necessary.

Rep 300 500 1000
LE
11/DB 0.102 0.0884 0.0684

(TL
11 Uint)/DB 0.55 0.356 0.322

TABLE III: Normalized integral length and time scales for different pore Reynolds numbers.

Additionally, Lagrangian energy spectra are computed by applying a Fourier transform to the auto-correlations
in the streamwise direction, and plotted in log-log scale in Fig. 6d. The abscissa is the frequency f normalized by
multiplying with the integral time scale. According to Ref. [55], the Lagrangian energy spectrum should follow a
power-law with an exponent close to −2, representing the inertial flow regime. Inspection of Fig. 6d shows that, even
for the highest Reynolds number the spectrum is only following a power law with slope of −2 in a very small region
(around f = 1). For larger values of f , a pronounced f−1 behavior is observed. This is typical of energy spectra for
the low Reynolds numbers studied here. Even Rep = 1000 is not high enough to observe a wide inertial scaling in the
Lagrangian energy spectrum. This is discussed with more details in the following section.

D. Lagrangian angular multiscale statistics

As mentioned in Sec. III, the Lagrangian tracer trajectories are used to compute the instantaneous curvature angle
Θ by Eq. (9) in order to assess the influence of the confinement on the flow structures. Since the turbulent flow is
in statistically stationary state, ensemble averaging is applied for all trajectories to obtain an overall representation
of the mean angle θ. However, according to the previous results reported in Ref. [39], since the mean flow is very
strong, the trajectories obtained using fluid particles advancing with instantaneous velocities (U+u′) do not show the
asymptotic behavior of the averaged angle. As a result, the particles are advanced using the fluctuation velocities (u′)
only to eliminate the mean flow effects. The evolution of the average absolute angle θ, characterizing the directional
change of a particle, as a function of time lag is shown in Fig. 7a at three different Reynolds numbers.
The presence of two power laws is apparent. For short time lags, a ballistic regime is obtained regardless of Rep.

This linear behavior corresponds to smooth trajectories where particles have the tendency to go straight, which are
generally independent of the flow geometry. On the other hand, in the inertial region, θ is expected to correlate with
τ1/2, which becomes more heavily pronounced at higher Rep, indicating its dependency on the Reynolds number.
This trend is observed in Fig 7a and the highest Reynolds number flow (ReP = 1000) has a somewhat noticeable
inertial region; while at Rep = 300 it is barely seen. It should be noted that, a significant scale separation, as observed
in high Reynolds number turbulent flows, is not present. This is mainly because Rep = 1000, is still not sufficiently
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FIG. 7: (a) Evolution of the mean absolute angle θ for Rep = 300 , Rep = 500 and Rep = 1000 ;
probability density functions for cos(Θ) , (b) Rep = 300, (c) Rep = 500 and (d) Rep = 1000; the red dashed line

denotes the value of uniform distribution, 0.5.

large, and extending the study to even higher Reynolds numbers becomes computationally very expensive. The slow
emergence of the inertial range in Lagrangian statistics is fairly common [46]. In order to see the extent of the inertial

range, the inset of Fig. 7a shows the compensated angle, θ̃(τ) = θ(τ)Urms/(ǫτ)
1/2, where Urms is the root mean square

velocity, and ǫ is the total dissipation rate. It shows a plateau, which becomes more pronounced for Rep = 1000.

The origins of these two power laws are discussed in Ref. [46]. Besides, the inertial region is also found to be
bounded by the Kolmogorov time scale and integral time scale. More importantly, the asymptotic mean angle for all
three Reynolds numbers collapse at the same value, 1.72 radian, which is noticeably higher than π/2 corresponding
to equidistribution and obtained for isotropic turbulence (Ref.[46]). It is conjectured to be connected with the porous
bed arrangement. Also, because of the uniformity of the asymptotic mean angle for all cases, it can be hypothesized
that the asymptotic average angle θ is exclusively determined by the geometry. This hypothesis is further tested by
developing a stochastic model that can predict this asymptotic behavior and the influence of the pore geometry, as
discussed in section IVE.

