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Abstract13

The physalis method for the resolved numerical simulation of particulate flows, recently ex-14

tended to include particles-fluid heat transfer, is applied to the turbulent flow past a planar particle15

array perpendicular to the incoming mean flow. The array consists of nine equal spheres. Peri-16

odicity boundary conditions are imposed on the boundaries of the computational domain parallel17

to the mean flow. The Reynolds number based on the particle diameter and mean incident flow18

is 120, the Taylor-scale Reynolds number is close to 30 and the ratio of particle radius to the19

Kolmogorov length is about 10. A detailed characterization of the flow and heat transfer is given20

including probability distribution functions of temperature and streamwise velocity, contour maps21

of the temperature fluctuations, diagonal Reynolds stresses, turbulent heat flux and the various22

contributions to the energy budget. Turbulence moderately increases the heat transfer and consid-23

erably shortens the thermal wake of the particles. Temperature and streamwise velocity develop24

very differently downstream of the spheres in spite of the fact that the Prandtl number equals 1,25

because of the blockage by the spheres which has no counterpart for the temperature.26
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I. INTRODUCTION27

Much of what is currently theoretically known about the thermo-fluid-mechanics of the28

interaction of particles and a fluid is based on the point-particle model [see e.g. 1–3] or the29

discrete-element model [see e.g. 4, 5]. Both approaches suffer from the use of parametrized30

expressions for the hydrodynamic force and heat transfer coefficient in place of their evalu-31

ation on the basis of first principles. A few resolved simulations of the flow past individual32

particles exist, both in the laminar [e.g. 6–9] and turbulent [e.g. 10–12] regimes, but these33

studies do not provide information on the effects of particle-particle interactions.34

It is only recently that our understanding of these phenomena has begun to improve35

thanks to the development of various numerical methods capable of providing resolved sim-36

ulations of flows with many particles [see e.g. 13–19], which have begun to be extended to37

simulate thermal, in addition to mechanical, interactions [see e.g. 20–31].38

These studies have begun to open up this field, which is of obvious importance for many39

applications such as fluidized beds, cooling towers, cloud formation and many others. Much40

work still remains to be done. For example, while [11] studied a single particle in a turbu-41

lent flow, and others studied particle interactions in pseudo-turbulence [27, 29, 31] and in42

fluidized-bed-like systems [28], no studies exist of particle interactions in a truly turbulent43

flow. The present study is a first contribution in this direction. By means of the recent44

extension of the physalis method to heat transfer problems [30], we carry out resolved45

simulations of a planar array of fixed particles immersed in a decaying turbulent flow. Our46

focus is providing detailed information on the flow and heat transfer processes rather than47

developing correlations for engineering use. A simple analytic point-particle model based on48

the Oseen equations sheds light on some of the results.49

II. MATHEMATICAL MODEL AND NUMERICAL METHOD50

We consider spherical particles in a non-isothermal, incompressible, constant properties51

Newtonian fluid. The Navier-Stokes equations are52

∇∇∇ · u = 0 , (1)

53

∂u

∂t
+ u · ∇∇∇u = −1

ρ
∇∇∇p+ ν∇2u . (2)
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Here u and p are the velocity, pressure and temperature fields, respectively; the fluid density54

is denoted by ρ and the kinematic viscosity by ν. The energy equation is55

∂T

∂t
+ u · ∇∇∇T = D∇2T , (3)

with D = k/(ρcp) the thermal diffusivity of the fluid expressed in terms of the thermal56

conductivity k and specific heat cp; viscous heating is neglected on account of the smallness57

of this effect.58

For simplicity, the particle temperature will be taken as Tp, fixed and the same for all59

the particles. The heat flow rate into the particles Q is given by60

Q = k

∮

sp

∇∇∇T · npdsp , (4)

where sp = 4πa2, with a the particle radius, is the particle surface and np is the outwardly-61

directed unit normal. The instantaneous Nusselt number for each particle is defined by62

Nu =
2aQ/sp

k(Ti − Tp)
=

1

2πa(Ti − Tp)

