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Abstract

Multifluid flows in a vertical channel are examined by direct numerical simulations, for situations

where the topology of the interface separating the different fluids changes. Several bubbles are ini-

tially placed in a turbulent channel flow at a sufficiently high void fraction so that the bubbles

collide and the liquid film between them becomes very thin. This film is ruptured at a predeter-

mined thickness and the bubbles are allowed to coalesce. For the cases with high surface tension

the bubbles continue to coalesce, eventually forming one large bubble. At low surface tension, on

the other hand, the large bubbles break up again, sometimes undergoing repeated coalescence and

breakup. The evolution of various integral quantities, such as the average flow rate, wall-shear,

and interface area are monitored and compared for different governing parameters. Averages of

the flow field and the phase distribution over planes parallel to the walls are also examined, and

the microstructure, at statistically steady state, is examined using low order probability functions.
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I. INTRODUCTION

Direct Numerical Simulations (DNS) have been used to examine several bubbly mul-

tiphase flows, leading to considerable new insight. Such simulations include both studies

of single bubbles, such as [1–5], who examined how shape and path of a buoyant bubbles

depends on the governing parameters, two bubbles [6], as well as the interactions of many

freely evolving bubbles, both in fully periodic domains [7, 8] and in channels [9–13]. These

simulations have clarified the effect of deformability and void fraction on the collective be-

havior of bubbles. They have shown, for example that while nearly spherical bubbles tend

to line up side by side, deformable bubbles are more likely to follow each other, and that

spherical bubbles experience much stronger lift than more deformed ones. The dependency

of lift on deformability results in major changes in the void fraction distribution in channels

as the bubble size increases. Bubbly flows are, however, only one of several possible flow

regimes and even when it is possible to identify distinct bubbles, in high void fraction flows

we expect them to frequently coalesce and break apart. In many cases the gas and the liquid

are so intermingled that identifying bubbles (or drops) is impossible. The structure of such

flows depends sensitively on the governing parameters and, in particular, the configuration

of the phase boundary is found to undergo very significant changes as the flow parameters

are changed. At low void fraction the gas typically is found as distinct bubbles dispersed

in the flow, but as the void fraction is increased the bubbles coalesce and breakup in a

chaotic manner in a regime often referred to as churn-turbulent flow. At even higher void

fraction the bubbles coalesce into slugs and eventually the liquid flows along the walls, in

annular flows. In addition to the average void fraction, the fluid velocity modifies each flow

regime and when they transition from one to the other. High void fraction flows, where the

interface between the different fluids constantly undergoes topology changes are obviously

of significant importance for many applications and here we examine such flows using DNS.

Although many DNS studies of bubbly flows have been carried out, simulations of more

complex multiphase pipe or channel flows are not as common. A few DNS studies of annular

flows include [14] and [15], but simulations of flows undergoing extensive topology changes

have mostly focused on atomization, including at high Weber numbers where liquid jets

form drops much smaller than their diameter. Examples of such studies can be found in [16–

18]. Although simulations of atomization have already yielded major new insight into how
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liquid jets break up into droplets, they have also showed the difficulties in obtaining reliable

results for multiphase flows undergoing massive topology change. In almost all cases, very

small scale features that often form spontaneously during coalescence and breakup are not

fully resolved and in most cases the small-scale physics ultimately responsible for topology

change is not included. This often leads to grid-dependent topology changes, particularly

for methods that advect a marker function identifying the different fluids directly on a fixed

grid. Here we used connected marker particles to follow the interface, thus giving us more

control over the topology change. However, although we avoid automatic grid dependent

topology changes, we do not solve the full problem. Instead we impose grid independent, but

artificial, conditions to determine when coalescence takes place. We examine the influence

of changing these conditions on the overall solution and attempt to quantify the effect.

Many authors have conducted experimental studies of multiphase flow in vertical pipes.

For adiabatic flows those include [19–22]. Recent experiments include [23], who examined

the effect of surfactants, and studies of flashing flows by [24]. Since the flow characteristics

change in fundamental ways during a transition from one regime to another, many authors

have attempted to construct maps that show the boundary between the different regimes

as functions of the governing parameters. Early proposals can be found in [25] and [26]. A

brief overview of the different maps that have been proposed is given by [27]. For a review

of experiments and modeling of air liquid flows in vertical pipes, with a focus on gas-lift

pumps for oil recovery, see [28], for example. Modeling such flows is still very primitive and

we expect DNS to be able to cast considerable light on the various processes governing the

flow.

II. NUMERICAL METHOD

The flow in the whole compuatational domain is described by the “one-fluid” Navier-

Stokes equations

ρ
∂u

∂t
+ ρ∇uu = −∇p+ ρg +∇ · µ(∇u +∇uT ) + σ

∫
F

κfnfδ(x− xf )dAf . (1)

Here, u is the velocity vector, ρ and µ are the discontinuous density and viscosity fields,

respectively, g is the gravity acceleration. The last term on the right hand side represents

the surface tension as a concentrated force on the front/interface. The surface tension σ is
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constant and δ is a three-dimensional delta function constructed by repeated multiplication

of one-dimensional delta functions. κf is twice the mean curvature, nf is a unit vector

normal to the front, x is the point at which the equation is evaluated, and xf is the position

of the front. The momentum equations are supplemented by the incompressibility conditions

∇ · u = 0, which leads to a non-separable elliptic equation for the pressure.