The above analyses are focusing on the mean absolute angle only. In the sense of the higher order statistics,
the PDFs for the cosine of the instantaneous curvature angle cos(Θ) and its evolution with time lag are plotted in
Figs. 7b, 7c and 7d. For very short time increments, a spike near cos(Θ) = 1 can be observed for all Reynolds number
cases, implying that the particles tend to move smoothly along the trajectory and have a pronounced tendency to
go straight. For larger time lags, an equidistribution with the probability of 1/2 (the red dashed line) is approached,
i.e. the ballistic regime. This is coming from the fact that, the cosine of the angle generated by any pair of three
randomly chosen points in the three-dimensional domain, which are decorrelated to each other due to the sufficiently
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FIG. 8: PDFs of the normalized instantaneous curvature angle, short times in solid colored lines, long times in
dashed color lines and the bold black solid line represents the F2,3 distribution.

long time interval, should be equidistributed (Ref. [46]). Also, the rate of PDFs transitioning from one peak near
cos(Θ) = 1 to the equidistribution is believed to be related with the Reynolds number. As mentioned in Sec. IVC,
the integral time scale decreases dramatically with increasing Rep. This suggests that the faster decorrelation of the
flow structures leads to an earlier transition to the equidistribution of the PDFs.

Additionally, according to Refs. [46, 47], the PDFs for cos(Θ) should be able to fit to a Fisher distribution under
the assumption that velocity and acceleration are in near-Gaussian distribution and independent. From the PDFs
shown in Fig. 5, it is observed that the spatial PDFs of fluctuation velocities nearly follow the Gaussian distribution.
If this assumption also holds for the acceleration, the squares of both velocity and acceleration should follow the χ2

distribution, and the ratio of these two χ2 distributed variables ought to comply with the Fisher distribution. As for
Θ in the current study, its cosine can be approximated as cos(Θ) ≈ 1−Θ2/2 when the curvature angle is small. As a
result, under such assumptions and using normalization, the PDFs of 1− cos(Θ) are expected to align with the Fisher
distribution. The results are plotted in Fig. 8, where all the PDFs displayed in Figs. 7b, 7c and 7d are compiled
together in colored lines and the F2,3 distribution is shown as bold black solid line. The numbers 2 and 3 are referring
to the dimensionalities of the acceleration in the perpendicular direction and local velocity, respectively. Following
Ref. [47], half of the square of the corresponding mean angle (Fig. 7a) is used to normalize the probability density
functions. The PDFs indeed obey the F2,3 distribution in a fairly good way, especially for short time lags (solid color
lines). For long time lags (dashed color lines), the normalized PDFs are deviating from the Fisher distribution as
expected. This is because the long time behavior is determined mainly by the geometry and is not influenced by the
flow properties.

E. A Monte-Carlo stochastic model

A Monte Carlo-based stochastic model to predict the long time behavior of the curvature angle in the porous bed
is developed and its prediction is compared with the asymptotic value obtained from the Lagrangian particle tracking
in DNS. It is hypothesized that this long time behavior of the curvature angle is dependent on the pore geometry.
To verify such hypothesis, fluid trajectories are firstly modeled using the so-called “blocks” (see Fig. 9a, three sample
blocks in different colors are placed in a unit sphere). Each block is generated by three points in space: one is the
center of the sphere (O) and the other two (A and B) are on the surface. Accordingly, an angle (θS) is determined
by those three points, which is used to mimic the curvature angle (Θ) along a real fluid trajectory. The cosine of this
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FIG. 9: (a) Schematic of sample blocks in a mask function, (b) illustration of how the blue mask functions are
placed inside of the porous bed, (c) application of the stochastic model to a two-dimensional periodic channel and

corresponding two-dimensional mask functions denoted by circles of different radii.

angle is defined as,

cos(θS) =

−→
AO ·

−−→
OB

|
−→
AO| · |

−−→
OB|

. (18)

