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Asymmetric liquid sheet fragmentation is ubiquitous in nature and potentially shapes critical
phenomenon such as rain-induced propagation of foliar diseases. In this experimental study, we
investigate the formation and fragmentation of a liquid sheet upon impact of a drop close to the
edge of a solid substrate. Both the impact Weber number and the offset, the distance from the
impact point to the edge, are systematically varied. Their influence on the kinematics of the liquid
sheet and the subsequent statistics of droplet ejection are rationalized. Three major asymmetry
scenarios are identified and linked to distinct droplet ejection patterns. Scaling laws are proposed
to rationalize these scenarios based on impact parameters.

I. INTRODUCTION

Around 10% of the world crops are still lost due to plant diseases [1] which costs billions of dollars each year
[2, 3] and increases pressure on communities [1]. The optimization of timing and amount of sprayed chemicals in the
context of smart agriculture requires improved understanding of disease spread in the field [4–7]. Rain was found to
be correlated to the dispersal of foliar diseases such as septoria leaf blotch and fusarium head blight, affecting wheat
and rice, respectively [8–10]. Prior studies mainly focused on dispersal statistics collected at the level of crop fields or
parcels [9, 11–13]. Investigations at the level of leaf and plant remain scarce [11, 14–16]. They are statistical in nature
neither accounting for drop-plant interactions nor for the underlying fragmentation physics. Thus, generalizing results
to various plants and precipitations remains a challenge [7, 17]. Recent studies have shed new insights on raindrop-leaf
interactions [18, 19], identifying the important role of wetting and of sessile drops on leaves. They identified several
dispersal mechanisms as a function of leaf mechanical properties that are both common and efficient at dispersing
pathogens. One of the main dispersal scenarios on semi-rigid leaves, coined crescent-moon (Fig. 1a), consists in the
impact of a raindrop in the vicinity of a sessile (contaminated) drop supported by the infected leaf. The sessile drop is
stretched into an asymmetric liquid sheet, which then retracts and fragments into a myriad of contaminated droplets
ejected away from the plant.
Drop impacts have been studied in many configurations [20–22] including impacts on thin films [23–25], on deep

liquid layers [26, 27], or on solid substrates with various wettings, geometries and inclinations [21, 28–32]. Impacts at
sufficiently high speed result in a splash, which involves the formation of a liquid sheet, a crown, which then destabilizes
into droplets. Previous studies focused on the crown dynamics and droplet ejection in axisymmetric configurations
[33–37]. Increasing attention has also been paid to impacts on small solid targets of comparable size to that of the
drop diameter [38–42] or binary drop collision [43, 44]. In the crescent-moon impact scenario, an intrinsic horizontal
asymmetry leads to a non-axisymmetric liquid sheet [19]. This latter induces asymmetry in the speed and direction
of ejected droplets. Inclination, compliance and finite size of the leaves all amplify this asymmetry [19]. Drop impacts
that yield asymmetric behaviors were also studied: (i) with horizontal gradients of texture and wetting properties
[45–50], (ii) with varying inclination or tangential speed of the substrate [51–53], and (iii) with non-axisymmetric
target shapes [54, 55]. The relationship between liquid sheet asymmetry and droplet ejections was investigated for a
stationary liquid sheet [56]. The mass distribution of ejected droplets has been quantified by [39]. By contrast, the
distributions of droplet speed and direction were seldom reported and never fully investigated, though these variables
are crucial to assess the dispersal of plant diseases via raindrop impact.
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FIG. 1. (Colour online) Liquid sheet formation and fragmentation into droplets, in three configurations. (a) In the field: a
raindrop impacts onto a potato leaf on which dyed fluid (red) was deposited. Times are, from left to right, -3, 2, 6, 13 and
29 ms with respect to impact. The sheet is fully three-dimensional. (b) A water drop impacts close to a dyed sessile drop on a
flat horizontal dry plexiglass substrate. Times are, from left to right, -1, 3, 8, 11 and 23 ms with respect to impact. The sheet
is still fully three-dimensional. (c) Impact of a dyed drop close to the edge of a flat dry plexiglass substrate. Times are, from
left to right, 0, 2.5, 8, 10.5 and 14 ms from impact. The sheet remains largely in the plane of the substrate. Scale bars are
5 mm.