The equations are solved on a regular structured staggered grid, using a front-tracking /

finite-volume method. Time integration is done by a second-order predictor-corrector

method, the viscous terms are discretized by second-order centered differences and the ad-

vection terms are approximated using a QUICK scheme. The pressure equation is solved

using the semi-coarsening multigrid method PFMG / SMG from the HYPRE library [29] to

impose a divergence-free velocity field. To advect the density and the viscosity fields, and to

accurately compute the surface tension, the fluid interface is tracked by connected marker

points (referred to as the “front”). The front points are connected to form an unstructured

surface grid that is advected by the fluid velocity, interpolated from the fixed grid. The

front usually deforms, and surface markers are dynamically added and deleted as needed.

If a side of a triangular interface element becomes longer than half the grid spacing of

the fixed fluid grid the side is split, creating two new triangular element and if a side is

shorter then one fourth of the grid spacing the side is collapsed to a point, removing two

surface elements. For a detailed discussion see [30]. The surface tension is represented by

a distribution of singularities (delta-functions) located at the front. The gradients of the

density and viscosity become delta functions when the change is abrupt across the boundary

and are transferred to the fixed grid by approximating them by smoother functions, with a

compact support. At each time step, after the front has been advected, the density and the

viscosity fields are reconstructed by integration of the smooth grid-delta function. Here we

use the function originally introduced by Peskin [31], which results in an artificial interface

thickness of about three grid spaces. As long as this thickness is smaller than other length

scales, such as radius of curvature, the interface evolution is not affected, see [30]. The sur-

face tension is then added to the nodal values of the discrete Navier-Stokes equations. The

method was introduced by [32] and for description of the original method, as well as various

improvements and refinements, see [30] and [33]. The method has been applied to several

multifluid problems and tested and validated in a number of ways. Those tests include

comparisons with analytical solutions for simple problems, other numerical computations,

4



and experiments. The actual resolution requirement varies with the governing parameters

of the problem. High Reynolds number flows, for example, generally require finer resolution

than low Reynolds number flows, as in other numerical calculations. For applications to

bubbly flows, see, [7, 8, 34, 35], for example. For other implementation of similar ideas and

applications to bubbly flows, see [1–3, 36–38], for example.

Topology changes in multiphase flows take place through two primary mechanisms: films

that rupture and threads that break. DNS must be able to accurately handle both. For

methods that track the indicator function identifying the different fluids or phases directly on

an Eularian grid (such as VOF or Level Set methods), topology change will take place when

the resolution of a film or a thread is sufficiently low, whereas methods that use connected

marker points to track the interface will generally not allow a change in topology. Both

methods can be modified to either allow or prevent topology changes, but at the cost of

additional code and possibly increased runtime. Of the two types of topology changes, thin

threads that break are by far the easier to deal with. The Navier-Stokes equations predict

that the diameter of threads can become zero in a finite time and no additional physical

modeling needs to be included. Furthermore, the breakup is fast, so while there may be a

moment just before the thread breaks when it is not well resolved, this is often such a short

time that it does not have a significant effect on the overall dynamics of the flow. Both types

of methods generally handle thread breakup easily, with marker point methods leaving an

inert string of particles behind. The rupture of thin films is a much more complex matter.

The thickness of a draining film, simulated using the standard Navier-Stokes equations,

does not usually become zero in a finite time and it is only because of the presence of short

range attractive forces (usually not included) that it eventually becomes unstable and holes

are formed. The initial hole is then enlarged by either the formation of other holes that

merge with the first one or the enlargement of the original hole by rim retreat and breakup.

The breakup includes the formation of drops with threads that snap, but often on such a

small scale that it is difficult to resolve them fully in simulations focusing on a larger region

of the flow. The rupture of films in simulations using numerical methods that track the

indicator function directly is an artifact of the finite resolution and in some cases it is found

that refining the grid postpones the rupture and prevents the solution from converging to

a grid independent form. While in many cases such methods produce results that look

“physical,” it is not well understood when the rupture is adequately controlled artificially
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Coalescence and Breakup in Laminar Channel Flow 

Comparison of Resolution 

Domain size: 2 x 1 x 1 

Boundary condition: periodic  x  wall x periodic

Density: 1.0/0.05 

Viscosity: 0.001/0.00005 

Gravity: 0.025 

Pressure Gradient:  0.008 

Channel’s Reynolds Number: 1000 

Bubble’s surface tension: 0.005 

Number of Bubbles: 12 

Average void fraction: 20.1% 

Resolution:  (1) 128 x 64 x 64;  (2) 192 x 96 x 96;  (3) 256 x 128 x 128; (4) 384 x 192 x 192 

Grid Cell size:  (1) 0.015625; (2) 0.01042; (3)0.0078125; (4) 0.005208 

Case Number:  (1) tst4;   (2) tst4a; (3) tst4b; (4) tst4c 

Coalescence Critical distance: 0.003 

Time = 0 

(a) (b) (c) (d)

FIG. 1: The effect of the resolution on the coalescence of several bubbles into a large one.