In total 111,556 blocks are generated in the unit sphere so that it contains almost all possible angles ranging from
0 to π. The unit spheres with different sizes are then randomly placed and tested in the porous geometry (Fig 9b).
Only the blocks that are in the fluid domain without any intersection with the solid beads are valid, indicating that
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the associated curvature angle may be possible in such scenario. This procedure is repeated to obtain a large number
of samples (100,000 samples). The cosine of the angle is recorded for each valid realization and the mean value is
calculated. The steps in the stochastic model are summarized as follows:

(i) The blocks in a unit sphere are constructed first. Three points A, B and O (Fig. 9a) are used to compose one
pair of block, where A and B are on the surface of the sphere, and O denotes the center. Over 100,000 blocks
are built in the unit sphere and the cosine of the corresponding angles are in almost equal distribution;

(ii) Multiple spheres with sizes from 0.025DH to 5DH are then generated based on the unit sphere containing all
the blocks. DH represents the hydraulic diameter of the porous media and is defined as,

DH = DB
φ

1− φ
. (19)

After that, these spheres are randomly placed and tested in the porous geometry;

(iii) To determine if one block is valid or not, a multi-step geometric check is conducted to make sure there is no
intersection between the block and the solid beads. Also, the periodicity is enforced during this procedure;

(iv) If one block has been verified to be valid, the associated cosine of the angle is recorded and counted into the
final statistic. In total, 100,000 successful blocks are collected;

(v) To ensure the number of blocks is sufficient in this study, a convergence study is carried out with number of
blocks of 66564 and 272484, which shows little impact of the block numbers on the final result. The deviation
of the predicted asymptotic curvature angle between each case is below 0.2%.

The Monte-Carlo based stochastic model is first tested on a simple two-dimensional periodic channel with length
(Lx) to be 100 times the width (Ly) and periodic boundary condition specified in the x direction. Similar to the
three-dimensional case, a sample filter function or the mask function, containing three sample blocks illustrated by
red, blue and green colors, is displayed in Fig. 9c. The filter function is designed to contain all the possible angles
formed by three points. One of them is the center of the circle, and the other two points are selected randomly on a
unit circle. Filter functions of different sizes (Fig. 9c) are then randomly placed into the test geometry (2D periodic
channel) with the periodicity applied in the x direction. If any part of the block is interrupted by the solid boundary
of the channel, this block is deemed invalid and not counted into the final statistic of the mean curvature of particle
trajectories. Otherwise, the angle associated with the valid block is collected into the statistics. Over 200,000 filter
functions were tested with about 100,000 blocks of different angles.

1. Two-dimensional, periodic channel

This simple two-dimensional case is selected to illustrate the effectiveness of this model, and also verify its appro-
priateness. For the periodic channel, more particle trajectories will be aligned in the axial flow direction owing to
the confinement effect of the channel walls. This can be easily tested by varying the size of the mask/filter function
from a very small radius of the circle to a much larger value compared to the width of the channel. The model is first
applied to this simple test case, to understand the effect of confinement in two dimensions.
Intuitively, when the size of the filter function is small compared to the channel width, all blocks would have

high probability to be valid; however, with increasing filter size, more blocks would become invalid owing to the
confinement effect of the solid channel wall. In other words, when the diameter of the mask functions is small, the
ensemble averaged angle should be approaching π/2 indicating equidistribution of particle trajectories, that is, the
confinement has little effect on the curvature angle. Whereas as the filter functions get larger compared to the channel
width, because of the geometric confinement, the curvature angles are forced to get closer to either of the two extreme
values, 0 or π. Therefore, at this moment 〈θS〉 would again approach π/2. Moreover, when the filter sizes are in
between (medium sized radii), a maximum of the averaged angle should be expected. This is because, larger angle
blocks tend to have higher probability of being valid due to the effect of the confinement. It can be easily understood
by imagining fluid particles hitting a solid wall. The particle would bounce back instead of penetrating through the
wall. Thus, a large deflection angle is generated, which is essentially the defined curvature angle. As a result, a
maximum value of the ensemble averaged curvature angle should be expected for a medium size filter function.
These intuitive understandings can be confirmed in Fig. 10, where the ensemble averaged curvature angle 〈θS〉

is plotted against the diameter of the filter function (DS) normalized by the width of the channel. The curvature
angles for the mask functions with the smallest and largest sizes are indeed approaching π/2. And a peak was indeed
observed in between.
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FIG. 10: Two-dimensional periodic channel: ensemble averaged curvature angle 〈θS〉 as a function of mask function
diameter DS normalized by the channel width Ly.

