
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Micromechanics of intruder motion in wet granular medium
Rausan Jewel, Andreea Panaitescu, and Arshad Kudrolli

Phys. Rev. Fluids 3, 084303 — Published 14 August 2018
DOI: 10.1103/PhysRevFluids.3.084303

http://dx.doi.org/10.1103/PhysRevFluids.3.084303


Micromechanics of intruder motion in wet granular medium

Rausan Jewel, Andreea Panaitescu, and Arshad Kudrolli∗

Department of Physics, Clark University, Worcester, MA 01610

(Dated: July 21, 2018)

Abstract

We investigate the effective friction encountered by an intruder moving through a sedimented

medium which consists of transparent granular hydrogels immersed in water, and the resulting

motion of the medium. We show that the effective friction µe on a spherical intruder is captured

by the inertial number I given by the ratio of the time scale over which the intruder moves and

the inertial time scale of the granular medium set by the overburden pressure. Further, µe is

described by the function µe(I) = µs + αIβ, where µs is the static friction, and α and β are

material dependent constants which are independent of intruder depth and size. By measuring

the mean flow of the granular component around the intruder, we find significant slip between

the intruder and the granular medium. The motion of the medium is strongly confined near the

intruder compared with a viscous Newtonian fluid and is of the order of the intruder size. The

return flow of the medium occurs closer to the intruder as its depth is increased. Further, we study

the reversible and irreversible displacement of the medium by not only following the medium as

the intruder moves down but also while returning the intruder back up to its original depth. We

find that the flow remains largely reversible in the quasi-static regime, as well as when µe increases

rapidly over the range of I probed.
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I. INTRODUCTION

The motion of objects through wet granular materials consisting of athermal solids sed-

imented in a fluid medium is encountered in a range of chemical and food processing in-

dustries, besides the muddy bottoms of ponds and rivers [1, 2]. In the quasi-static limit,

the drag experienced by objects of various shapes, and their interactions, have been inves-

tigated in granular media to study fundamental granular physics and biolocomotion [3–8].

Further, drag experienced by an intruder moving in two and three dimensions well above

the quasi-static regime has been also investigated in dry granular materials in gravity to find

appropriate scaling laws [9–14]. However, the presence of the fluid changes the physics of

the system considerably because it introduces drag, lubrication and pore pressure into the

system [15–17]. Viewed from the perspective of fluids, the presence of athermal frictional

grains in the medium makes the physics of the problem also completely different from that

of an intruder moving in a viscous fluid [18].

Intruder dynamics in wet granular medium is doubly challenging because the rheology of

the medium is not well understood, and the flow around the intruder is time-independent,

i.e. unsteady. The intruder causes transient fluidization of the athermal medium which is

otherwise static. The sedimented granular medium considered here are theoretically distinct

from granular suspensions where the grains are also athermal and can come into frictional

contact [19, 20], but where grains have the same density as the fluid and can be considered

to be uniformly distributed unless shear gradients are present. Moreover, the momentum

exchange between the fluid and the granular phase in the medium is also different when

the medium is sheared because of the density difference. Thus, the presence of solids leads

to considerable differences from the motion of a particle sedimenting through a Newtonian

fluid, or for that matter when particulates are present in small concentrations [15].

Recently, it was demonstrated [21] that a sphere dragged through granular hydrogels

immersed in water can be described by an effective friction which scales with inertial number

I [22], and increases non-linearly from a non-zero static value. The form was found to be

similar to that derived from the Herschel and Bulkley model [23], which is used to describe

non-Newtonian fluids and muds [24]. Building on that study, we probe the dynamics of an

intruder settling through granular hydrogels immersed in water as a model of wet granular

medium or mud consisting of soft granular medium immersed in water. This is a much
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simplified system compared to experiments on intruders settling in clay and cornstarch

suspensions which are more difficult to probe experimentally, as they show further complex

material dependence as well [1, 25, 26].

