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Abstract
When a solid body rises from a bath, a liquid column is formed and stretched until pinch-off

occurs at different locations and times. In the present paper, we study the temporal and spatial

evolution of a less viscous liquid column extracted by an accelerating sphere from a bath. At

high acceleration, the observed liquid column has the shape of an up-pointing cone, which implies

that the column near the sphere is stretched so quickly that the liquid cannot keep up with it.

This causes the liquid column to pinch off at the upper location. At low accelerations, a liquid

column pinches off at a lower location near the free surface. The shift in the pinch-off location is

explained by the axial velocity-gradient profile in the liquid column. The numerical results show

that the gradient of the axial velocity near the sphere increases when the solid sphere has a higher

acceleration. As a result, at high accelerations, the axial velocity gradient is responsible for the

necking and pinching off at the upper location of the liquid column. At low sphere accelerations,

the column pinches off at the lower location by the strong Laplace pressure due to the higher

gradient of the interfacial curvature between the column and the bath. Next, the pinch-off time

is observed to decrease as the acceleration increases regardless of the pinch-off location. We use

a linear stability analysis to predict the pinch-off time as the inverse of the growth rate in the

dispersion relation.
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I. INTRODUCTION

The pinch-off dynamics of a liquid column has been extensively studied because of the

interesting underlying mechanics [1–3] and its relevance to many engineering applications [4–

7]. In 1873, Plateau first observed that a flowing water column, e.g. water running from a

tap, became unstable and that the most unstable wavelength was nearly three times of the

initial column diameter [8]. Later, Lord Rayleigh showed that the fastest growing wavelength

could be predicted using a dispersion relation [9] in which the capillary-inertial wave was

considered. Therefore, the pinch-off time (tp) is observed to be near the capillary-inertial

time scale, τc =
√

ρlL3/σ, where ρl is the liquid density, L is the characteristic length

scale (generally the initial diameter of a liquid column), and σ is the surface tension. The

pinch-off time is known to be approximately τc, unless the diameter of a water column is

more than the so-called capillary length [10], lc ≡
√

σ/(ρlg), where g is the gravitational

acceleration. When L > lc, it pinches off earlier than τc because gravity (∼ ρlg) overwhelms

the capillarity (∼ σ). Similarly, when a liquid column is significantly accelerated by a

solid object, the pinch-off time depends on the acceleration time scale τa(=
√

L/a) [11–13].

This time scale was derived by considering the extracted liquid mass ∼ σL/a by capillary

adhesion; then, this water mass was used to replace the inertia scale ∼ ρlL
3 in τc [11].

In addition to the pinch-off time, the spatial evolution of a liquid column has drawn much

attention because of its applications in transferring a liquid volume to a solid surface, which is

called the liquid-bridge extension [4–6]. When the capillarity is the only cause for the pinch-

off with small gravity and inertia effects, the liquid bridge extends symmetrically and then

pinches off in the middle [14]. When a liquid column is held between two solid surfaces with

different wettabilities, the liquid column near the more wettable surface becomes thinner

faster than the other side does because the larger gradient of the interfacial curvature on

the wettable side creates more capillary pumping [15]. When the gravity becomes dominant

over the capillarity, the pinch-off location is moved slightly farther from its middle location

because most of the liquid is drained by gravity, but the location remains near the middle

point [16]. Additionally, a faster extensional speed of the bridge or high viscosity of the liquid

is known to delay the pinch-off behavior with the formation of a longer liquid thread [16, 17].

When only one end of the solid surface moves quickly, a liquid column pinches off near the

fast-moving surface [16].

A solid body that moves from water into air, hereafter referred to as a water-exit body,

also exhibits pinch-off behaviors and plays an important role in natural systems [12, 18, 19]

and industrial applications [4, 6]. Interestingly, when dogs and cats drink water, they can

control the acceleration of their tongues to be in the range of 1 − 4g [12] and 1 − 2g [19],

respectively. The pinch-off dynamics of a water column is more affected by gravity when a

cat drinks than when a dog drinks [12, 19]. From an industrial perspective, understanding

the pinch-off dynamics can give engineers better control over the amount of remnant liquid

that adheres to a solid body that is withdrawn from a liquid [11], e.g., the dip-coating
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FIG. 1. Shapes of a water column: (a) an upward-pointing cone column with upper pinch-off and

(b) a uniform column diameter in the middle with lower pinch-off. Here, a glass sphere of D = 6.35

mm was withdrawn from a water bath with constant acceleration of (a) a = 2g or (b) 0.5g. The

pinch-off time was measured to be (a) 31.4 ms and (b) 43.2 ms. The inset in (a) illustrates the

experimental schematic of ascending a solid sphere with a constant acceleration that is controlled

by the linear stage. zp is the pinch-off location, and Zp is the center position of the sphere from

the free surface at the pinch-off moment.

process [4].