2. Three-dimensional, triple periodic porous unit cell

The stochastic model is designed to test the mask functions with sizes from DS/DH ≈ 0.025 to DS/DH ≈ 5, when
the filter function is about as the same size as the porous unit cell. The reasons for such a setting are explained in the
following. First, the smallest size of the mask function (DS/DH ≈ 0.025) is chosen to make the confinement effect
almost negligible so that all the angles ought to have equal possibilities. And this is consistent with what is observed
from Fig. 11. Secondly, if the size of the filter function exceeds the porous unit cell, the stochastic model may not be
relevant. Due to the extreme compactness of the bed, the void space between each pore is connected in a meandering
way. That is to say, almost no blocks are valid under this circumstance, and there is no physical meaning of using
the size of the mask function larger than the porous unit cell. Besides, in the real scenario, the flow structures tend
to be restricted inside of a single pore and thus restricting to mask functions smaller than the size of the unit cell is
appropriate.

Fig. 11 shows the ensemble averaged angle 〈θS〉 computed from the stochastic model for different diameters, DS ,
of mask functions, where DS is normalized with DH . It can be seen that the mean angle starts with π/2 with very
small diameter, indicating all directions in the three-dimensional domain are equally probable for small size masking
functions. The geometric confinement does not have any effect on the curvature angle at this point. After that, 〈θS〉
increases with lager DS , meaning the solid boundary of the beads is starting to limit the possibilities of valid blocks.
This also means that the larger angles would have higher probabilities than the smaller angles. Then it reaches the
maximum angle to be 1.724 radian at about DS/DH = 2, which implies that now the porous geometry has the
greatest influence on the trajectories of the fluid. This influence can be qualitatively measured by the possibility of
filter functions in contact with sphere boundaries. In other words, the more filter functions are interrupted by the
beads, the higher impact confinement can make to the fluid trajectories. At this moment, the porous geometry is
playing the most important role. Ref. [47] reported a different value (2

3
π) for a two-dimensional confined domains

(circle, rectangles of different aspect ratio), suggesting this maximum angle is geometric dependent. After it hits the
maximum, 〈θS〉 starts to decrease, resulting from that the pore size is limiting the angle of the blocks. That is to say,
with the larger filter function sizes, some trajectory angles are preferred because of the limited pore size. This is the
reason why the mean angle 〈θS〉 decreases.

More importantly, it is confirmed that the maximum mean angle, 〈θS〉max = 1.724 radian, is very close to the
asymptotic limit of the mean absolute angle, θ(τ → ∞) = 1.72 radian, obtained at large time lags for particles
advanced by fluctuating fluid velocity only, as shown in Fig. 7a. Such a good agreement comes from the fact that the
stochastic model does not consider the influence of the mean flow. In other words, the mean angle is solely dependent
on the pore geometry. Hence, matching of the asymptotic angle obtained from the fluctuation velocity field is to be
expected. Again, that this value is different from π/2, as observed in isotropic turbulence, indicates the confinement
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FIG. 11: Three-dimensional, triple periodic porous unit cell: ensemble averaged curvature angle θS as a function of
mask function radius DS normalized by the hydraulic diameter DH .

effect of porous geometry on the flow structures.