Exploiting the near transparency of the granular hydrogel medium, we visualize the

motion of the intruder as it accelerates, after being released from rest, and extract the

encountered effective friction. To understand the relation between the observed rheology

and the micromechanics of the medium, we visualize the motion of the medium around the

intruder by adding tracer particles. We show that the flow of the medium is strongly confined

around the intruder, and different than that for a viscous fluid. We then describe the effect

of intruder speed and depth on the rearrangement of the medium, and its reversibility as a

function of inertial number.

II. EXPERIMENTAL SYSTEM

Fig. 1(a) shows the system used to investigate the settling dynamics of the spherical

intruder in a container filled with a granular medium sedimented in a fluid. The grains are

composed of hydrated polyacrylamide with diameters dh = 1.5± 0.5 mm, density ρh = 1004

kg m−3, Young’s modulus E ∼ 10 kPa, friction coefficient µh ∼ 10−2 similar to previous

work [21, 27]. The grains sediment to the bottom of the container to a height Hh filled

with distilled water. Water is filled to a height Hw > Hh in all our experiments to prevent

surface tension effects from playing any role in the observed phenomena. Typically, we

use a cylindrical container with Hw = 430 mm and Hh = 380 mm, and horizontal width

L = 180 mm. These dimensions are chosen to be sufficiently large to be unimportant to the

dynamics studied.

The grains are visualized by using a thin illumination sheet generated by a laser and

cylindrical lens combination, and appear to be randomly packed (see Fig. 1(b)). By mea-

suring the volume of water displaced, the volume fraction of the grains in the medium is

found to be 0.6. Both the random packing and volume fraction are consistent with typical

spherical grain packings obtained at high deposition rates [28], and lower than packing frac-

tions found with frictionless spheres [29]. The density of the hydrogel medium ρm and the

density of water ρw is found to be 1001± 1 kg m−3 and 998± 1 kg m−3 respectively at 24oC.
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FIG. 1. (a) Schematic of the experimental system consisting of an intruder descending through

sedimented granular hydrogels immersed in water. The depth z of the intruder is measured from

the top of the sedimented hydrogels denoted by zo to the bottom of the intruder. The height of

the water column Hw and the granular hydrogel medium Hh in the container are also shown. (b)

A transect of the sedimented medium and the intruder illuminated by a thin laser sheet. (c) The

intruder depth z as a function of time t for a range of ξi, intruder density relative to the medium.

The change in their volume due to the overburden pressure

Pp = (ρh − ρw)gz, (1)

where z is the depth measured from the bed surface z0 to the depth zr where, the intruder

comes to rest, can be estimated assuming linear elasticity to be less than 0.01% at the

deepest point z = Hh in the container. We thus assume that the density of the hydrogel

medium

ρm = φρh + (1 − φ) ρw (2)

is essentially constant throughout the system for the purpose of our study.

The intruders used in our studies consist of spherical shells, with diameter di = 27 mm,

40 mm, and 50 mm filled with various amounts of glass beads to vary their density ρi without

changing their size and surface properties. The relative density difference between the

intruder and the hydrogel medium is then given by ξi = ρi/ρm−1, where ρi is the density of
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di (cm) di/dh 10−3 ξi

2.7 18.3 0.6, 1.8, 2.2, 3.8, 5.8, 7.1

4.0 26.7 2.4, 2.9, 3.1, 3.4, 3.6, 3.9

5.0 33.3 1.1, 1.9, 2.02, 2.2, 2.6, 3.1

TABLE I. List of intruder sizes and their density difference relative to the medium used in the

measurements.

the intruder and the values of ξi are listed in Tab. I corresponding to the various intruders.

Because the hydrogels are essentially transparent and have a refractive index close to that

of water, we can visualize the position of the intruder inside the medium using back lighting

and a digital camera. A movie of an intruder as it falls through the medium can be found in

the supplementary documentation [30]. The intruder is located by identifying the centroid

of the dark pixels associated with the intruder to within ±0.5 mm or less than ±0.01di in

the case of di = 5 cm. Then, the depth of the intruder z is recorded from the surface of the

sedimented hydrogel bed down to the bottom of the intruder. We use a well defined protocol

to initialize the medium to obtain consistent results by stirring the granular hydrogel medium

for a minute and allowing them to settle for 20 minutes before performing measurements to

avoid the initial transients.