Our observation of a large number of drop impacts on wet leaves, in fields and in the laboratory (Figs. 1a and 1b),
confirmed the frequent occurrence of asymmetric liquid sheets in the air. These sheets develop either through the
crescent-moon scenario described in [18], by impacts close to edge of leaves, or by a combination of both. The crescent-
moon mechanism was reproduced in laboratory conditions with a drop impacting close to a sessile drop on a flat, dry
and rigid substrate (Fig. 1b). The key emerging features are: (i) the asymmetric shape of the sheet in the air, (ii) the
fluid of this sheet originating mainly from the sessile drop, (iii) a destabilizing free rim at the outer-edge of the sheet,
and (iv) the presence of a triple solid-liquid-air contact line. The crescent-moon sheet is inherently three-dimensional,
hence complex to track accurately.

In this paper, we identify and study one of the simplest impact configurations that produces a sheet with the
aforementioned features. It consists in the impact of a single drop close to the straight edge of a flat dry substrate
(Fig. 1c). Upon impact, the drop spreads radially until it reaches the edge. It then continues to expand in the air,
thereby forming a liquid sheet whose asymmetry varies with the distance from the impact point to the edge. The
main goal of this paper is to characterize both the dynamics of this sheet and the number, mass, direction and speed
of the ejected droplets, as a function of impact speed and distance of impact point to the edge, referred to as offset.
In section II, we present the experimental setup. We then describe the phenomenology of the liquid sheet expansion,
retraction and break-up for various impact speeds and offsets in section III. A quantitative analysis of the sheet
dynamics and the droplet statistics is presented in sections IV and V, respectively. Finally, results and implications of
the asymmetry of the liquid sheet in shaping droplet patterns in the context of rain-induced foliar pathogen dispersal
are discussed in the last section.



3

TABLE I. List of variables and symbols with their definition and typical values

Symbol Meaning Value/Range (room T◦ ≃ 20◦C)

Physical properties and initial conditions

d offset 2.4 - 12 mm

R0 initial drop radius 2.4±0.03 mm

V0 initial drop speed 1.6, 2.3, 3.2, 4.4, 6 ±0.1 m/s

M0 initial drop mass (M0 = 4πR3

0/3) 57.9 ±2 mg

ρ water density 1000 kg/m3

ν water kinematic viscosity 10−6 m2/s

σ water surface tension 70±2 mN/m

Characteristic times and dimensionless numbers

ti impact time - ti = 2R0/V0 2.9, 2.1, 1.5, 1.1, 0.8 ms

tc capillary time - tc =
√

4ρR3

0
/(3σ) 16.2 ms

We Weber number - We = 2ρR0V
2

0 /σ 186 (©), 367 (⊲), 700 (⋆), 1340 (�), 2435 (♦)

Oh Ohnesorge number - Oh =
√

ν2ρ/(2R0σ) 0.0017

Fr Froude number - Fr2 = V 2

0 /(2gR0) 50 - 800

Sheet spreading on solid

Rs spreading radius on solid [mm]

RsM maximum of Rs [mm]

tsM time of RsM [s]

δ dimensionless offset - δ = d/RsM [-]

td time at which the liquid reaches the edge of the substrate [s]

Sheet expansion in the air

ln extension of the air sheet normal to the edge [mm]

lnM maximum of ln [mm]

tnM time of lnM [s]

τn dimensionless normal time - τn = (t− td)/(tnM − td) [-]

lt extension of the air sheet tangential to the edge [mm]

ltM maximum of lt [mm]

ttM time of ltM [s]

tr time of the sheet collapse along the edge [s]

τr dimensionless time of collapse along the edge - τr = (tr − td)/(tnM − td) [-]

Droplet ejections

v horizontal ejection speed of a droplet [mm/s]

vT average speed of droplets ejected at a given τn [mm/s]

m mass of a droplet [mg]