V. Summary and conclusion

Fully resolved direct numerical simulations were performed on a face-centered porous unit cell using a Cartesian
grid-based fictitious domain method for three different pore Reynolds numbers of 300, 500, and 1000 spanning an
unsteady transitional to fully turbulent flow. Flow physics in the Eulerian frame were explored and discussed first.
Emphasis was then placed on multiscale, Lagrangian statistics of fluid flow as turbulent dispersive transport and
mixing are easier to understand in a Lagrangian frame.
The flow field was visualized by the contours of the mean velocity and turbulent kinetic energy distributions. It is

observed that the mean velocity field, i.e. the large scale motion, keeps the same distribution regardless of Reynolds
number; while the generation of TKE, representing the small scale motions, is greatly enlarged and its distribution
is noticeably altered. In addition, the spatial variances and probability density functions for the instantaneous and
temporal fluctuation velocities were computed. The variances for the fluctuating velocities have larger values than
those for the instantaneous velocities due to the stronger inertial effects. A reasonable agreement is found comparing
the variances for the instantaneous velocities at Rep = 300 with Ref. [22]. For higher Reynolds numbers, similar
trends as in the literature are observed. However, a Reynolds number dependency was noticed for the decay rate of
the PDF for the instantaneous velocities after three standard deviations. This is specific for the high Reynolds number
cases and was not observed by Hill and Koch [22] at lower Re. This is attributed to the strong inertial influences at
higher Re.
The Lagrangian auto-correlations were obtained by tracking a large number of fluid particle trajectories. It is

found that the correlation in the streamwise direction decorrelates at about four times of the integral time scales
regardless of the Reynolds numbers studied. The integral time scales in the spanwise directions are much smaller
than that in streamwise direction. Moreover, the integral time scales in all directions decrease dramatically with
increasing Reynolds number. The Lagrangian energy spectra were calculated by performing the Fourier transform on
the auto-correlations. Even for the highest Rep flow studied here, a power law with an exponent of −2, representing
the inertial flow regime, was observed only in a very small region. Moreover, a pronounced f−1 trend is followed for
higher frequencies. It is anticipated that the Reynolds number studied here is not high enough to obtain the inertial
scaling in the Lagrangian energy spectrum.
Instantaneous multiscale curvature angles formed by three points with equal time-increments along a Lagrangian

tracer trajectory were computed. The evolution of the mean angle, depending on time lags, was determined by
ensemble averaging of the instantaneous angles. Two power laws were observed in the evolution. For short time lags,
a linear relationship was found, indicating its dependency on the curvature of the trajectory. The inertial regime
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was noticeably pronounced with a trend with respect to the square root of the time lag at intermediate time lags.
While at long time lags, an asymptotic behavior appeared to be 1.72 radian, different from π/2 observed for the
three-dimensional isotropic turbulence field (Ref. [46]) and 2

3
π for the two-dimensional wall-bounded turbulent flow

(Ref. [47]), representing equidistribution of the angle and the confinement effect on the flow structures, respectively.
Consequently, the asymptotic value is conjectured to be geometry dependent. This shows that multiscale angular
statistics yield scaling information for quantifying turbulence in a confined porous geometry requiring Lagrangian
particle positions only.

The probability density functions for the cosine of the instantaneous curvature angles were predicted as well. A
spike near the cos(Θ) = 1 for short time increments and an equidistribution for large time lags was detected. After
appropriate normalization, the PDFs were fit to a Fisher distribution. The normalized PDFs for short time lags follow
the F2,3 distribution in a fairly good way, while those for long time lags deviate from it. This results from the fact
that the long time behavior of the PDFs is decided by the geometry instead of the flow field.

Finally, a Monte-Carlo based stochastic model to predict the long time behavior of the mean absolute angle was
developed. Filter functions with different blocks representing the possible curvature angles were constructed and
tested inside of the porous bed. The predicted mean angle, evolving with increasing size of the filter functions, starts
from π/2 meaning no confinement effect, increases to 1.72 radian representing maximum influence of the geometry,
then decreases because of the limited pore size. This angle matching with the asymptotic curvature angle for the fluid
particles moving with the instantaneous velocity fluctuations confirms the geometric confinement effect on the flow
properties. The value of the maximum angle can be used to characterize different pore geometries and potentially
provides an upper limit for angular statistics.
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