The initial bubble distribution is shown in frame (a), and the results as computed at time

40 on 128x64x64, 192x96x96 and 256x128x128 grids are shown in frames (b), (c) and (d),

respectively.

by the resolution and when more complete rupture models must be included. When the

interface is tracked by connected marker points it is necessary to add a strategy to rupture

the interfaces when they are close enough and this results in a complete control of when, or

under what circumstances, rupture takes place, thus allowing us to examine how sensitive

the overall evolution of the flow is to how the rupture takes place, even if a complete rupture

model is not included.

In the present simulations the topology change is accomplished by reconnecting fronts

that are closer than a prescribed minimum distance. The topology change algorithm consists

of two steps: the identification of close front points and the actual restructuring. To identify

close points, we divide the domain into sub-domains and construct a linked list of points in

each domain so that we can limit the search to points in each subdomain. Once close points

have been identified, we merge all close points and finally eliminate links between merged

points. Unconnected points are then deleted. In the actual topology change code, we have

implemented a number of steps to increase its efficiency but none of these steps affect the

eventual outcome.

We emphasize that the coalescence criteria can be specified independently from the grid

resolution. However, even if we keep the coalescence criteria constant, the grid resolution

can influence how thin a film can become and therefore change the results. This is discussed

in the next section.
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FIG. 2: The effect of the resolution on the average wall shear (top) and the surface area

projected onto a plane perpendicular to the flow direction (bottom).

III. RESOLUTION TEST AND THE EFFECT OF THE CRITICAL COALES-

CENCE DISTANCE

Before examining the evolution of more complex flows, we first investigate simpler prob-

lems to establish the resolution needed and how coalescence should be treated. For these

tests we use a vertical laminar channel which is bounded by two parallel rigid walls in the

Y direction. The flow is driven by an applied pressure gradient dP/dX in the X direction.

Both the streamwise (X) and spanwise (Z) directions are periodic. The computational do-

main size in computational units is 2 × 1 × 1 in the X-, Y - and Z- directions, separately.

Initially, the Reynolds number based on the maximum streamwise velocity and the channel

width is 1000, and 12 bubbles of diameter d = 0.4 are randomly placed into the flow, giv-

ing a void fraction of 20.1%. The Eötvös Number (Eo ≡ ρfgd
2/σ) is 0.8 and the Morton

Number (Mo ≡ gµ4/(ρσ3)) is 2.0× 10−7, where ρ and µ are the density and viscosity of the

heavy fluid, and g, d and σ are the gravitational acceleration in the negative X direction,

the initial bubble diameter and the surface tension coefficient, respectively. The density and
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Coalescence and Breakup in Laminar Channel Flow 

Comparison of Resolution 

Domain size: 2x1x1 

Boundary condition: periodic x wall x periodic

Density: 1.0/0.05

Viscosity: 0.001/0.00005 

Gravity: 0.025

Pressure Gradient: 0.008 

Channel’s Reynolds Number: 1000 

Bubble’s surface tension: 0.005 

Number of Bubbles: 12

Average void fraction: 20.1%

;  (4) 0.00075 

(a)

Time =100.0

(b) (c) (d)

FIG. 3: The effect of the critical coalescence distance on the coalescence of several bubbles.

The initial bubble distribution is shown in frame (a), and the results at time 40 for the

critical distance of 0.006, 0.003 and 0.0015 are shown in frames (b), (c) and (d),

respectively.

viscosity ratios between the heavy fluid and light bubbles are 20. To assess the resolution

needed to obtain a converged solution, we ran three cases where the critical distance for

coalescence was held constant but the grid resolution varied. Frame (a) in Fig. 1 shows the

initial bubble distribution for all cases, and the next three frames (b), (c) and (d) shows

the results at time 40 for a 128× 64× 64 grid, a 192× 96× 96 grid and a 256× 128× 128

grid, respectively. The twelve initial bubbles have coalesced into one large bubbles at this

time and the results for the finest two grids are very close, while the results on the coarser

grid are significantly different. The difference in surface area of the bubbles on the finest

grids at time 40 is, for example, only 1.16%. The results are also compared in Fig. 2, where

the time evolution of the average wall shear is shown in the top frame and the projection

of the surface area onto the Y-Z plane in the bottom frame. Again, it is clear that the two

finer grids give similar results, although the projected area shows a slight delay in the final

coalescence for the medium grid compared to the finest one. The low resolution is, on the

other hand, significantly different. The low resolution is, on the other hand, significantly dif-

ferent. We have quantified the differences by computing root mean square of the difference,

for the whole time interval and found that the difference in the wall shear stress is 1.5 %

between the two finest resolutions. The difference in the projected surface area, computed

in the same way, is however, larger (10 %) since the bubbles coalesce into one large bubble

at different times.
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FIG. 4: The effect of the critical coalescence distance on the average wall shear (top) and

the surface area projected onto a plane perpendicular to the flow direction (bottom).