Φ(X) maximal value of a variable X taken as the cut-off of its CDF [/]

x distance travelled horizontally from ejection by a droplet [mm]

Ψ asymptotic value travelled by a droplet - Ψ = limt→∞ x [mm]

ΨM maximum value of Ψ [mm]

Qi(X) quantile function of a variable X taken at i percent [/]

II. EXPERIMENTAL SETUP

A syringe pump is filled with dyed water, of surface tension σ ≃ 70 mN/m, density ρ ≃ 1000 kg/m3 and kinematic
viscosity ν ≃ 10−6 m2/s at room temperature (20± 2◦C). The syringe is connected to a vertical needle that releases
drops of radius R0 = 2.4± 0.03 mm. These drops fall and impact near the edge of a flat horizontal substrate. This
substrate is made of dry plexiglass, 2 mm thick, with advancing and receding contact angles for water of 85◦ and 55◦

(70◦± 15◦), respectively, cut straight with average roughness of 4 µm. The offset d is defined as the distance between
the impact point and the straight edge, counted positively when at least half the drop hits the substrate. It is varied
in the range d/R0 ∈ [−1, 5] with a millimetre stage. Parameters are summarized in table I. The phenomenon is
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FIG. 2. Drop impact on a flat surface close to its edge, from top and side views. The radius of the impacting drop is R0 ≃ 2.4 mm
and the Weber number We = 1340. The offset d is defined as the distance between the impact point and the edge. The scale
bar is 5 mm and the times are t = 0 ms, 1.6 ms, 3 ms, 4.4 ms, 7 ms, 10.6 ms, 12.4 ms and 19 ms after impact.

recorded from the top with a high speed camera and using backlighting at 2000 frames per second. The inclination of
the camera is less than 20◦ from the vertical, and is accounted for in the image processing. The position and shape of
the liquid sheet and the droplets are measured by image processing. Time interpolations of the motion allow for the
detection of major events such as the impact of the drop and the entry of the sheet in the air. Five different impact
speeds V0 in the range 1.6 − 6 m/s were used by changing the height of the needle (table I). The impact speed was
determined as a function of the height of release in a different experiment, where the falling drops were filmed from
the side. Slight oscillations and flattening of the incoming drop, observed during the free fall right before impact,
did not appear to affect the impact dynamics at first order. Local defects that could be present on the edge favored
the appearance of nucleation holes that developed from the edge. This generated a notable modification of the sheet
dynamics and of its subsequent breakup pattern. This phenomenon is unmistakably identifiable, and we excluded on
purpose the very few experiments in which it occurred. Figure 1c shows the process from impact to sheet collapse
over 12.5 ms. The impact time of the drops scales as ti = 2R0/V0 ≃ 1 ms (table I). The sheet lifetime is closer

to the capillary time tc =
√

4ρR3

0
/(3σ) = 16.2 ms. The Weber number We = 2ρR0V0

2/σ ∼ (tc/ti)
2, the ratio of

kinetic energy of the impacting drop to its surface energy, is much larger than unity for all our experiments (table I).
The Froude number squared Fr

2 = V 2

0
/(2gR0) ranges between 50 and 800, allowing to neglect hydrostatic pressure.

Viscous effects can be neglected during impact given that the Ohnesorge number Oh =
√

ν2ρ/(2R0σ) is 0.0017 for the
considered size of the impacting drop. In rainfalls, the diameter and terminal speed of raindrops range from 0.5 mm
at 2 m/s to 5 mm at 9 m/s, respectively [57, 58]. These parameters yield We ∈ [28, 5800], Fr2 ∈ [800, 1700] and
Oh ∈ [0.0017, 0.0053], fairly close to those considered in our experiments.