Despite previous studies, the pinch-off location and shape of the water column remain

unclear when a solid body exits water. In the present paper, we study a liquid column

extended by a solid sphere that rises with constant acceleration from a liquid bath. The

pinch-off location depends significantly on the acceleration of the solid sphere when the

axial velocity distribution changes in the liquid column. Numerical data show that the

acceleration of the solid sphere increases the maximum velocity gradient near the sphere,

which contracts the liquid column because of continuity. Moreover, the maximum velocity-

gradient is observed to decrease over time, which further yields a scaling relation for the

pinch-off time scale.
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II. METHODS

A. Experiment

The experiment uses a linear stage (BiSlide MB10-0150/Velmex, Inc.) to withdraw a

solid sphere from a water bath, as illustrated in the inset of Fig. 1(a). A high-speed cam-

era (SC2+/Edgertronic) simultaneously records the images with a frame rate up to 4000

frames per second. In the experiments, we used two liquids: [ρl (kg/m
3), σ (mN/m)]=[998,

73] for water and [762, 22] for ethanol. The surface tension values of water and ethanol

were measured using a surface tensiometer (K11, KRÜSS) based on the Wilhelmy plate

method [20]. The diameter of the glass spheres varied from 2.4 to 15.9 mm. The initial

position of the sphere was at the free surface of the water, and a constant acceleration in

the range of 2.1× 10−2 to 1.5× 102 m/s2 was applied to the sphere. The pinch-off location

(zp) and the center position of the sphere (Zp) at the pinch-off moment were measured from

the free surface. The vertical coordinates of z and Z were positive above the free surface

and negative otherwise.

B. Numerical simulation

To better understand how the acceleration of a sphere affects the pinch-off dynamics,

the liquid flow for different accelerations was numerically calculated. We performed this

numerical simulation using the open-source code called Gerris [21, 22], which has been

widely used in the academic community to effectively simulate interfacial behaviors [23]. In

the simulation, the temporal evolution of the axial velocity distribution in a liquid column

was investigated with different sphere accelerations in the moving frame that followed the

center of the sphere. InGerris, the continuity and Navier-Stokes equations for incompressible

fluids are solved axisymmetrically in cylindrical coordinates using the volume of fluid method

to track the liquid-air interface [21, 24]:

∇ · u = 0, (1a)

ρ
Du

Dt
= −∇p+∇ ·

[

µ(∇u+∇uT )
]

+ σκnδs(c) + ρg−ρa, (1b)

∂c

∂t
+∇ · (cu) = 0, (1c)

ρ = cρl + (1− c)ρa, (1d)

µ = cµl + (1− c)µa, (1e)

where u is the fluid velocity vector, p is the pressure, κ is the interface curvature, n is the

unit normal vector to the interface, and g is the gravitational acceleration vector. Here, c

is the fraction function that is a scalar function of spatial and temporal coordinates [24].
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FIG. 2. (a) Temporal evolution of the water-air interface when a glass sphere of D = 3.2 mm

rises at a = 2g. Experimental images and numerical results from Gerris are compared side-to-side

at different times; t = 0.3, 4.3, 8.8, 13.3 and 18.3 ms. (b) Comparison of pinch-off time (tp) and

normalized pinch-off location (zp/(Zp−0.5D)) between the experiment and simulation results with

a changing minimal mesh size. In the present study, the simulation results are obtained only with

smallest mesh size ≤ 6.3 µm after the data converge.

c is defined to be unity in the liquid and zero in air. Otherwise, 0 < c < 1 at the liquid-

air interface. Then, the fluid density and viscosity of different phases are determined by

Eqs. (1d–e); ρl(=998 kg/m3 for water and 762 kg/m3 for ethanol) and ρa(= 1.2 kg/m3)

are the liquid and air densities, respectively, and µl(= 1.0 × 10−3 kg/m·s for water and

1.1×10−3 kg/m·s for ethanol) and µa(= 1.9×10−5 kg/m·s) are the liquid and air viscosities

respectively. The value of function δs(c) is unity at the interface (0 < c < 1) and zero

elsewhere, so the surface tension force acts only at the liquid-air interface. For the Navier-

Stokes equation (Eq. (1b)), we consider the non-inertial frame by adding the translational

inertia (ρa) [25, 26]. In the moving frame, the origin of the cylindrical coordinates is at

the center of the solid sphere. Initially, the liquid-air interface is flat on the same vertical

line as the center of the sphere. Then, both air and liquid begin to flow down by setting

the fluid velocity that accelerates with a at the top and bottom boundaries. The detailed

code used for running numerical simulations is available in the Supplementary Material [27].