∮

sp

∇∇∇T · npdsp , (5)

in which Ti is the temperature of the fluid far upstream of the particles.63

The problem is solved numerically by the physalis method, which is described in detail64

in several papers [see e.g. 18, 32] for what concerns the particles-fluid momentum interaction65

and, more recently, in [30] for what concerns the particles-fluid thermal interaction. The66

reader is referred to these papers for details. The general idea is to use analytic solutions67

for the velocity and temperature fields in the immediate neighborhood of each particle as68

“bridges” between the particle surface and the underlying fixed Cartesian grid. These an-69

alytic solutions, which exist locally near each particle because of the no-slip condition, are70

expressed in terms of series with unknown coefficients which are determined iteratively by71

matching the local solution to a discretized finite-difference solution of (1) to (3). The coef-72

ficients of the expansions embody directly, with no need for further calculations, important73

information on the particles-fluid interaction such as drag and lift forces, couple and heat74

transfer rate (as well as higher-order information such as stresslet and couplet). The no-slip75

condition is satisfied to analytic accuracy on the exact spherical surface of the particles76

whatever the order of truncation of the series. Another useful feature of the method is the77

exponential decrease of the error as the number of terms retained in the series is increased,78

which is quite unlike the algebraic error decrease of other methods. This feature permits to79

achieve excellent accuracy with relatively coarse discretizations.80
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III. DESCRIPTION OF THE SIMULATIONS81

We simulate the decaying turbulent flow past an array of nine equal spherical particles82

arranged in a regular square array of side d = 5a with centers on the plane z = 0 perpen-83

dicular to the mean velocity U of the incident flow. The particle Reynolds number based on84

the mean streamwise velocity U is Rep = 2aU/ν = 120 and the turbulence Taylor Reynolds85

number at the particle plane is Reλ × 30.2. The Kolmogorov length scale is η ≃ a/10 and86

the Prandtl number Pr = 1.87

The computational domain is a parallelepiped with a square cross section with sides of88

length 15a in the cross-stream direction and a length of 24a in the flow direction. The89

particle array is centered on the parallelepiped cross section, with the outermost particles90

at a distance d/2 from the surfaces of the computational domain parallel to the flow. Thus,91

as far as the geometry is concerned, the situation considered is equivalent to the infinite92

repetition of a fundamental unit consisting of a parallelepiped with a square cross section93

of size d× d perpendicular to the mean flow and having a single particle on its axis. Since94

the flow is unsteady and turbulent, this periodicity holds only in a time-average sense but95

not instantaneously. On the sides of the computational domain parallel to the mean flow96

we impose periodicity conditions, which enforce instantaneous periodicity across these sur-97

faces. At the exit of the computational domain the normal derivative of the normal velocity98

vanishes and the in-plane derivatives of the tangential velocity components also vanish.99

Isotropic, homogeneous turbulence with Reλ = 43 is generated in an auxiliary cubic100

domain with sides of length 15a using the linear forcing scheme of [33] [see also 34, 35].101

This turbulent field, augmented by a constant velocity U along the z direction, is then102

imposed at the inlet of the primary domain containing the particles, in the manner described103

in [36] and [37]. The eddy turn-over time is 3.5 times shorter than the convection time over104

the length of the computational domain, which ensures the absence of artificial periodicity105

as discussed in [36]. We checked that the features of the turbulence, and in particular the106

intensity and integral length scales, matched the results reported in [34]. The characteristics107

of the incident flow at the plane occupied by the particles are summarized in Table I.108

The particle centers are at a distance of 4.5a from the inlet face of the domain, which109

is sufficient to avoid interference between the particles and the inlet boundary condition.110

The incident flow is at the reference temperature Ti while all the particles are kept at a111
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Reλ a/η τEν/a
2 λg/a ℓ/a u′/U

30.2 10.4 0.114 1.07 2.18 45%

TABLE I. Characteristics of the incident turbulence at the particles plane; Reλ is the Taylor

Reynolds number, η is the Kolmogorov length, a the particle radius, τE the eddy turn-over time,

ℓ the integral length scale and u′ the root-mean square turbulent velocity fluctuation.

fixed temperature Tp < Ti. In order to calculate reasonably converged average values, we112

performed simulations corresponding to 10 different realizations of the incident turbulent113

flow, each one lasting 45 eddy turn-over times τE . Averages were collected excluding an114

initial period of duration 10τE. For each realization, we performed two different simulations,115

with and without the particles in place. The latter simulations were used to characterize the116

flow incident on the particles. Another simulation of the laminar flow at the same particle117