III. INTRUDER PROBED RHEOLOGY

Fig. 1(c) shows the measured depth z of intruders with various ξi as they descend indi-

vidually through the granular medium after being released from rest at the surface of the

medium at time t = 0 s. The data here is scaled with respect to the medium height Hh

to give a sense of the location of the intruder with respect to the container bottom which

then corresponds to z/Hh = 1. In all cases, the intruder is observed to descend rapidly at

first before slowing down, and then creeping for hours, before finally coming to rest. One

can note that the intruder comes to rest at depth zr well above the container bottom as the

intruder density is increased over the range of ξi shown. (We monitored the intruder also

over days in a few cases and found that the intruder fluctuates in place to within a fraction

of the grain size which we attribute to small variation in the room temperature which can
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FIG. 2. The yield stress τo as a function of overburden pressure Pp for various combinations of

intruder densities and size. The slope corresponds to the effective static friction µs. The error bars

are the same as the symbol size and thus not drawn separately.

cause expansion and contraction to the grains and the container.) The intruder reaches the

bottom of the container at a ξi higher than Tab. I. Because the density of the medium

is essentially constant with depth and ξi > 0, we infer that the intruder is held in place,

because the medium exhibits a yield stress which needs to be exceeded for the intruder to

move.

A. Statics

We obtain the depth at which the intruder comes to rest zr as a function of relative excess

density of the intruder ξi, and then estimate the stress applied by the intruder τo ∼ Fg/Ai,

where Fg is the force due to the non-buoyant weight of the intruder given by Fg = π(ρi −

ρm)gd3i /6, and Ai is the area over which Fg is distributed. Because di � dh, we assume that

A ∼ πd2i /4, and therefore

τo ≈
2

3
(ρi − ρm)gdi. (3)

Further, the overburden pressure Pp due to the weight of the hydrogels at the depth where

the intruder comes to rest is given by Eq. 1.

Fig. 2 shows τo plotted versus Pp corresponding to various intruder density and size.
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We observe that τo grows linearly with Pp, and all the data collapse onto a single line.

Accordingly, one can define a coefficient of static friction µs corresponding to the ratio of

the stress acting on the intruder in the direction of motion and the normal stress in the

perpendicular direction similar to Ref. [21]. At the point where intruder has just come to

rest, we assume that the stress acting on the intruder then just equals the yield stress of the

medium. Because the intruder was moving in the downward direction we assume this stress

is in the vertical direction. Then, in considering the normal stress, we make the assumption

that the overburden pressure Pp due to the weight of the grains above is approximately

isotropic. Thus, we assume that the normal stress acting on the intruder in the horizontal

direction is thus Pp as well. Thus, the slope of the plot shown in Fig. 2 corresponds to the

µs, given by

µs =
τo
Pp

, (4)

similar to the definition proposed in Ref. [21]. However, care should be exercised when

interpreting this definition in terms of internal friction angles of the medium because of the

differences in prefactors associated with the geometry of the intruder. Here, we simply use

this definition to characterize and nondimensionalize the drag experienced by the intruder

with respect to the other force important in the problem. From the fit, we find µs = 1.3±0.02.

Hence, the observed µs are constant within experimental errors due to the residual variation

in the room temperature rather than intruder depth measurement errors.

It is noteworthy that the linear dependence of the yield stress with depth observed in

Fig. 2(a) is consistent with the study of Brzinski III et al. [31] performed with an intruder

penetrating a dry granular bed. There, it was shown that granular materials exert a force

on the intruder which is locally normal to the surface of the object, while the tangential

contributions are much smaller. In addition, normal forces increase with the gravitational

loading pressure of the medium. With these two assumptions, the total force acting on a

spherical intruder immersed in a dry granular medium was found to increase linearly with

the depth of the intruder. Thus, our experiments reveal that in the static limit, the wet

granular medium composed of granular hydrogels sedimented in water behave similar to dry

granular medium with frictional contacts.
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FIG. 3. The ratio of the relative magnitude of the inertial term, and the gravitational terms

becomes steadily small as the intruder slows down. The data corresponds to depth versus time

curve shown for ξi = 3.1 × 10−3 in Fig. 1(c).