Results for five different coalescence criteria are shown.

To assess the effect of the critical coalescence distance, δ, on the results, in Fig. 3 we keep

the resolution constant (equal to 192× 96× 96 grid points) but vary the critical coalescence

distance. The initial bubble distributions for all cases are shown in frame (a), and the bubbles

are shown at time 40 in the next frames (b), (c) and (d), with δ equal to 0.006, 0.003 and

0.0015, respectively. The results for the first two δ values are fairly similar (Although the

shapes of two bubbles are a little different, their surface area difference is less than 0.1%),

but the result in frame (d), for the smallest δ, is different. The differences are also clear in

Fig. 4, where we plot the wall shear stress in the top frame and the projection of the surface

area onto the Y-Z plane in the bottom frame versus time, for the values of δ shown in these

two frames as well as one smaller and one larger value (0.00075 and 0.012). Although there

are slight differences between the results for the three largest δ values, they are fairly similar

and very different from what is seen for the lowest two values. Specifically, the average root

mean square difference in wall shear stress over the whole time simulated, between the case
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Case 1 Case 2 Case 3 Case 4

Surface Tension (σ) 0.08 0.01 0.004 0.002

Eötvös Number (Eo) 0.2 1.6 4.0 8.0

Morton Number (Mo) 2.41× 10−12 1.23× 10−9 1.93× 10−8 1.54× 10−7

TABLE I: Parameters list for all cases for effect of surface tension.

with a critical coalescence distance of 6.0x10−3 and the one with a distance of 3.0x10−3, is

2.15%. These results are obtained using uniform grid resolution where the grid spacing is

h = 0.0102, so the ratio of the critical coalescence distance over the grid spacing is δ/h =

1.176, 0.588, 0.294, 0.147 and 0.0735, respectively, suggesting that the results are insensitive

to the exact value of δ, for δ equal to about a quarter to one grid spacing. The critical

coalescence distance for the runs in Fig. 1 and Fig. 2 was taken to be δ = 0.003, so the ratio

δ/h is equal to 0.192, 0.294, and 0.384. Thus, the two finer grids are also within the range

where the results appear to be relatively insensitive to the critical distance for coalescence.

We have also examined one case where we change the resolution but keep ratio of delta

over grid spacing constant, δ/h = 0.384 but changed the resolution. Using the same grid

as for the resolution study we found that the evolution was similar, although not exactly

identical. The tests presented here suggest that it is possible to get fairly consistent results

for flows undergoing repeated bubble coalescence, where the overall behavior is relatively

insensitive to the exact coalescence criteria and the grid resolution. The coalescence criteria

and the resolution must be selected to be consistent and of roughly the same order of

magnitude, but the exact value does not seem to be critical. Further investigation of the

sensitivity is ongoing.

IV. EFFECT OF SURFACE TENSION

One of the advantage of computational studies is that it is easy to change just one aspect

of the problem, in isolation. Here we focus on the effect of bubble deformability. We use a

similar computational domain as for the tests in the last section, but with different size of

π × 0.5π × 2 in the streamwise (X), spanwise (Z) and the wall-normal (Y ) direction. The
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 Time = 2.0 Time = 20.0 Time = 40.0 Time = 70.0 Time = 100.0 

Case 1 

=0.08 

     

Case 2 

=0.01 
 

     

Case 3 

=0.004 
 

     

Case 4 

=0.002 

     
 

 

 

FIG. 5: The fluid interface at five times for four cases with different surface tension. The

rows represent different cases, and columns show different times of 2.0, 20.0, 40.0, 70.0 and

100.0.
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(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

FIG. 6: The bubbles and the vortical structures at a late time for all four cases. The

iso-surfaces of vortices represent λ2 = -5.0.

flow is also driven upward by an imposed pressure gradient, but the initial velocity field is a

steady state turbulent flow with a friction Reynolds number of 128. Initially, 40 bubbles are

placed randomly in the channel. The diameter of each bubble is 0.4, giving a void fraction

of 13.58%. The density of the heavy fluid is 1.0 and the density of the light fluid is 0.1. The

heavy and the light fluid viscosities are both taken to be 3.333× 10−4 and the gravitational

acceleration is 0.1, acting in the negative X direction. The initial turbulent flow is generated

using a spectral code ([39, 40]) and the bubbles are simply placed in the flow, requiring the

flow to adjust to the bubbles in the first few time steps. For the high surface tension cases a

laminar initial flow will lead to a similar evolution as the turbulent flow field used here, but

for the lower surface tension cases an initially laminar flow will results in the initial bubbles

simply stretching into long filaments parallel to the flow. Using an initially turbulent flow

prevents this and ensures that the bubbles collide with each other. The objective of the

present investigation is to document the effect of surface tension, or bubble deformability,

on the evolution, and to do so we conduct a series of simulations where all parameters have

been kept constant except for the surface tension. The surface tension coefficient σ, the

corresponding Eötvös Number Eo based on the initial bubble diameter, and the Morton

Number Mo are listed in Table I. For the simulations presented in this section we use a

grid that is 192 (uniform) × 96 (uniform) × 128 (non-uniform) cells. The smallest and

biggest cell sizes in the wall-normal direction are 0.003549 and 0.023 in computational units.