III. PHENOMENOLOGY

In Fig. 2, the impact near an edge is presented from synchronized top and side views. Along the edge, the extension
of the liquid sheet in the air follows the spread on the solid (Fig. 2b-d). By contrast, the strong retraction of the sheet
along the edge is desynchronized from the slight dewetting on top of the substrate (Fig. 2e-g). In the direction normal
to the edge, the sheet extends further in the air than it spreads on the solid (Fig. 2b-d). The maximum extension
of the sheet is reached first along the edge then normal to the edge (Fig. 2e). The differences in these extension
and retraction kinematics normal and tangent to the edge are key in shaping the asymmetric liquid sheet in the air.
Droplets are emitted from the corrugated rim at the front of the sheet, as well as from the break-up of the filaments
after the collapse of the sheet.
The side view in Fig. 2 shows that the sheet stays approximately in the plane of the substrate throughout the whole

process. The droplets are also ejected in this plane, except during the final collapse of the sheet where the antagonistic
movements of the rim along the edge give rise to out-of-plane ejections (Fig. 2g-h - side view). The planar and almost
horizontal movements of the sheet are crucial for the accuracy of geometric and kinematic measurements from the
top view alone. We measured the inclination ϕ of the sheet from the vertical at its maximal expansion, as a function
of offset d (Fig. 3). This inclination first increases linearly with d/R0 and then reaches a plateau of mean value 87◦,
independent of We. This value below 90◦ could be explained by the slight hydrophilicity of the substrate [59, 60]
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FIG. 3. (Colour online) Inclination ϕ of the sheet with respect to the vertical as a function of the offset d/R0 for different
We (see table I for symbols of We). The solid line is ϕ = 87◦ and the dashed line represents Eq. (1). Inset: Side-view time
sequence of a drop impacting near an edge at We = 680, for d/R0 = 2.2 (a) and d/R0 = 1 (b). Images are taken at -0.2, 0.4,
1, 2.2 and 6.4 ms from the time of impact, respectively from top to bottom. Scale bar is 4 mm.

or by an imperfect transfer of momentum from vertical to horizontal during initial crushing and was also noted for
symmetric impacts on poles [42]. A linear fit of the range d/R0 ∈ [0, 1] gives

ϕ ≃ 53
d

R0

+ 18. (1)

The intersection of this fit with the plateau occurs at d/R0 ≃ 1.3. For larger offsets, the sheet can be assumed to
remain in the plane of the substrate (Fig. 3 - inset a). When d/R0 < 1.3 (Fig. 3 - inset b), the deformation of the
drop at initial crush brings part of the liquid beyond the edge. This creates a bulge and jeopardizes a planar sheet
expansion. The bulge however resorbs during the retraction and the sheet becomes planar again but inclined. In the
remainder of this paper, we exclude experiments with d/R0 < 1, for which drops are split by the edge.
Both the shape and the amount of liquid in the sheet vary with the offset. Figure 4 shows four impacts with the

same We but different d/R0. The initial spreading on solid is obviously identical for all, and almost axisymmetric.
With a smaller offset, the liquid reaches the edge and enters the air sooner and consequently at higher speed. The
extension of the sheet in the air is faster than that on the solid in the perpendicular direction while it follows the
extension speed of the solid tangentially to the edge. This anisotropy in extension causes a distortion of the sheet that
is more pronounced as the offset decreases. The maximal extensions of the sheet in directions normal and tangential
to the edge are reached at different times, which strongly conditions the subsequent retraction. The rim at the front
of the sheet becomes more corrugated and emits droplets sooner than the rim close to the edge (Fig. 4b).
As offset is varied, three main scenarios with increasing asymmetry emerge:

(I) When d is sufficiently large (Fig. 4 - row 1), the maximum extension of the sheet is reached simultaneously
along and normal to the edge. The shape of the sheet is approximately axisymmetric, analog to spreading on
the solid. The sheet retraction is also axisymmetric. Droplets are only emitted during this retraction phase.

(II) As d decreases (Fig. 4 - rows 2 and 3), the maximum extension is both larger and reached later in the direction
normal to the edge than tangent to the edge. The retraction of the sheet is mostly dominated by the early
motion tangent to the edge. The final shape prior to collapse varies from a small triangle attached to the edge
to a rectangle with a width along the edge smaller than its length normal to it. The sheet collapses all at once
into a filament (Fig. 4 - rows 2e and 3e-f). The breakup of this filament generates droplets that are significantly
smaller than those ejected from the sheet.