The numerical data calculated in the moving frame are post-processed using an in-house
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Mathematica code to obtain u(t, z) and the interfacial coordinates in the stationary frame

with the vertical origin at the free surface. For the contact line motion, we nominally impose

the no-slip boundary condition on the solid sphere. Nevertheless, the present computation

scheme using the volume of fluid method in Gerris is considered to have an implicit slip

length, even for the no-slip boundary condition [28, 29]. This occurs because the liquid-air

interface is calculated as being advected by Eq. (1c) with a velocity calculated in a mesh

and not on an edge on the solid surface. Therefore, it has the implicit or effective slip length

of approximately half the mesh size.

The temporal evolution of the interfacial shape is compared between experiments and

simulations as shown in Fig. 2(a), which shows consistency. For both experiment and

simulation, a sphere of D = 3.2 mm rises from water with a = 2g. In the study, t is set

to be zero when the bottom of the solid sphere reaches the free surface, so it begins to exit

the liquid. The numerical convergence is checked by looking at the pinch-off time (tp) and

normalized pinch-off location (zp/(Zp − 0.5D)) versus the smallest mesh size, as shown in

Fig. 2(b). The simulation results approach the experimental values (dashed lines) as the

mesh size decreases and converge at the level below the smallest mesh size of 12.7 µm. In

this present paper, the simulation results with the smallest mesh size of 6.3 µm (=0.5×12.7

µm) after the convergence are used as the simulation data. Here, the pinch-off location is

normalized by the distance between the free surface and the bottom of the sphere, so a

value near unity indicates an upper pinch-off. Otherwise, a normalized pinch-off location

that approaches zero indicates a lower pinch-off.

III. RESULT AND DISCUSSION

A. Column evolution with different sphere accelerations

Figure 1(a–b) shows two representative cases of a sphere (D = 6.35 mm) being accelerated

at a = 2g and 0.5g, respectively. The pinch-off location dramatically shifts from upper

(Fig. 1a) to lower (Fig. 1b) locations. The column shape is near an upward-pointing cone at

a high acceleration (Fig. 1(a)) but has a uniform diameter in the middle at a low acceleration

(Fig. 1(b)). The upward-pointing cone shape implies that the water column is stretched,

but the water cannot keep up with the solid sphere. Therefore, the column likely pinches

off near the sphere. A similar up-triangular column was also experimentally [12, 19] and

numerically [16] observed in previous literature.

In contrast, a uniform column is observed when a sphere rises at a low acceleration or

almost constant speeds [10]. The fast-moving sphere stretches the liquid column into a thin

ligament with a small variation in curvature [10]. In this case, a lower pinch-off location is

more likely to occur because of a high curvature gradient, which creates stronger capillary

pumping back to the bath. From this point, the lower location is the most probable place to
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FIG. 3. Shift in the pinch-off location by the acceleration-based Bond number (Boa = ρlaD
2/σ).

The pinch-off location is presented by (a) the relative location in the liquid column, which is

estimated by the normalized pinch-off location zp/(Zp − 0.5D) and (b) the absolute location from

the free surface, which is estimated by zp/D. The data are colored according to the acceleration

of the solid sphere. Circles and triangles indicate experimental and simulation data, respectively.

pinch off because a higher curvature gradient is consistently observed near the free surface

in the present experiments. In addition to the capillary pumping at the bottom, one may

discuss the gravitational drainage for the case of a low acceleration. A previous study on

the liquid bridge stretched by circular solid disks with the same diameter [16] showed that

the liquid bridge pinches off near the middle of the bridge when it is governed by capillarity.

However, when the gravity is dominant over the capillarity, the pinch-off location moves up

slightly but remains near the middle point because some liquid inside the bridge is drained

down by gravity [16]. In the present liquid-exit experiment, this behavior is not observed,

presumably due to the stronger capillary pumping at the bottom with a higher curvature

gradient and the free surface.
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Figure 3(a) shows the normalized pinch-off location versus the acceleration-based Bond

number (Boa = ρlaD
2/σ) [11]. The pinch-off near the middle location (slightly below the

middle location) occurs only when a water column extends quasi-statically as Boa → 0 [18].