Reynolds number was also run.118

In the numerical implementation of the physalis method we used 15 cells per radius119

to guarantee an adequate description of the interaction of the particles with the intense120

turbulent gusts by which it is buffeted. The Lamb series on which the method is based [see121

e.g. 18] was truncated at level 2 for the momentum and 4 for the temperature. The total122

number of cells was 180×180×288 and the Courant number was 0.5.123

In view of the periodicity conditions on the lateral surfaces, upon integrating the mo-124

mentum equation (2) over the entire computational domain, using the divergence theorem125

and averaging over time we find126

A(p−∞ − p∞) =

Np
∑

j=1

f j , (6)

in which A = (3d) × (3d) is the cross-stream area of the computational domain, Np = 9127

the number of particles and fj is the component of the instantaneous hydrodynamic force128

on the j-th particle in the mean flow direction. If 〈f〉 is the mean force per particle, this129

relation gives130

(p−∞ − p∞)d2 = 〈f〉 , (7)

where d2 is the area of the cross-stream section associated with each particle.131
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A similar procedure applied to the energy equation (3) gives132

ρcpA(Tux

∣

∣

∞
− UTi) = −

Np
∑

j=1

Qj , (8)

where Tux

∣

∣

∞
denotes the average value of Tux far downstream of the particle plane. In133

terms of the average heat transferred by each particle, this is134

ρcpd
2(Tux − UTi) = −〈Q〉 . (9)

If the downstream boundary is taken far enough, we may expect that Tux ≃ UT∞. With135

this approximation and (5) this relation gives136

Ti − T∞

Ti − Tp
≃ 4πa2

d2
Nu

PrRep
, (10)

in which Nu is interpreted as the Nusselt number averaged over time and all the particles.137

With the present result Nu ≃ 9.72 (see section V below) the fraction in the right-hand side138

is approximately equal to 0.0407.139

IV. SIMPLIFIED POINT-PARTICLE MODEL140

Before presenting the results of the simulation, it is useful to briefly discuss the predictions141

of a simple point-particle model, which is helpful to interpret some features of the numerical142

results.143

We consider an infinite planar regular square array of point particles, each one separated144

by a distance d from its closest neighbors, located at z = 0, perpendicular to an incident145

laminar flow with constant velocity U . In view of symmetry, it is sufficient to study the146

problem in a domain (−1
2
d < x, y < 1

2
d, −∞ < z < ∞) with a single particle located at147

x = y = z = 0. We solve the problem in the low-Reynolds-number limit by considering the148

continuity equation (1) and the momentum equation in the Oseen form:149

U
∂û

∂z
= −1

ρ
∇∇∇p+ ν∇2û− f

ρ
kδ(x)δ(y)δ(z) , (11)

where k is a unit vector in the flow direction, f is the force exerted by the fluid on the particle150

and û is the perturbation velocity defined so that the three components of the velocity field151

in the x, y and z directions are given by u = (ûx, ûy, U + ûz), respectively. We consider a152
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similar approximation to the energy equation (3), namely153

U
∂T

∂z
= D∇2T − Q

ρcp
δ(x)δ(y)δ(z) , (12)

with Q the heat absorbed by each particles from the fluid per unit time.154

The solution of the problem can be expressed in the form [see e.g. 38–40]155

û = −∇∇∇φ

U
+ χk− ν

U
∇∇∇χ , (13)

in which the scalar potential φ satisfies the Poisson equation156

∇2φ = −f

ρ
δ(x)δ(y)δ(z) , (14)

and the auxiliary function χ satisfies157

U
∂χ

∂z
= ν∇2χ− f

ρ
δ(x)δ(y)δ(z) . (15)

A remarkable aspect of this set-up is the identity in form of the energy equation (12) and158

the equation for χ.159

The solution of the problem is straightforward and is given in detail in [40]. Here it is160

sufficient to show the results for ûL,z = (∂φ/∂z)/U and χ in the region downstream of the161

particles, z > 0. It is found that162

ûL,z =
f

2ρUd2

(

1 +
∞
∑

n=−∞

∞
∑

k=−∞

exp
[

−λnkz/d+ 2πi(nx+ ky)/d
]