B. Dynamics

We next focus on the friction experienced by the intruder during the dynamic settling

phase. Considering the mean forces acting on the intruder, we have

Fd = Fg − Fb −me
d2z

dt2
, (5)

where, Fd is the drag force acting on the intruder, Fg =
ρiπd

3
i g

6
the gravitational force and

Fb =
ρhπd

3
i g

6
is the buoyant force due to the medium displaced, me its effective mass which

depends on the density of the intruder and the medium, and d2z
dt2

is the acceleration of the

intruder.

Fig. 3 shows an example of the ratio of the acceleration term in Eq. 5 divided by (Fg−Fb)

to understand the relative strength. Here, the added mass effect has to be included in

any estimate of the effective mass of the intruder me because ρh ≈ ρw. Thus, me≈(ρi +

ρm/2)π/12d3i , where we have used a form of added mass correction in a Newtonian fluid.

With this assumption, the effective mass can be estimated to be approximately 1.5 times

the mass of the intruder. Except at very early times, when the intruder begins to accelerate

from rest near the medium surface and overburden pressure is small, the relative strength

is relatively very small. Thus, the acceleration term is small as the intruder slowly comes to
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rest. Nonetheless, we include this correction in general in estimating Fd. Now, the drag force

encountered by the moving intruder is proportional to the shear stress, due to the effective

friction acting on a local surface element of the intruder, integrated over its entire surface

area. However, for simplicity, we approximate the effective shear stress as the drag force

divided by the cross section of the intruder. Therefore, we divide Fd by the cross section

area of the intruder Ai, and the overburden pressure as in the static case, to now obtain the

effective friction µe as a function of the velocity vi of the intruder as it descends, through

the medium, i.e.

µe =
Fd/Ai
Pp

, (6)

where, we have made the same assumption as in obtaining the static effective friction given

by Eq. 4 that the stress exerted on the intruder, in the directional normal to its motion, is

approximately given by the overburden pressure Pp.

Fig. 4(a) shows µe probed by the intruder as a function of vi for various intruder sizes

and relative densities listed in Tab. I. We observe from the log-linear form of the plot in

Fig. 4(a) that the data at low velocities approaches a constant value. This is consistent with

the findings in Fig. 2 that µs is observed to be constant, irrespective of the density and the

size of the intruder. At higher speeds, we observe that µe increases in all cases but does not

collapse onto a single curve.

In Ref. [21], it was shown that the drag experienced by an intruder as it moves with a

constant speed vi is given by an effective friction which is only a function of the inertial

number I, where I is given by the time scale over which the intruder moves through its

diameter and the inertial time scale set by the overburden pressure. Assuming that the shear

rate of the medium can be estimated using the velocity of the intruder and its diameter, i.e.

vi/di, it was found that

I =
vi√
Pp/ρh

. (7)

Given that the original form of I [32] was defined using uniform shear conditions and constant

shear rates, this interpretation and generalization to the unsteady flow conditions in the case

of intruder dynamics is not a priori obvious.