As Boa increases, the pinch-off location moves relatively to a lower location in the liquid

column (zp/(Zp − 0.5D) → 0). As previously mentioned, when acceleration a is lower than

g (or a/g < 1), the water column more likely pinches off near the free surface. Figure 3(b)

presents the absolute pinch-off location from the free surface, which shows that the liquid

column pinches off near the free surface (≈ 0.2D) for Boa up to the transition regime

(Boa 6 1). However, the pinch-off location relative to the column height decreases because

the column height at the pinch-off moment (Zp) increases with Boa. When Boa ≫ 1 or the

acceleration is sufficiently high such that a ≫ g, pinch-off occurs in the upper location as

shown in Fig. 3(a). The pinch-off location gradually decreases to approximately zero as Boa

increases when a/g < 1. Similarly, for the upper pinch-off cases, the normalized pinch-off

location increases to unity (near the sphere) as Boa increases. The gray highlighted region

(1 . Boa . 20) indicates a transition regime, where both lower and upper pinch-off’s co-exist

and occur almost simultaneously or within a short time interval of less than one millisecond.

This concurrent pinch-off can be rationalized by the fact that the effects of both capillary

pumping and column-stretching are on the same order of magnitude, as discussed in the

previous literature [11].

B. Temporal evolution of the axial velocity in the liquid column

Figure 4 presents the numerical results of the temporal evolution of the axial velocity

ũz(t̃, z̃) for two different accelerations, 0.5g and 2g, where the numerical data are plotted in

dimensionless form. The length and time scales are non-dimensionalized using the sphere

diameter of D and capillary-inertial timescale of τc(=
√

ρlD3/σ), respectively; then, the

superscript tilde indicates a dimensionless quantity. Then, ũz is non-dimensionalized by D

and τc as ũz = uz/uc, where uc =
√

σ/(ρlD) is the capillary-inertial velocity [30]. The axial

velocity is radially averaged in a liquid column, and the horizontal error bars indicate the

standard deviations at each vertical location (z̃). The radial velocity ũr is observed to be

negligible compared to ũz, except very early in time. For each time step (t̃), the averaged

axial velocity is presented in the range of 0 ≤ z̃ ≤ Z̃(t̃) − 0.5, where Z̃(t̃) − 0.5 is at the

bottom of a sphere. In all simulations in Fig. 4, the solid and fluid conditions are the

same (D = 3.2 mm, ρl = 998 kg/m3, and σ = 0.073 N/m). An interesting observation is

that the velocity gradient ∂ũ/∂z̃ near the sphere increases with the acceleration. Such a

high gradient in the axial velocity escalates the column-necking behavior near the sphere

because the radial velocity is proportional to the gradient in the axial velocity according to

the fluid continuity; ∂r̃(t̃, z̃)/∂t̃ = −0.5r̃∂ũz(t̃, z̃)/∂z̃−ũz∂r̃/∂z̃, where r̃(t̃, z̃) is the column

radius. Then, the narrowing column pumps the water towards the sphere due to the pressure
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FIG. 4. Temporal and spatial evolution of the axial velocity, which is radially averaged in a water

column formed by a rising solid sphere with different accelerations of 0.5g (blue) and 2g (red).

The axial velocity at the highest z̃ equals the instantaneous velocity of an accelerating sphere

Us(t), as denoted in the subplot at t̃ = 0.99. The axial velocity is numerically calculated using

the open-source code named Gerris [21]. For simulations, the initial and boundary conditions are

maintained with D = 3.2 mm, ρl = 998 kg/m3, and σ = 0.073 N/m, except for the acceleration

of the sphere. The shapes of the water-air interface are presented in the insets with blue and red

borders for a = 0.5g and 2g, respectively. The dark green regions indicate the decaying length

defined in section IIIC.

gradient induced by a high curvature gradient.

For the higher acceleration case of a = 2g, the upward suction becomes even faster than

the velocity of the sphere as t̃ surpasses 0.68, which causes the upper pinch-off at higher

accelerations. This suction speed increases significantly as the column becomes narrower

over time. However, at t̃ = 0.56, which is earlier than the time when the upward suction

emerges, a downward suction begins to develop near the free surface.This downward suction

further increases with t̃ (as shown at t̃ = 0.68 and 0.79 in Fig. 4). Although the downward

suction occurs before the upward suction, it is difficult to pinch off a thicker liquid column
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near the free surface earlier than a thinner column neck near the sphere. Moreover, near the

free surface, the liquid is continuously supplied from the upper part of the column as the

liquid flows down. In contrast, the liquid column near the sphere cannot be supplied from a

lower part because the upper sphere continues accelerating. Eventually, the liquid column

is pinched off at the upper location first.