)

(16)

where163

λnk = 2π
√
n2 + k2 , (17)

and164

χ = − f

ρUd2

∞
∑

n=−∞

∞
∑

k=−∞

exp [−µnkz/d+ 2πi(nx+ ky)/d]
√

1 + 4π2(n2+k2)
(Ud/2ν)2

(18)

with165

µnk =

(
√

1 +
4π2(n2 + k2)

(Ud/2ν)2
− 1

)

Ud

2ν
. (19)

The expressions for ûL,z and χ show that decreasing d increases the spatial decay rate of166

velocity, pressure and temperature perturbations. It is easily shown that µnk < λnk for any167

non-negative value of Ud/2ν so that the effects of pressure decay faster than those of vorticity168

diffusion. The character of the velocity perturbation will then be mostly determined by that169
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FIG. 1. Snapshot of the normalized temperature T∗ = (T − Tp)/(Ti − Tp) in the flow studied in

this paper; the isosurfaces correspond to T∗ = 0.8.

of the auxiliary function χ, and so will be that of the temperature perturbation in view of170

the similarity of the χ and temperature equations, (12) and (15) respectively. In view of171

this similarity, one would then expect a marked parallel between the velocity perturbation172

and the temperature field. As will be shown below, this expectation is not borne out by the173

numerical results due to the finite size of the particles.174
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FIG. 2. Comparison between the time-mean normalized temperature distribution on a plane par-

allel to the mean velocity through the centers of three contiguous particles for turbulent flow (left)

and for laminar flow.

V. RESULTS175

Figure 1 gives an impression of the instantaneous normalized temperature176

T∗ =
T − Tp

Ti − Tp

, (20)

as found in the present simulations; the isosurfaces correspond to T∗ = 0.8. The large177

regions of T∗ close to 1 show that the effect of the cooling due to the particles remains178

mostly localized in their wakes except for the turbulent fluctuations.179

The normalized time-mean temperature distribution on a plane through the centers of180

three contiguous particles is shown by the left diagram of figure 2. The right diagram permits181

a comparison with the temperature distribution in the analogous steady laminar flow at the182

same Rep. The great effectiveness of turbulent transport in mixing the fluid in the thermal183

wakes of the particle is evident here.184

Table II compares the present results for the sphere Nusselt number, averaged over time185

and particles, with those predicted by several correlations originally developed for isolated186

spheres in steady laminar flow. Heat transfer is expected to be favored by turbulence and,187

indeed, our results lie above those of the single-sphere laminar correlations. As noted in [11]188

for the case of a single sphere, the laminar-turbulent difference is not large in spite of the189

strong intensity of the turbulence. The small magnitude of the effect is particularly striking190

in view of the large differences between the laminar and turbulent thermal wakes shown in191

9



Correlation Reference Nu

Nu = 2 + 0.6Re
1/2
p Pr1/3 [41] 8.57

Nu = 2 + [0.4Re
1/2
p + 0.06Re

2/3
p ]Pr0.4 [42] 7.84

Nu = 0.922 + [1 + 0.1Re
1/3
p ]Re

1/3
p Pr1/3 [43] 8.29

Equation (21), α = 0.97 [44] 9.41

Equation (21), α = 0.87 [44] 10.1

Present result – 9.72 ± 0.78

TABLE II. Nusselt number predicted by several correlations for steady laminar flow past an isolated

sphere, and by Gunn’s correlation for a sphere in a particle bed, compared with the result of the

present simulations; α is the fluid volume fraction.

10 15 20 25 30 35 40

t/τ
E

7

8

9

10

11

12

N
u

FIG. 3. Examples of the instantaneous Nusselt number vs. time for two different spheres; τE is

the eddy turn-over time.

figure 2. It is evident that most of the heat transfer takes place on the forward portion192

of the sphere surface which is affected by turbulence much less than the wake. A factor193

contributing to the increased heat transfer is the presence of the other spheres. Ref. [44]194

gives a correlation for the mean single-particle Nusselt number for particles in a particle bed195