(III) Finally at d/R0 ∼ 1.3 (Fig. 4 - row 4), the sheet anisotropy is so pronounced that it takes a polygonal shape
that is conserved during retraction. The retraction along the edge is completed while it has only started in the
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FIG. 4. (Colour online) Time evolution of the sheet in the air for d/R0 = 4.4, 3.2, 2 and 1.3 (top to bottom) and We = 1340.
Rows 1, 2, 3 and 4 correspond to the retraction scenarios (I), (II), (II) and (III). Snapshots in a same column are taken at the
same time t post impact, with t = 0 ms, 3 ms, 6 ms, 8 ms, 11 ms, 12 ms, and 14 ms from left to right. Column (a) illustrates
the position of the drops right before impact, with respect to the edge. Scale bar is 5 mm. The dashed frames highlight three
different droplet ejection mechanisms illustrated in Fig. 16. See Supplemental Material at [61–64] for the videos.

perpendicular direction. The sheet then pinches and separates from the edge before collapse. This pinching also
generates a filament that breaks up into tiny droplets.

For a given offset, a variation of the impact speed (and corresponding Weber number) does not strongly modify the
shape of the liquid sheet. Three examples of impacts taken at identical d/R0 ≃ 1.3 and different speeds are illustrated
in Fig. 5, all leading to scenario (III). Differences are nevertheless observed, both in terms of temporal evolution and
size of the sheet. At higher impact speed, the maximal sheet expansion is larger, but collapses sooner. The ejected
droplets are also smaller and are ejected sooner.

IV. SHEET DYNAMICS

The scenarios discussed in section III are first summarized in an offset vs. Weber diagram (Fig. 6). For We . 186,
only the axisymmetric scenario (I) subsists for d/R0 ≥ 1.3.

The sheet kinematics is quantified through the evolution of its extension ln(t) (resp. lt(t)) in the direction normal
to the edge (resp. tangential to the edge), as illustrated in Fig. 7. We also measured the spreading Rs(t) of the liquid
on the solid, since this motion is a prerequisite to the expansion of the sheet in the air. These measurements are
performed automatically with custom image processing in ImageJ and Matlab. By convention, times are measured
from time of impact.
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FIG. 5. (Colour online) Time evolution of the sheet in the air for We = 367, 700 and 1340 from top to bottom, for d/R0 = 1.3,
all leading to scenario (III). Snapshots in a same column are taken at the same time t post impact, with t = 3 ms, 6 ms, 8 ms,
11 ms, 12 ms, 13 ms, and 14 ms from left to right. Scale bar is 5 mm. See Supplemental Material at [64–66] for the videos.
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FIG. 6. (Colour online) Phase diagram We vs. d/R0, in which different sheet asymmetry scenarios are coloured differently: I
(black), II (reddish/grey) and III (blue/clear). Symbols correspond to differentWe, according to table I. The data corresponding
to the examples of Figs. 4 and 5 are circled. The shaded region d/R0 < 1.3 corresponds to experiments for which the sheet is
not planar. The solid and dashed lines correspond to Eqs. (15) and (16), respectively.

A. Spreading on solid

Upon impact, the spreading radius Rs(t) quickly increases and reaches a maximum RsM in a finite time tsM
(Fig. 8a). Slight dewetting is then observed, due to the weak hydrophilicity of the substrate [67]. At first order the
expansion dynamics on the solid is not affected by the fact that part of the sheet is then expanding in air. Indeed,
the shape of the liquid rim on solid remains circular and centered on the impact point, during the whole expansion
and independently of the offset d (Figs. 8a and 8b). During the retraction, we observe capillary waves emitted by the
dewetting dynamics, parallel to the edge similar to the ones observed along the rim, on the solid, away from the edge
(Fig. 2e-f). They seem to indicate a separation between on-solid and in-the-air dynamics. A travelling wave along the
edge following the retraction of the sheet in the air is also visible but its effects appear to be localized close to the edge.
Previous analysis of the early time of spreading suggests that the spreading radius Rs(t) increases proportionally to√
t [67]. This scaling law can be understood by considering a circle that moves at constant speed towards a straight