We note that we present all results in computational, rather than nondimensional units, to
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reduce the probability of error or misinterpretation.

The interface separating the light and the heavy fluid is shown in Fig. 5 for five different

times for the four cases. The frames have been selected to give an impression of how the

flow evolves and are not evenly spaced in time. In Case 1 and 2 the surface tension is

sufficiently high so that the bubbles continuously merge to form larger and larger bubbles,

until most of the light fluid is contained in one large bubble. While the final bubble in

Case 1 is ellipsoidal, the final bubble in Case 2 is more like a “bullet” shaped Taylor bubble.

There are smaller bubbles present in Case 2, formed during the formation of the large bubble

but those will eventually merge with it. The evolution for the lower surface tension is very

different. In both Case 3 and 4 the bubbles initially merge into larger bubbles but these are

deformed significantly by the flow and as they grow larger through continuing coalescence

they also start to break up. At the latest time we see a few large bubbles and many smaller

bubbles for both cases, but the distribution of bubble sizes is different. In the last frame of

Case 3 the large bubbles are significantly larger than the bubbles at the initial time and the

smaller bubbles much smaller, while in Case 4 the final larger bubbles are smaller and we see

more small bubbles. The intermediate stages are also very different with significantly more

complex evolution taking place for the smallest surface tension, including the formation of

long filaments of the light fluid.

In addition to the interface, we have also examined the structure of the vorticity field. In

Fig. 6 we visualize the vorticity at a late time of 90, after the bubbles have coalesced and

broken up, for the lower surface tension cases, for all four cases. The vortices are visualized

using the λ2 method and the color shows their orientation. Red and blue indicate vortices

aligned with the flow, but with rotation of the opposite sign and green/yellow vortices are

perpendicular to the flow. The λ2 value shown here for all cases is -5.0. While the initial

velocity field is turbulent, the bubble motion quickly changes the structure of the turbulence

in major ways. For Case 1 the vorticity is mostly confined to the wake of the bubble and

for Case 2 this seems to be also true, although the vorticity is now shed from the rim of the

bubble. For Cases 3 and 4 most of the vorticity also seems to be generated by the bubbles.

The averaged void fraction versus the wall-normal coordinate is shown for four times in

Fig. 7 (left column) for all four runs. As the bubbles are evenly distributed in the channel

at initial time, its corresponding distribution of averaged void fraction is flat for all cases.

It is clear that the void fraction fluctuates significantly more for the first two cases than
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FIG. 7: The void fraction (left) and the average liquid velocity (right) versus the

wall-normal coordinate for all four cases.
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FIG. 8: Averaged various quantities for the different cases versus time.

for the last two. Indeed, for the last case with the lowest surface tension the void fraction

remains more or less unchanged, except for the early time. For the highest surface tension

the final profile corresponds to a single bubble moving in the center of the channel. The

average liquid velocity, plotted in the right column of Fig. 7 shows similar evolution. For

the lower surface tension cases (bottom two rows) it is more or less unchanged, but for the

highest surface tension case (top row) the flow rate is reduced and the final time shows a

profile peaked in the center of the channel.

The evolution of various quantities averaged over the whole channel is shown in Fig. 8.

The top frames shows the volumetric flow of the heavy and the light fluid, and it is clear that
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the heavy fluid flow rate decreases most for the largest surface tension, but stays essentially

constant for the lowest value. The bubbles are initially injected with the velocity of the

heavy fluid so they first accelerate rapidly due to buoyancy and then their velocity fluctuates

significantly more than the liquid velocity. Nevertheless, the light fluid velocity is comparable

for all cases, except for the highest surface tension, where the velocity decreases once the

bubbles are large enough. The average wall shear stress is shown in frame (c). At time

zero, the pressure gradient driving the flow and the weight of the mixture balance the wall

shear. As the bubbles are released, the nearly spherical bubbles in the high surface tension

cases initially move to the wall due to lift forces and increase the wall shear stress. Their

accumulation at the wall does, however, lead to rapid coalescence. The more deformable

bubbles (the lower surface tension cases) have smaller lift force and do not move to the wall

and the wall shear varies less. As the bubbles in the high surface tension case coalesce they

move to the center of the channel and since the bubble becomes ellipsoidal, it tends to block

the channel and thus slow down the flow. Lower surface tension leads to more deformed

bubbles, so even when they are large, they that block the flow less and thus lead to smaller

reduction in flow rate. Once the flow reaches an approximately steady state, the average

wall shear stresses for all cases are roughly equal to their initial value, where the average

wall shear balances the imposed pressure gradient and the weight of the mixture. The total

surface area is shown in frame (d) and here it is clear that for the high surface tension cases

the area decreases as the bubbles merge whereas for the lowest surface tension the breakup

increases the surface area. The total surface area only tells us about the average size of

the bubbles and in the bottom row we show the projected surface area (or components

of the surface area tensor) in two directions, normalized by dividing the projected surface

area by the total area, in an attempt to see if the shapes are different, independently of

the size and number of bubbles. For spherical bubbles the normalized projected area is