For the case of low acceleration (e.g., a = 0.5g), downward suction near the bath starts

earlier and proceeds faster than column necking near the sphere. The upward suction near

the sphere begins at approximately t̃ = 1.19, but it is rather late to overcome the column

necking that has already developed. The velocity of the downward suction reaches ũz ≈ −2.

It is contrasted with the case of a = 2g, where the downward suction remains approximately

ũz ≈ −1 at t̃ = 0.68 when the upward suction begins to occur. Likewise, at low acceleration,

the upward suction is not so effective that the liquid column pinches off at the upper location;

instead, it pinches off at the lower location, where the downward suction velocity increases

significantly (t̃p = 1.36). It should be noted that the wavy pattern of the axial velocity along

the liquid column near the free surface for a = 0.5g is due to the capillary force, which is

similar to the capillary wave of the liquid jet impinging on a liquid reservoir [31].

In Fig. 4, the data for a = 2g are not presented at t̃ = 1.15 because it pinched off at the

early time of t̃p = 0.89 by the upward suction near the sphere. Here, we conclude that the

high velocity-gradient induced by the high acceleration of a sphere causes the upper pinch-

off when it yields the upward suction near the sphere sufficiently to overcome the downward

velocity near the bath.

C. Evolution of the maximum velocity gradient

Figure 5(a) presents the temporal evolution of the maximum velocity gradient (∂ũz/∂z̃)

near the sphere for high accelerations of 2g, 7g, and 10g on the left and low accelerations

of 0.5g, 0.75g, and 1g on the right. The maximum velocity gradient is calculated as the

maximum gradient of an axial velocity along the column; then, it is non-dimensionalized by

multiplying τc. We find that the maximum velocity gradient decreases over time following

the slope of −1/2 in the log-log scale. The maximum velocity gradient diverges near the

pinch-off moment due to the upward suction. As shown in section IIIB, this divergence

emerges sooner with a higher sphere acceleration. A previous study [32] showed that such

a log-log dependency with an exponent of 1/2 was also observed for the capillary-inertial

decay length (λ̃), where the axial velocity evolved as ∼ t̃1/2 for an impulsively stretching

water-column [32]. In addition, a self-similar variable such as ũ = U(z̃/t̃1/2) is known to

govern the universal pinch-off dynamics very close to the pinch-off moment [3]. A similar

observation on the self-similarity was also discussed for the planar rupture of thin liquid

films [33].

To discuss this result of the decay length in the present study, the λ̃ is estimated to be the
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accelerations of 0.5g, 0.75g, and 1g on the right. The black lines indicate (a) (∂ũz/∂z̃)max =

4.5t̃−1/2 and (b) λ̃ = (1/4.5)t̃1/2.

distance from the z-location of reaching the maximum velocity of ũz to the lower z-location,

where ũz decays by 1. This decay length from the simulations is illustrated as a dark green

region in the liquid column in the insets of Fig. 4. Figure 5(b) shows the temporal evolution

of λ̃ for high acceleration on the left and low acceleration on the right. We observe that λ̃

evolves as λ̃ = (1/4.5)t̃1/2, as found in the above self-similar result. We also remark that

our measured λ̃ is approximately the inverse of the maximum ∂ũz/∂z̃. This trend becomes

clearer as the sphere acceleration increases from 0.5g to 10g presumably because the one-

dimensional approximation holds well for a slender liquid column generated by a sphere

with high acceleration. Although the values of λ̃ are similar for different accelerations, the

ratio of λ̃ to the water column height Z̃ significantly vary, as shown in the insets of Fig. 4.

For low acceleration in the insets with the blue edge, λ̃ covers the entirety or most parts of

the water column, which indicates that the axial velocity decreases slowly along almost the

entire column. However, for high accelerations, λ̃ fills in only a small portion of the upper

part in a water column as presented in the insets with the red edge; therefore only the nearby

water can follow the moving sphere in contrast to the case of low acceleration. Accordingly,

a water volume in the upper part of the column decreases faster for higher acceleration,

which causes the column-necking and further upward suction, as discussed in Section IIIB.