Nu = (7− 10α+ 5α2)(1 + 0.7Re0.2s Pr1/3) + (1.33− 2.4α + 1.2α2)Re0.7s Pr1/3 , (21)

in which α is the fluid volume fraction and Res = αRep is the Reynolds number based196

on the superficial velocity. A straightforward application of this expression to our situa-197

tion is hampered by the fact that in our case particles are not uniformly distributed in198
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FIG. 4. Average local Nusselt number over the spheres’ surface; θ = 0 and π are the front and rear

stagnation points, respectively. The thick dashed line is for laminar flow; the lightly dashed line is

the pure conduction limit Nu = 2.

the computational domain. An effective particle volume fraction may be expected to lie199

between the ratio of the particle volume to the volume of a cubic box with a side equal to200

the inter-particle spacing, which gives α ≃ 0.97, and the ratio of the cross sectional area201

occupied by the particles to the cross sectional area of the domain, which gives α ≃ 0.87. As202

shown in Table II, the predictions of Gunn’s correlation for these two estimates of α bracket203

our numerical result. Due to the intensity of the turbulence, about 45%, the calculated204

instantaneous Nusselt number fluctuates considerably as shown in the examples of figure 3.205

The local Nusselt number over the particle surface, defined by206

Nuloc =
2a

Ti − Tp
np · ∇∇∇T , (22)

with np the outward unit normal, averaged over time and particles, is shown in figure 4,207

where the dashed line is the result for a sphere in laminar flow at the same Rep. Turbulence208

is seen to increase Nuloc at every position over the sphere surface. Just as the overall Nusselt209

number, this quantity also fluctuates considerably, as can be seen from the examples shown210

in figure 5. There are also minor variations (not shown) depending on the specific meridian211

along which Nuloc is calculated for each sphere.212

A contour plot of the temperature field near the spheres averaged over time and over213
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FIG. 5. Three examples of the instantaneous local Nusselt number. The solid line is the mean

value shown in figure 4 and the lightly dashed line the pure conduction limit Nu = 2.

particles on planes parallel to the mean flow through the particles center is shown in figure 6.214

One notices a weak cooling of the fluid upstream of the particles and a rather short mean215

thermal wake. Although the simulations of turbulent flow past an isolated sphere reported216

in [11] do not include results for our Reynolds number, the results for Rep = 65 and 250217

suggest that the thermal wake in our case is indeed shorter than for an isolated sphere. The218

simple analytical model of the previous section, which implies that decreasing the separation219

between the particles shortens the thermal wake, offers a plausible explanation. The root220

of this behavior lies in the effect of cross-stream conduction: the presence of the other221

particles limits the widening of the wake so that conduction is more effective in bringing the222

temperature in the wake closer to that of the incident flow.223

A similar contour plot for the average streamwise velocity component is shown in figure 7.224

The appearance of this figure is quite different from that for the temperature contour plot in225

the previous figure, which is at variance with the simple Oseen model of section IV. Indeed,226

as noted before, this model suggests that the influence of the pressure field should decay227

faster than that of viscous diffusion so that the velocity distribution should be dominated228

by the latter. For our case of Pr = 1 one would then expect similar results for velocity229

and temperature. The reason for the large difference between these two quantities is the230

blockage of the flow due to the finite size of the particles, an effect not accounted for in the231
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FIG. 6. Contour plot of the normalized average temperature field (T − Tp)/(Ti − Tp) on a plane

parallel to the flow direction through the particle center.

FIG. 7. Contour plot of the normalized average streamwise velocity field uz/U on a plane parallel

to the flow direction through the particle center.

Oseen model. The flow velocity increases considerably in the gap between adjacent spheres,232

with the consequence that the momentum wake extends considerably farther downstream233

than the thermal wake.234

The upper diagram in figure 8 shows the decay of the temperature deficit (Ti−T )/(Ti−Tp),235

averaged over time and over particles, along lines parallel to the flow direction through the236

particles center; the dashed line is for laminar flow. This result is very similar to that shown237

in figure 14 of [11] and matches qualitatively the exponential decrease of the temperature238

in a bed of fixed particles reported in Refs. [28] and [29]. Interestingly, an exponential239

decay is also predicted by the point-particle model of section IV, where it is clearly the240

result of cross-stream conduction. Thus, at a crude qualitative level, one may interpret the241
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turbulent exponential decay as the consequence of an increased turbulent diffusivity. The242

mean asymptotic value to which the temperature perturbation decays is found to be 0.0413,243

gratifyingly close to the estimate 0.0407 given earlier in (10). The solid line in the lower244

diagram compares the analogous quantity for the streamwise velocity, (U − uz)/U , with the245

laminar result shown by the dashed line. The small local maxima near the particle are due to246

recirculation in the near-wake. For the turbulent case this line crosses the level (U−uz)/U =247