0.5 in all directions (twice the area of a circle, since the bubble has two sides, divided by

the surface area of a sphere, or 2(nπd2/4)/(nπd2)). Frame (e) shows the projection in the

streamwise direction, onto the Y-Z plane, and frame (f) shows the projection in the wall-

normal direction, onto the X-Z plane. The projected areas start out equal since the bubbles

are initially spherical but as they evolve the projected areas diverge as the shape changes.

The difference in the Y-Z and the X-Z projections are indicative of the deformation of the

bubbles and it is clear, for example, that the highest surface tension bubble is ellipsoidal near
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FIG. 9: The Sauter Mean Diameter (top) and the equivalent number of bubbles (bottom)

versus time for all four cases.

the end, whereas the lowest surface tension bubbles have projections that are comparable

in both directions, although they are obviously very deformed after the initial coalescence.

The X-Y projection is not included since it is similar to the X-Z projection.

To attempt to understand better the change in scale of the phase distribution, we have

computed the size and number of equivalent bubbles from the volume and surface area for

each case versus time. If we assume that the light fluid consists of n spherical bubbles with

diameter d, then the total volume is V = n(π/6)d3 and the total surface area is A = nπd2.

Given the volume and the surface area we can solve for the diameter and number of the

bubbles: d = 6V/A and n = (π/36)(A/V )2. The bubble diameter is the well known Sauter

Mean Diameter often used in sprays. In Fig. 9 we plot the effective diameter (Sauter Mean

Diameter) and equivalent number of bubbles versus time. For the higher surface tension

cases the number of bubbles decreases, and the equivalent diameter continues to grow,

approaching the values we would expect for one bubble (equal to 1.368, for the spherical

bubble). The number of bubbles in the lower surface tension cases, on the other hand,
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(a) The average velocity of the heavy fluid (b) The void fraction of the light fluid

(c) The Reynolds stresses (d) The area concentration

FIG. 10: The various averaged quantities versus the wall-normal coordinate, for all four

cases after the flow has reached an approximate steady state.

approaches a finite value. For the lowest surface tension this value is significantly higher

than the initial number of bubbles and the diameter is lower, but for the case with the

second lowest value the number and size is comparable to the initial conditions.

In addition to the time evolution of the overall averaged quantities, we have also monitored

the shape of the various profiles averaged over planes parallel to the walls. In Fig. 10 we

examine a few of those at later stages where the evolution is approximately at steady state.

Each profile has been obtained by averaging over 16 times between 85 and 100. The top row

shows the average velocity of the heavy fluid in frame (a) and the void fraction in frame (b).

The average velocity for the highest surface tension case is obviously smallest, and maximum

at the center where the bubble is and the velocities of the two lowest surface tension case are

comparable. Similarly, the void fraction profiles for the high surface tension cases are similar

and peaked in the center but for the lower surface tension cases they are more uniform. The

Reynolds stresses, in frame (c), are zero at the wall, become negative on the left hand side

and then increase across the channel, becoming positive around the middle of the channel

until dropping to zero at the right wall. This is comparable to what we expect in a single

phase flow. The stresses are lowest for the large bubble in the high surface tension cases
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(a) Streamwise two-point correlation function
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(b) Spanwise two-point correlation function
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(c) Streamwise linear path correlation function
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(d) Spanwise linear path correlation function

FIG. 11: Correlation functions for Case 4 in three planes parallel to the walls after the flow

has reached an approximately steady state.

and similar for the two lowest surface tension cases. The second highest surface tension

does, however, show largest variations, possibly due to the strong wake behind the bullet

like shaped bubble (see Fig. 6). The area concentration, in frame (d), is found by assigning

the area of each surface element to the nearest grid points, in the same way that surface

tension and the density gradient is treated in the front tracking code, and integrating over

planes parallel to the walls. We have also differentiated the discontinuous density to get a

δ-function at the interface and found the area by integrating the delta function on the fluid

grid. The results are nearly the same, but the latter approach gives a slightly lower value

since gradients of the density cancel for interfaces close to each other. The average surface

area concentration is lowest for the highest surface tension cases, as expected and highest

for the lowest surface tension case where the bubble size is smallest.

To examine the phase distribution in more detail, we have computed a few statistical cor-

relation functions. Statistical correlation functions are widely used to quantify the structure

of heterogeneous material, as discussed by [41]. The two-point pair-probability function has,

in particular, often been used to characterize disperse flows (see [42], for example) and [34]
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used it to analyze DNS data for bubbly flows, showing that while nearly spherical bubbles

tend to line up horizontally, more deformable bubbles line up vertically. For disperse flows

we usually need only the location of the centroid of each bubble, but here we work with the

full field.