line. From a purely kinematic point of view, as soon as the circle intercepts the line, the corresponding chord length
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FIG. 7. (Colour online) Main variables that characterize the kinematics of the spreading on solid, liquid sheet in the air, and
ejected droplets. The contours (blue lines) are detected by image processing, after thresholding and morphological removal of
the corrugations. This particular image is taken 10.5 ms after impact, at offset d/R0 = 1.28 and We = 367. Scale bar is 4
mm. The radius Rs of the spreading liquid on solid, the extension of the liquid sheet tangent to the edge lt and the normal
extension of the sheet ln are represented. This latter is taken to be the quantile 85% in distance to the edge of the contour of
the sheet located in a sector of ±10o (fine dotted lines).

grows as the square root of the time from interception. However, at later time the spreading dynamics involves several
dissipation mechanisms and there is no simple model that fully describes its kinematics [67–71]. Consequently, we
chose to fit an empirical function Rs(t) that grows as

√
t in the early times and saturates in a finite time:

Rs(t)

RsM
≃
√

t

tsM

(

2− t

tsM

)

. (2)

Both RsM and tsM are obtained by least square fitting for each individual impact.
The observed maximum spreading RsM increases with We (Fig. 8a - left inset). This variation is well captured by

the empirical law of [72]:

RsM

R0

=
We

1/2

(1.14 +We
2/5

Oh
1/5)

(3)

where the constant 1.14 is fitted on our data.
The time at which the spreading radius reaches its maximum also increases with We (Fig. 8a - right inset). It can

be adjusted with the power-law

tsM ∼ We
1/4ti, (4)

with tsM = 0.8We
1/4ti where 0.8 is fitted and ti = 2R0/V0 is the impact time (table I). The exponent 1/4 suggests

that the time of maximum spreading is almost inversely proportional to
√
V0, as observed by [30]. The alternative

tsM ≃ 0.3We
3/10

Oh
−1/10 proposed by [73] is also in good agreement with our data.

The normalized spreading radius Rs/RsM as a function of the normalized time t/tsM is shown in Fig. 8b. Data from
different We collapse onto a single curve, which is very well approximated by Eq. (2) for t < tsM . The match between
the experimental curves and the equations is not valid beyond t > tsM as dewetting obeys a different dynamics that
is sensitive to the surface properties of the substrate. From Eq. (2), we can predict the time td at which the liquid
arrives at the edge of the substrate (Rs(td) = d):

td
tsM

= (1−
√

1− δ2), (5)

where δ = d/RsM < 1 is defined as the dimensionless offset. This equation is also in good agreement with the
experimental measurements of the time of formation of the liquid sheet (Fig. 8b - inset).
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FIG. 8. (Colour online) (a) Time evolution of the spreading radius Rs/R0 for increasing We (from bottom to top, We = 186,
367, 700, 1340, 2435). Insets: (Left) Maximum spreading RsM/R0 as a function of We. The solid line corresponds to Eq. (3).
(Right) Time tsM/ti of the maximum spreading as a function of We. The solid line corresponds to Eq. (4). The dotted line is

the scaling tsM/ti ≃ We3/10Oh−1/10 from [73]. (b) Rescaled time evolution of the spreading radius Rs/RsM vs. t/tsM , for the
five We values in table I. The dotted line shows Eq. (2). Inset shows dimensionless offset δ = d/RsM as a function of td/tsM .
The solid line corresponds to Eq. (5). Symbols correspond to different We, all collapsed from 186 to 2435.