1 around z/a ≃ 1.5, which gives an estimate if the extent of the recirculation region behind248

the sphere. The recirculation region for the laminar case extends further, to about z/a = 3.249

The effectiveness of the turbulent mixing process is again apparent from these results.250

The probability density function (PDF) of the temperature along a line through the251

spheres centers parallel to mean flow is shown in figure 9 at different distances downstream252

of the spheres. Since in the present simulation the spheres are cold, the temperature at the253

peak of the PDF’s increases with downstream distance. At intermediate distances the PDF254

broadens reflecting the larger velocity fluctuations unimpeded by the effect of the no-slip255

condition, but after a few diameters the PDF becomes very narrow and centered about the256

mean fluid temperature estimated earlier in (10). The recirculating flow behind the particle,257

which ends at about z/a = 1.5, does not seem to have much of an effect on these PDFs.258

The analogous PDF for the normalized streamwise velocity uz/U , figure 10, shows an op-259

posite trend. Very near the sphere the velocity is slightly negative and narrowly distributed260

close to zero, and it gradually recovers a mean value close to that of the incident flow down-261

stream. Since, for the velocity, there is no effect analogous to the permanent cooling of the262

fluid caused by the spheres, the mean velocity far downstream must equal the mean of the263

incident velocity. There is a significant difference between the PDFs for z/a less than 1.5,264

which are in the recirculating region of the wake, and those for z/a > 1.5, which are much265

broader.266

Contour plots of the root-mean-square (RMS) temperature fluctuations are shown in267

figure 11. The quantity plotted here is normalized and defined by268

RMS(T∗) =

√

(T∗ − T ∗)2 , (23)

with T∗ = (T − Tp)/(Ti − Tp). Very near the sphere, velocity and velocity fluctuations269

are small and therefore so are the temperature fluctuations. Far downstream the cooling270

effect of the sphere is small and therefore, again, so are the temperature fluctuations. The271
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FIG. 8. Average normalized temperature deficit (Ti − T )/(Ti − Tp) (upper diagram) and velocity

deficit (U − uz)/U , vs. distance along a line through the particle center parallel to the mean flow;

z/a = 1 is the rear stagnation point of the particle.

fluctuations are most intense in the high-velocity region close to the sphere downstream of272

the separation point. A small region of relatively high fluctuations (not shown) is also found273

just upstream of the sphere where the region around the stagnation point is subject to the274

impingement of incoming eddies.275

More detailed information on the decay of the RMS temperature fluctuations, defined as276

in (23), and normalized velocity components, RMS(u′
x,y,z)/U , in the particles wake is shown277

in figure 12. The recirculating flow in the near wake contributes a small region of enhanced278
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FIG. 9. Probability density function of the temperature along a line through the sphere center

parallel to mean flow; the sphere center is at z = 0. From left to right the curves are for z/a =

1.1, 1.25, 1.5, 2, 3, 8, 17.5.
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FIG. 10. Probability density function of the streamwise velocity along a line through the sphere

center parallel to mean flow; the sphere center is at z = 0. From left to right the curves are for

z/a = 1.1, 1.25, 1.5, 2, 3, 8, 17.5.
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FIG. 11. Contour plots of the root-mean-square normalized temperature fluctuations defined in

(23).

temperature fluctuations near the particle evidenced by the small peak between z/a = 1279

and 2. The two thin lines in the lower diagram show the RMS fluctuations of the velocity280

components in the cross-stream directions, u′
x/U and u′

y/U . Their near identity gives an281

idea of the degree of convergence of the averaging used to present our results. The thick282

line shows the RMS of the streamwise component u′
z/U . The three results converge a few283

diameters downstream of the sphere, but significant differences are visible further upstream284

close to the recirculating region of the wake strongly buffeted by the incident turbulence.285