We plot the effective friction µe as a function of I in log-linear and linear-linear format in

Fig. 4(b). We observe that the data collapses onto a single curve. Thus, we fit the functional
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FIG. 4. (a) The effective friction µe as a function of intruder speed vi is observed to approach a

constant value at low speeds. Inset: Same plot in linear scale. (b) The effective friction µe as a

function of inertial number I along with Eq. 8. Inset: Same plot in linear scale shows that the data

collapses onto a single curve both at low and high velocities as a function of I. The key is the same

as in (a). (c) µe as a function of inertial number I for di = 5 cm for various depths. µe is observed

to collapse onto the same curve, irrespective of depth. The measurement errors are smaller than

the marker size and not drawn for clarity.
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symbol size.

form found in Ref. [21]

µe(I) = µs + α Iβ , (8)

where, α and β are empirical constants. The value of β in particular can provide insight into

the nature of the medium as probed by the intruder. This is a similar form to the Hershel-

Bulkley model [23] for stress and strain rate scaling since µe is proportional to the stress at a

given depth, and I is proportional to the shear rate. In that model, β is called the consistency

index with β < 1 corresponding to a shear-thinning fluid, and β > 1 corresponding to a shear

thickening fluid. In the case where β = 1, the Hershel-Bulkley model reduces to the Bingham

plastic model of a viscoplastic material, in which the medium behaves like a viscous fluid

above yield with viscosity proportional to α. We observe that the data collapses onto the

curve with the effective friction µe approaching a constant value µs = 1.3±0.02 independent

of the intruder size. Further, the fit to Eq. 8 yields α = 32± 1, and β = 0.84± 0.01 [24]. In

this case, the value of β suggests that the medium is shear-thinning. Thus, the increase of

friction with I is sub-linear, as was also found in the previous experiments with an intruder

dragged with constant speed in similar sized granular medium [21].

It is also noteworthy here that the observed µe(I) collapses onto the form with same α
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and β, irrespective of the depth of the intruder. To show this explicitly, we have plotted µe

versus I obtained at various depths, and thus Pp, in Fig. 4(c). We observe that the data for

all z collapse onto same curve given by α and β obtained to describe Fig. 4(b).

If one starts from the Hershel-Bulkley relation given by τ = τo + kγ̇β [23], where τ is

the shear stress, γ̇ is the strain rate, and k and β are medium dependent constants, then,

dividing by the overburden pressure Pp, and further assuming γ̇ = vi/di, and rearranging in

terms of I using Eq. 7, we have k = αP
1−β/2
p dβi ρ

β/2
h . Thus, given α is found to be independent

of Pp, our measurements appear to imply a particular dependence of k with depth in the

case of the granular hydrogel medium.

In order to check if the observed evolution of the friction coefficient µe is determined by

the viscous properties of the grains in the fluid, we examined a dimensionless viscous number

J in analogy with the one proposed for uniformly sheared neutrally buoyant suspensions [33],

but by assuming a shear rate γ̇ given by the speed of the intruder and its diameter just as

in defining I for our system. Thus,

J =
ηsvi
Pp

, (9)

where, ηs is the viscosity of the fluid, which in the case of our system is assumed to be

8.90 × 10−4 Pa s. We plot µe versus J in log-linear style Fig. 5, and in linear-linear style in

the inset. At low J , the measured µe is observed to converge to a constant value µs = 1.3 as

is also observed in Fig. 2(b). However, the data does not collapse onto a single curve as it

does in case of I as shown in Fig. 4(b) and Fig. 4(c). Thus, inertial effects are found to be

important in these non-buoyant wet granular systems, even though the density of the grains

are well within 1% of the density of the fluid.

Having established the effective friction experienced by the intruder, as a function of

speed and the important time scale, we next investigate the observed dynamics from the

perspective of the rearrangements of the medium as a result of the intruder motion.

IV. INTRUDER DRIVEN MEDIUM FLOW

For the complementary study of the medium dynamics, we found it more convenient to

modify the experimental system somewhat. We use a container with a rectangular crosssec-

tion with height Hw = 32 cm and Hh = 30 cm, and horizontal dimensions 50 cm and 25 cm

to simplify the visualization shown schematically in Fig. 6(a). Further, we also attach a
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FIG. 6. (a) Schematic of the experimental system used to measure the medium rearrangements.