Thus, it is anticipated that the upper pinch-off occurs when the decay length is much smaller

than the column height; λ̃ ≪ Z̃. Using the predicted pinch-off time that will be derived
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in the next section (t̃p =
√

8π/9Bo−1/2
a ), the decay length at the moment of pinch-off is

λ̃ = (1/3)(8π/9)1/4Bo−1/4
a . For cases of high acceleration (Boa > 1), the maximum decay

length is (1/3)(8π/9)1/4 ≃ 0.43, which implies that no more than one half of the diameter is

a characteristic distance, where a liquid column is affected by the acceleration and follows

the moving solid. At pinch-off, the column height is always taller than the decay length.

Therefore, we anticipate that the pinch-off occurs near the moving sphere.

D. Pinch-off time

In this section, we predict the pinch-off time using a linear analysis, which characterizes

both the temporal and spatial changes in the velocity and radius of a water column. To

simplify the analysis, we assume that the column is axisymmetric over time and that the

viscous effect is negligible. Then, the one-dimensional governing equations of a water column

can be written in dimensional form as [34]

ρl

(

∂uz

∂t
+ uz

∂uz

∂z

)

= −∂p

∂z
− ρlg (2a)

∂r

∂t
= −uz

∂r

∂z
− r

2

∂uz

∂z
, (2b)

where the capillary pressure is approximated as p ≃ σ[1/r − ∂2r/∂z2] and r(z, t) is the

radius of a water column. We assume two normal modes: one for the axial velocity (uz(z, t) =

uz0(1−ǫeωt+ikz)) and the other for the radius of the column (r(z, t) = r0(1−ǫeωt+ikz)). Here,

the first-order perturbation is at frequency ω and wavenumber k, r0 is the initial radius of

the water column, and uz0 = at is the velocity of the sphere. Then, the above equations on

the order of ǫ become a + ω(at) + ik(at)2 = (σ/ρ)r0ik(1/r
2
0 − k2) and ω = −(3/2) ik (at).

Finally, we obtain a dispersion relation

ω2 =
9

2

[

σ

ρlr
3
0

(kr0)
2
(

1− (kr0)
2
)

+ iak

]

. (3)

This dispersion relation describes how the temporal frequency (inverse of the time scale) is

related to the spatial wavenumber (inverse of the length scale). Thus, we anticipate that

the real part of the frequency, ωr, should be related to the inverse of the pinch-off time as

ωr ≃ 2π/tp. On the right-hand side of equation (3), two main terms appear: the first term

depends on the capillarity, and the second one depends on the acceleration.

For cases of high acceleration (Boa > 1), the unsteady inertia from the acceleration of

a sphere is dominant. Experimentally, we observe that the pinch-off occurs right below

a sphere, which suggests that the pinch-off wavenumber of interest is k ≃ 2π/D. Then,

the predicted pinch-off time becomes tp = 2π[(9π/2)(a/D)]−1/2 = (2/3)
√
2π

√

D/a. In non-

dimensional form, t̃p =
√

8π/9Bo−1/2
a . As shown in Fig. 6, the non-dimensionalized pinch-off
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FIG. 6. Dimensionless pinch-off time (t̃p) versus acceleration-based Bond number (= ρlaD
2/σ).

The red line indicates the present theory of t̃p =
√

8π/9Bo
−1/2
a for the high acceleration of a sphere.

times are found to collapse along the predicted pinch-off time from the linear stability (a

red line) when Boa > 1. The circle and square symbols indicate the experimental and

numerical data, respectively. There is also good consistency with the previous data from

similar experiments of pulling a glass rod out of water as presented by black circles in

Fig. 6 [12].

IV. CONCLUSION

The pinch-off locations and time are studied for a liquid column stretched by a solid

sphere, which rises with constant acceleration. We have found that the pinch-off location

is substantially affected by the acceleration of the sphere. Different accelerations change

the profile of the axial velocity in the liquid column. A high velocity gradient near the

sphere creates the upper pinch-off by vertically stretching the nearby liquid column and

consequently forming an upward-pointing cone. This velocity gradient is estimated as the

capillary-inertial decaying length near the sphere based on the numerical results, which is

consistent with the previous literature. In the opposite case of low acceleration, it pinches

off at the lower location due to the downward capillary suction, which is induced by a

Laplace pressure gradient between a high-pressure column and a low-pressure bath. More-

over, a linear stability analysis predicts the pinch-off time to be t̃p =
√

8π/9Bo−1/2
a for high

acceleration, which describes our experimental results quite well.
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