We define an indicator function χ such that χ = 1 in one fluid and χ = 0 in the other

fluid. The two-point correlation function for the fluid where χ = 1 is then defined as

S2(r) =
〈
χ(x)χ(x + r)

〉
, (2)

where the brackets 〈 〉 denote the appropriate average. Obviously χ(x)χ(x + r) = 1 if x and

x + r are both in the fluid with χ = 1, but zero if one or both points are in the fluid where

χ = 0. In the most general case the average is an ensemble average over many realization

but for systems that are homogeneous in one or more direction we can use a spatial average

in the homogeneous directions and a temporal average if the system is at a statistically

steady state. For our channel we focus on the approximately steady state and average over

planes parallel to the walls and over time.

In material modeling the reconstructuring of heterogeneous materials from limited statis-

tical information allows researchers to produce complete samples that then can be subjected

to detailed analysis, such as determining the various macroscopic properties. Low order

probability functions are both easiest to measure and understand, but [43] showed that the

use of the two-point probability function only, generally did not contain enough information

to reconstruct the medium. However, the linear path function L2, defined as the probability

of a line segment of a given length lying entirely within one phase, gave better results, and

using both the two-point probability function and the linear path function gave even better

results.

We have examined both the two-point probability function and the linear path function,

after the flow reaches an approximate steady state (time between 85 and 100) for all four

cases and for both the heavy and the light fluid. The two-point correlation function is

found by averaging over all the grid points in each plane, multiplying the indicator function

at each point by the indication function at grid points a given distance away. The linear

path function is found by averaging over all the grid points in each plane, multiplying the

indicator function there by the indicator function at every point on a straight line between

the point being considered and points a given distance away. The results are computed for
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four planes parallel to the walls, at 16 time intervals, and averaged over the left and right

side of the domain.

Fig. 11 shows the correlation functions for the light fluid for Case 4. The streamwise

two-point correlation function is plotted in frame (a), the spanwise two-point correlation

function in (b), the streamwise linear path correlation function in (c), and the spanwise

linear path correlation function in frame (d). Since the domain is periodic in the streamwise

and spanwise direction, we only plot the functions for half the streamwise and spanwise

size of the domain. For zero distance between the points, r = 0, the point wise value is

simply the probability of a point being in the light fluid, or its volume fraction, and both

the two-point and the linear path correlation functions yield the average volume fraction

at the corresponding distance to the wall, as expected. The correlations then decay as the

correlation length increases. At large distance the two point correlation function approaches

the joint probability of finding two independent points both in the light fluid, or the volume

fraction squared, if the indicator field is uncorrelated at large distances, and we see this for

the two-point correlation function. For the linear path correlation functions we expect it to

always cross the interface between the different fluids for long enough distances and thus

approach zero, as it does. See [41] for a discussion of the general behavior of the various

correlation functions. In the middle of the channel, where the volume fraction is nearly

constant, the correlations for the planes at 0.6 and 0.8 from the wall are nearly identical.

Closest to the wall the spanwise and the streamwise correlations are essentially identical but

in the middle of the channel the spanwise correlations decay slightly more rapidly than the

spanwise ones for both the two-point and linear path correlation. Notice that the distance

where the streamwise correlations become a constant corresponds roughly to the Sauter

Mean Diameter for this case (see Fig. 9).

We have also examined the correlation functions for the other cases, as well as for the

distribution of the heavy fluid. The results show that the correlation functions for the light

fluid for Case 3 is similar to Case 4, but converge more slowly and the spanwise correlations

have barely reached their expected asymptotic values for a distance equal to half the channel

width. For Cases 1 and 2, where the light fluid coalesces into one big bubble, the streamwise

two-point correlation and the linear path functions are identical and converge to zero, as we

expect for fluid contained in one large bubble, and although the spanwise correlations have

decreased, they have not converged for a distance equal to half the channel width. For the
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FIG. 12: Integral scales for the distribution of the light fluid versus the wall-normal

coordinate for Cases 3 and 4. `S1 in the streamwise direction on the left and `S2 in the

spanwise direction on the right.

heavy fluid the two-point correlation function in the streamwise direction for Cases 1 and 2

converges to the expected asymptotic value (volume fraction squared) at a rate that is much

slower than for Cases 3 and 4, but the linear path function converges much more slowly and

has not reached its asymptotic value for a separation distance equal to half the channel for

any of the cases.

To compare the correlation functions in quantitative ways we define two length scales

by the integral of the scaled two-point correlation function and the square root of the first

moment of the scaled two-point correlation function

`S1 =
1

Q(0)

∫ Lx/2

0

Q(r)dr `S2 =

√
1

Q(0)

∫ Lx/2

0

r Q(r)dr (3)

where Q(r) = S2(r) − α2 and α is the local void fraction. In Fig. 12 we plot `S1 (on the

left) and `S2 (on the right) for the streamwise correlation for the light fluid versus the wall-

normal coordinate for Cases 3 and 4. For Cases 1 and 2 the streamwise two-point correlation

function converges to zero, rather than to the square of the void fraction expected for phase

distribution that is uncorrelated at large separation distances. The integral length scales

behave similarly for both cases, increasing slightly with the distance from the wall. The

integral scales for the spanwise distribution show a similar behavior. While similar integral

scales can be defined for the linear path function (taking Q(r) = L2 in Equation (3), those

have only reached zero at the maximum separation for the light fluid for Cases 3 and 4, so
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FIG. 13: Two-point correlation functions for the velocity fluctuations for Case 4.

a similar comparison would be less conclusive.