A quantity related to fluctuations is the temperature variance σT = T ′2/(Ti − Tp)
2. The286

distribution of this quantity in the cross-stream direction downstream of the particles is287

shown in figure 13. The maxima are located in the intensely fluctuating region already288

shown in figure 9. The decay of these features with distance is however very rapid as could289

be expected, for example, already on the basis of the left diagram of figure 2.290

The analogous quantities for the velocity are the normalized diagonal components291

u′
xu

′
x/U

2 and u′
zu

′
z/U

2 of the Reynolds stresses. These quantities, averaged over time292

and particles, are shown in figure 14 at different distances downstream of the spheres. Both293

components are symmetric about the line through the particle center. The cross stream294

component u′
xu

′
x/U

2 is monotonic on both sides of the symmetry line and shows the ex-295

pected broadening and shallowing of the wake with distance. The component along the296

mean flow, u′
zu

′
z/U

2, on the other hand, exhibits characteristic maxima near the edges of297

the wake as reported in earlier studies [see e.g. 36]. These structures are located outside the298

recirculating region of the wake, but in the same range of z/a. This feature is likely rooted299
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FIG. 12. Dependence of the root-mean-square temperature (upper diagram) and velocity fluctua-

tions vs. distance along a line through the particle center parallel to the mean flow; z/a = 1 is the

rear stagnation point of the particle. In the lower diagram the upper two lines show the fluctuations

of the two cross-stream velocity components; the thick line is for the streamwise velocity.

in the stretching and tilting of the streamlines imposed by the geometry of the sphere.300

The normalized turbulent heat transport in the cross-stream directions, u′
x,yT

′/U(Ti−Tp),301

is shown as a function of distance x from the sphere axis at different downstream distances in302

figure 15. The symmetry about the mid-plane x = 0 again testifies to the good convergence303

of the averaging. Comparison with figures 9, 13 and 14 shows that the maxima/minima are304

mostly due to the temperature, rather than the velocity, fluctuations. In the case of the z305
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FIG. 13. Normalized temperature variance σT = T ′2/(Ti − Tp)
2 in the cross-stream direction at

different downstream distances from the sphere. In descending order of the maxima, the lines are

for z/a = 1.25, 1.5, 2, 3 and 5; the particle center is on the plane x = 0.

component, u′
zT

′/U(Ti − Tp), shown in figure 16, the u′
z velocity fluctuations combine with306

the temperature fluctuations to give somewhat stronger maxima.307

The temperature variance T ′2 satisfies the equation [see e.g. 45]308

d1
2
T ′2

dt
= −∇∇∇ · ΦT + PT − ǫT , (24)

in which the left-hand side is the convective derivative of the variance,309

ΦT =
1

2
T ′2u′ − 1

2
D∇∇∇T ′2 , (25)

is the turbulent transport,310

PT = −T ′u′ · ∇∇∇T , (26)

is the production and311

ǫT = D∇∇∇T ′ · ∇∇∇T ′ , (27)

is the dissipation. Cross-stream graphs of these three terms are shown in the two panels312

of figure 17 at z/a = 1.2 and 1.5. The production (red line) has two relatively intense313

regions, one in the recirculating part of the wake and one just outside it, separated by a314

minimum located close to the streamline enclosing the mean recirculation. Across this line315

the turbulent transport (black line) changes sign.316
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FIG. 14. Normalized diagonal turbulent Reynolds stress u′xu
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2 (upper diagram) and u′zu
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z/U

2

in the cross-stream planes at downstream distances from the sphere z/a = 1.25, 1.5, 2, 3 and 5;

the particle center is on the plane x = 0.

A final point of interest concerns the time scales for mechanical and thermal energy317

dissipation defined by318

τm =
k

ǫu
, τT =

1
2
T ′2

D∇∇∇T ′ · ∇∇∇T ′
=

1
2
T ′2

ǫT
. (28)

These two quantities, averaged over cross-stream planes, are shown as functions of the319

downstream distance in figure 18. The upper pair of lines shows τm with (solid) and without320

particles. The particles increase the energy dissipation ǫu and, therefore, somewhat decrease321

τm. The lowest line is the thermal time scale, which is seen to be significantly shorter than322

the mechanical time scale. The reason is that temperature fluctuations are confined to the323

particle wakes, which occupy only a relatively small fraction of the cross-stream planes, as324

graphically demonstrated by figure 1.325
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distance from the sphere axis at downstream locations z/a = 1.2, 1.5, 2 and 3; the particle center

is on the plane x = 0.