The boxes represent the displacements shown in (b) and velocity field in (c). (b) Tracers in a

vertical plane are observed to follow a systematic trajectory as the intruder is moved from a depth

zA (blue/gray filled circle) to zB (empty circle) and back up to zA (green/gray filled circle) as shown

in the inset. The net displacement of the tracers after the cycle is shown by a (gray/red) arrow

and is observed to decrease with distance from the intruder. (c) The velocity field of the medium

and its curl (vi = 0.01 mm s−1). The arrows indicate the direction of the flow. The magnitude of

the curl is given by the color bar.
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thin rigid rod to the intruder, and use it to push and pull the intruder with a prescribed

speed and through a prescribed depth along the vertical central axis of the container, rather

then allowing the intruder to fall in gravity. This protocol enabled us to obtain data under

well defined conditions more quickly and more flexibly over a wide range of intruder speeds.

Further, it enabled us to examine the reversibility of the flow by measuring the flow when

the intruder is moved back to its original depth.

In the experiments discussed here, we use di = 5 cm and a rod with diameter 5 mm.

Because of the large difference in size, the rod was observed to have negligible impact on

the overall trends discussed. We visualize the motion of the medium by adding neutrally

buoyant opaque tracer particles with diameter 5 mm to the medium. This size was choosen

to be large enough so we could easily follow the trajectory as the tracer moved with the

granular medium, but small enough compared to the gradients in the mean flow. The

velocity measurements are performed by moving the intruder vertically from a prescribed

depth zA down to a prescribed depth zB, before returning it back up to its original position

as shown schematically in Fig. 6(a).

Sample trajectories recorded for tracers which are located at increasing horizontal distance

r/di from the line of motion are shown in Fig. 6(b), corresponding to the red/gray dotted box

shown in Fig. 6(a). Here, the intruder is moved with vi = .01 mm s−1 from a depth zA/di = 2

to zB/di = 4 before being returned to zA after a wait time of 20 minutes. This intruder speed

corresponds here to the quasi-static limit where the effective friction µe appears constant.

Corresponding movies of the motion of the tracers tracked as the intruder is moved down

and back up to its original position at various speeds can be found in the Supplementary

Documentation [30]. The trajectory of the tracers, while not fully periodic is observed to be

quite well defined. In this example, close to the intruder, the tracers move away and then

get drawn up closer to the center as the intruder moves down. Then, during the second half

of the cycle, the tracers are pushed away and then drawn down as the intruder is returned to

its original position. In the representative examples shown, this overall excursion is observed

to decrease with distance of the tracers from the line along which the intruder moves.
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FIG. 7. (a) The vertical component of the medium velocity vz as a function of horizontal distance

along the equatorial plane of the intruder as it moves down with various speed vi (z/di = 3). The

velocity of the medium is significantly lower compared to that of a sphere moving with the same

speed in a viscous fluid (solid line). (b) vz as a function of horizontal distance along the equatorial

plane of the intruder at various depths (vi = 10−3 m/s). Greater variation is observed with respect

to changes in intruder depth compared with intruder velocity. The measurement errors are smaller

than the marker size and not drawn for clarity.

A. Velocity fields

We obtain the mean flow field around the moving intruder at various speeds using tracer

trajectories over a short time interval during which the tracer displacement can be approx-

imated to be linear. Then, according to our cylindrical coordinate system, the velocity

component vz is along the vertical z axis, and the velocity component vr along the horizon-
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tal distance r from the axis of intruder motion is the same in all the radial directions in the

horizontal plane. This is because of the azimuthal symmetry of the flow around the axis of a

spherical intruder moving along a line, as well as because the flow decays rapidly compared

to the rectangular crosssection of the container.