We have examined the velocity fluctuations in the same way. The conditional correlation

function for the velocity fluctuations, that is the correlation between the fluctuation velocity

at two different points in the same fluid, is given by

Rij =

〈
χ(x)u′i(x)χ(x + r)u′j(x + r)

〉
〈χ(x)u′i(x)u′j(x)〉

, (4)

and is found in planes parallel to the walls, in the same way as the correlation function for

the phase distribution. Here, i, j = 1, 2 or 3, for the streamwise, wall-normal and spanwise

direction, seperately. It is divided by the single point correlation function to obtain a value

of unity for r = 0. In Fig. 13, we plot the correlation function for the velocity fluctuations in

the heavy fluid, for four planes parallel to the wall, for Case 4. The top row shows correlation

for the streamwise velocity fluctuations and the bottom row shows the wall-normal velocity

fluctuations. The correlations in the streamwise direction are shown on the left and in the

spanwise direction on the right. In all cases do the correlations decay to zero, but the
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FIG. 14: Integral scale for the streamwise velocity fluctuations. Streamwise direction on

the left and spanwise direction on the right.

correlation of the streamwise velocity in the streamwise direction decays more slowly than

wall-normal component as well as the correlations for both components in the spanwide

direction. For each frame the decay is nearly the same for all distances to the wall, except

for the spanwise correlation closest to the wall. We have computed various other velocity

fluctuation correlations for other velocity components and the other cases. The results for

Case 3 are similar but for Cases 1 and 2 we see slower decay, particularly for the streamwise

fluctuations.

We can compute integral length scales from the conditional correlation function for the

velocity fluctuations in the same way as we did for the phase distribution, but here we only

examine `R1 defined by

`R1 =

∫ ∞
0

R(r)dr. (5)

A meaningful comparison requires a converged correlation function so in Fig. 14 we examine

only the integral scales for Case 3 and 4, and only for the streamwise fluctuations. The

integral scale is plotted versus the wall-normal coordinate for the streamwise fluctuations

in the frame on the left and for the spanwise direction on the right. The integral scale in

the streamwise direction is larger than in the spanwise direction, but both remain nearly

constant across the channel.

We note that we have only simulated one domain size. For the highest surface tension,

where the final result is one single bubble it is obvious that the results will be different in

longer domains. For the smallest surface tension cases we believe that the fact that the void
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fraction and the velocities are uncorrelated, as figures 11-14 shows, suggests that we would

get similar results in a longer domain.

V. CONCLUSIONS

We have examined the evolution of two fluids of different properties in a turbulent chan-

nel flow where the interface separating the light and the heavy fluid is allowed to undergo

topology changes. The light fluid is initially contained in several distinct bubbles (or light

drops) that then collide and coalesce. Four cases are examined. In two case the surface ten-

sion is relatively large and the bubbles continually merge until all the light fluid is contained

in one large bubble. In the other cases the bubbles coalesce and then break up again.

The focus here has been on quantifying the evolutions and, in particular, characterize

the distribution of the different fluids and interface topology. Finding a way to bring out

the difference in the distribution of bubble sizes as the surface tension changes, however

remains to be done. A visual observation, for example, suggests that the long time bubble

distribution will generally consist of several large and many small bubbles and that the

size difference decreases as surface tension is reduced and increases as surface tension is

increased, with the limits being one large bubble for high surface tension and many bubbles

of the same size for low surface tension.

We note that this study, where we attempt to characterize a complex multiphase flows

undergoing rapid topology changes, is a challenging topic that brings together a number

of fields. The ultimate goal is to be able to develop the insight and the data needed to

improve average two-fluid and LES-like models, but for the characterization of the topology

we need input from studies of random heterogeneous materials ([41], as well as the dynamic

evolution of interfaces undergoing mixing, such as those studied in rheology and turbulent

combustion ([44–46]). Exactly how progress made in these diverse field can be harnessed to

help us understand the evolution is, however, an ongoing study. We note, in particular, that

the goals here are a little different than for studies of heterogeneous solid materials where

low order low order correlation functions can sometimes be found experimentally and several

authors have used those to construct representative materials that can then be used to find

the various material properties. Here we are not attempting to do that, since we already

have a complete description of the flow and the interface, but simply use the correlation
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functions to diagnose the flow and the structure of the phase distribution.

We have focused here on the effect of surface tension, since understanding the evolution

of the topology is likely to affect modeling of the flow. From a practical point of view,

however, it is the change of the flow structure as the void fraction changes that is critical.

We expect to examine that aspect in future studies.
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