VI. SUMMARY AND CONCLUSIONS326

We have presented the results of the resolved simulations of turbulent flow and heat327

transfer past a regular array of 9 spheres arranged in a plane perpendicular to the mean328

flow. The simulations reveal a wealth of information about the character of the flow and the329

effectiveness of turbulence in disrupting the wakes of the spheres. This effect is graphically330

demonstrated in figure 2 which compares the thermal wakes of the spheres with and without331

turbulence. The upper panel of figure 8 conveys the same message for the temperature field332

and the lower panel shows that a similar process affects the velocity field. Both the thermal333

and the momentum wakes are violently disrupted and shortened by the turbulent nature of334

the incident flow.335

As reported earlier [11], the mean and local particle Nusselt numbers are found to be336

only moderately increased with respect to the laminar case in spite of the very intense337

turbulence. The temperature fluctuations are strongest near the spheres downstream of the338

separation line (figure 7). In this region the no-slip condition does not dampen the flow339

appreciably and the streamline geometry imposed by the spheres’ boundary stretches and340

tilts the incident turbulence thereby intensifying it. As a consequence, the turbulent heat341
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FIG. 16. Dependence of the average z-components of the turbulent heat flux on distance from the

sphere axis at downstream locations z/a = 1.2, 1.5, 2 and 3; the particle center is on the plane x

= 0.

flux is particularly intense, although it is rapidly damped by the turbulence-induced mixing342

in the wake (figures 15 and 16). The enhancement of the turbulent heat flux is particularly343

strong in the flow direction (figure 16). As expected, the production term in the equation344

for the variance of the temperature fluctuations is largest in the regions of high temperature345

fluctuations and turbulent heat flux.346

We have found a striking difference between the behavior of the temperature and stream-347

wise velocity in spite of the fact that the Prandtl number considered is unity. This effect348

is due to the blockage of the flow caused by the spheres which has a strong effect on the349

velocity field but does not have a counterpart for the temperature field. The fact that, in the350

simple analysis of section IV in which the particles are treated as points in a uniform Oseen351

flow, velocity and temperature are indeed similar supports this explanation. For this reason,352

many of the considerations developed for the behavior of passive scalars in turbulence may353

not be applicable to flows of this type.354

The particle arrangement studied here exhibits geometric periodicity in the plane per-355

pendicular to the incident flow. Due to the computational burden, we were able to carry out356

simulations only for a single nearest-neighbor center-to-center distance equal to five particle357

radii. Some insight into how this distance affects the results is provided by the point-particle358
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FIG. 17. The three terms in the energy budget equation (24) as functions of the cross-stream

coordinate at z/a = 1.2 (upper diagram) and 1.5.

analysis of section IV, according to which decreasing the center-to-center distance increases359

the spatial decay rate of the temperature perturbations due to the increasing effectiveness of360

cross-stream conduction. To the extent that one may approximate the effect of turbulence361

by a crude eddy transport model, the same qualitative conclusion may be expected to hold.362

The simple model also predicts a similar faster decay of velocity and pressure perturbations,363

but this prediction may be unreliable as it does not account for the blockage caused by the364

finite size of the particles.365

Gunn [44] has proposed the correlation (21) for the mean single-particle Nusselt number366
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downstream distance; the dashed line is for turbulent flow without the particles.

in a particle bed. Application of this relation is made somewhat uncertain by the lack of an367

unambiguous definition of the superficial velocity with the present geometry. Nevertheless,368

as shown in section V and Table II, reasonable estimates of this quantity produce results that369

bracket the numerical ones. A simpler approach might rely on a single-particle correlation370

with a Reynolds number based on the superficial velocity. Here we find a similar ambiguity.371

With a superficial velocity based on the maximum area blockage, Rep = 120/0.87 ≃ 138372

rather thanRep = 120, the Ranz-Marshall correlation [41], for example, gives for the Nusselt373

number the value 9.05, while the value based on Rep = 120 is 8.57. Our calculated result is374

9.72 ± 0.78 in reasonable agreement when allowance is made for the modest increase due to375

the incident turbulence (cf. figure 4).376
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