A snapshot of the flow field of the medium around the intruder as it descends is shown in

Fig. 6(c) using velocity normalized to unity for clarity. Here, the velocity field was obtained

by measuring the tracer displacements in a 104 second time interval in which the intruder

moves from zA to zB, and averaging over 10 cycles as the intruder passes through the same

depth z/di = 2.5. To highlight the vorticity of the medium flow, we also superimpose the

curl of the velocity field according to the color map which is also shown in Fig. 6(b). One

observes from the arrows that the medium is pushed forward along with the intruder directly

above and below the intruder, but reverses directions rapidly near the intruder with a vortex-

like flow structure near the equatorial plane of the intruder. If one considers the Reynolds

Number Re = ρfvidi/ν, where ν is the viscosity of water, then Re = 0.5 and laminar flow

with no slip at the surface can be expected. If one considers the effect of the hydrogels is to

increase the effective viscosity [34], then Re would be even lower. Thus, the flow due to the

presence of the granular medium appears to be significantly different compared to that for a

viscous Newtonian fluid. Further, the recirculating region and the qualitative flow structure

also appear to be different than observed in clay suspensions where a negative wake has

been noted [35], and in dry granular medium where cavitation can occur readily behind fast

moving intruders [36].

To quantitatively understand the nature of the medium micromechanics, we plot the

measured velocity component vz along the equatorial plane in Fig. 7(a) and Fig. 7(b) as

a function over various vi and z, respectively. For reference, the calculated velocity for an

intruder moving through a viscous fluid [15]

vz = vi (
d3i

16x3
+

3di
4x

) (10)

is also plotted in Fig. 7(a,b). We observe that the flow of the grains in the medium shows

considerable slip near the intruder surface at r/di = 1/2 in contrast with the viscous fluid

case where vz = vi. The overall form of the medium velocity is similar over a wide range of

vi with a reverse flow occurring at r ∼ 0.75di. The reversal is observed to occur closer to

the intruder and grow stronger as the depth z of the intruder increases. Thus, we find that
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the flow in the case of granular medium immersed in a fluid is strongly confined near the

moving intruder and considerably different than a Newtonian fluid.

Further, comparing the observed velocities measured by varying intruder velocity versus

intruder depth, one observes that vz/vi scales somewhat over 3-orders-of-magnitude in in-

truder speeds, although the scaled speeds are systematically lower in the case of the slower

intruders. But in the case of vz/vi measured at various z, the data does not collapse with

systematic and significant variation with depth. In particular it can be noted that vz/vi

decreases monotonically at small depths, whereas, at larger z, vz/vi decreases rapidly and

becomes negative before decaying to zero over the same distance from the intruder center.

Thus, a counter flow develops faster and closer to the intruder with increasing overburden

pressure. It is noteworthy that the inertial number I, in fact varies over three orders of

magnitude from 4.8 × 10−4 to 4.8 × 10−1, corresponding to the speed variation probed in

Fig. 7(a), and I varies less than factor of two from 4.2× 10−2 to 5.6× 10−2, while the depth

is varied in Fig. 7(b). Thus, we do not find a collapse of the flow field around the intruder

with I as we found in the case of the effective friction in Fig. 2(b).

B. Flow reversibility and plastic deformation

Next, we examine the displacement of the medium as the intruder is moved from zA to

zB, and then also after the intruder is moved back up to its original depth zA to study the

rearrangements of the medium as a result of the fluidization by the intruder.

The displacement ∆zmAB of the tracer particles as the intruder is moved down by zB − zA

is shown in Fig. 8(a) as a function of distance r/di in the horizontal place from the center

of the intruder. The data corresponding to varying vi, and thus I, are shown in Fig. 7 from

the quasi-static regime to the inertia dominated regime. One observes the displacement of

the medium near the intruder is of order of the radius of the intruder over the range of vi

probed. At lower speeds or lower I one observes that the displacement becomes negative

before decaying to zero. But as speed or I is increased, the displacement not only increases

overall but stays positive over greater distances. In fact at the highest I, ∆zmAB appears to

simply decay to zero. These trends are consistent with variations of the flow observed by

increasing depth z in Fig. 7(b), where increasing depth, which results in lower I also leads

to a reversal in the flow.
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FIG. 8. (a) Vertical displacement of the medium normalized by the intruder diameter ∆zmAB/di

for various I when the intruder moves down from zA to zB. (b) The displacements at r/di ≈ 0.5

(indicated by vertical dashed line in (a)) are plotted as a function of I and observed to increase

systematically in magnitude. (c) Vertical displacement of the medium normalized by the intruder

diameter ∆zmAB/di for various I when the intruder moves down from zA to zB and then returns

back up to original depth zA. (d) The displacement near the intruder corresponding to r/di ≈ 0.5

(the vertical dashed line in (c)) is plotted as a function of I and is observed to decrease and change

sign with I. The symbols shown in (a) and (c) also correspond to the velocity key in Fig. 7(a).

The measurement errors are smaller than the marker size and not drawn for clarity.

To highlight the trend with speed vi, we plot the net displacement ∆zmAB of the tracer

particles near the intruder r/di ≈ 0.5 in Fig. 8(b) as a function of I. One observes that the

medium displacement grows systematically with intruder speeds or I as the medium appears

to get more fluidized at higher speeds.

Further information is gained by then examining the net displacements of the medium

when the intruder is moved back up to its original depth zA. Thus, the intruder is first

moved from zA to zB, and then after a 20 minute wait, moved back to its original depth

zA with the same speed. We accordingly plot ∆zmABA versus I in Fig. 8(c) and ∆zmABA at
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r/di ≈ 0.5 in Fig. 8(d). Thus, examining the displacements over the entire cycle, we find

that ∆zABA is small overall, while changing from net positive to negative as I increases. The

measurements reported here are averaged over 10 different runs and the observed fluctuations

are less than the small, but systematic variation, observed here. Thus, while the plastic

displacements change systematically from being positive to negative, the overall magnitude

remains small even though the inertial number is varied over a wide range by changing

the intruder velocity. It is noteworthy that ∆zABA is not zero even at the lowest speeds,

where inertial effects as measured by I are negligible, are consistent with studies of diffusion

in sheared suspensions [37]. There it was found that cyclically sheared suspensions with

solid particles become irreversible for sufficiently large concentrations due to chaotic particle

interactions. Flow reversibility can occur in case of athermal frictionless hard core particles

suspended in a fluid in the limit of zero Reynolds number. However, the hysteresis inherent

in case of contact between frictional non-buoyant grains can lead to irreversibility even at

low speeds because of the sensitivity to initial condition in disordered multi-body systems

as we observe here.

V. CONCLUSIONS

In summary, we have developed experiments to measure the friction encountered by an

intruder moving through a wet granular medium as a function of its speed and material

properties. This system further enables us to visualize the resulting rearrangement of the

surrounding medium using direct optical imaging. When the intruder is released at the

surface of the medium, it is found to drop slowly and come to rest well above the bottom of

the container depending on its size and density. We estimate the drag experienced by the

intruder in terms of an effective friction that can be described by a formula with a non-zero

yield stress component corresponding to the static limit, and a second component which

increases as a power-law with intruder speed corresponding to increasing inertial effects. We

find that the system dependence of the friction can be then collapsed onto a single curve

using the inertial number rather than the viscous number, even though the density of the

grains in the medium is only slightly greater than the fluid.

By visualizing and measuring the displacement of the medium, significant slip is found

near the intruder surface. The flow of the medium is found to be strongly confined close to
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the intruder in comparison to a viscous fluid, and much smaller in magnitude compared to

a viscous fluid. At low speeds, the motion of the medium is found to remain essentially re-

versible, and then remains so even as the inertial number increases and the effective rheology

of the medium changes away from the quasi-static regime. While the effective friction en-

countered by the intruder depends only on the inertial number, the variation of the medium

flow with depth and intruder velocity are not found to be linked via the inertial number,

i.e. the velocity profiles corresponding to the same inertial number differ, when observed

by varying intruder speed or intruder depth. Nonetheless, it can be observed that medium

flow does become increasingly localized, either by decreasing speed, or by increasing depth,

as may be anticipated based on their effect on the inertial number.

Thus, our study provides not only quantitative data on intruder dynamics in sedimented

wet granular medium and empirical formulas on the probed rheology, but also perspective

on the nature of the resulting unsteady flow of the surrounding medium.
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