B. Expansion/retraction of the liquid sheet in the air, normal to the edge

As soon as it takes off from the edge, the liquid is not subjected anymore to the surface shear dissipation. We
describe the extension of the sheet normal to the edge ln(t) by defining a dimensionless time

τn =
t− td

tnM − td
(6)

from fluid entry in the air t− td, divided by the time tnM − td of maximum extension in the air, normal to the edge.
Similarly, the normal extension of the sheet is normalized by its maximal extension lnM . With this normalization, all
experimental data collapse onto a single curve

ln
lnM

= τn(2− τn), (7)

as shown in Fig. 9a. Interestingly, this shows that the acceleration of the sheet normal to the edge is approximately
constant during extension and retraction. The theoretical relations of these results were compared to previous the-
oretical work on centrosymmetric free sheet. Both the theoretical relations in [38] and [39] for the expansion of
axisymmetric liquid sheets, once rescaled, show relative good agreement with our experimental data during the ex-
pansion of the sheet, but not during its retraction. The experimental data are better captured by a simple harmonic
oscillator in the form ln/lnM = sin(πτn/2) as suggested in [74, 75].
Both lnM and tnM are obtained for each experiment by least-square fitting Eq. (7) for each impact. The normal

extension is expected to depend both on We and on the history of the liquid on the surface prior to reaching the
edge [42]. To investigate this latter dependency, the maximum normal extension lnM is shown as a function of the
dimensionless offset δ in Fig. 9b. A linear decrease of lnM with δ is observed,

lnM
R0

= 0.36
√
We(0.9− δ) (8)

≃ 0.44
V0tc
R0

(0.9− δ) (9)

where the coefficients 0.36 and 0.9 are obtained from best fit and tc =
√

4ρR3

0
/(6σ), is the capillary time (table I).

The coefficient 0.9 in Eq. (8) indicates that lnM = 0 for δ = 0.9 < 1. This is counter-intuitive as it suggests that on
the solid, away from the edge, the spreading is slightly larger (by 10%) despite surface shear. However, corrugations
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FIG. 9. (Colour online) (a) Normalized time evolution of the sheet extension normal to the edge ln(t) for the six examples of
Figs. 4 and 5. The colours represent the different scenarios corresponding to these examples: I (black), II (reddish/grey) and
III (blue/clear). The solid black line is Eq. (7). The blue lines correspond respectively to the theoretical results from [38]
(solid), from [39] (dashed) and to an harmonic oscillator suggested in [74, 75] (dotted). (b) Maximum normal extension of the

liquid sheet lnM normalized by R0We1/2 as a function of δ. The solid line shows Eq. (8), which is fitted on all the data points
(with d/R0 > 1.3). Symbols for different We are 186 (©), 367 (⊲), 700 (⋆), 1340 (�), 2435 (♦).

around the sheet form earlier when it is in the air than when it is spreading on the solid. This could be due to the
larger deceleration experienced by the sheet in the air than on the solid. Since our measurement of the sheet extension
does not include such corrugations: lnM = 0 for δ = 0.9.
The acceleration of the sheet in the air normal to the edge is obtained by differentiating Eq. (7) twice: an =

−2lnM/(tnM − td)
2
. Figure 10a shows that an, scaled by (2R0)/t

2
c , is independent of the offset δ. Its average an over

the full range of δ follows a power law in We:

an
t2c
2R0

= −0.5We
0.6, (10)

where the coefficient 0.5 and the exponent 0.6 are fitted. These dependencies suggest that an is slightly higher than
V0/tc.
The time tnM − td needed to reach maximum sheet extension is deduced from Eqs. (8) and (10). The ratio gives a

dependency in We
−0.05, negligible at first order. In dimensionless form:

tnM − td
tc

≃ 0.6
√
0.9− δ, (11)

where 0.6 is fitted. This result matches the experimental data well (Fig. 10b). In summary, the kinematics of the
sheet extension normal to the edge as a function of We and δ is well captured by the combination of Eqs. (7), (9) and
(11).

C. Comparison to the radial extension in axisymmetric impact configurations

The impact near an edge involves spreading on solid followed by expansion in the air, an intermediate between two
axisymmetric configurations already investigated: an impact on infinite solid [72] and a centred impact on a circular
target of comparable size to the drop [38] (Fig. 11a). In order to compare the maximum distance reached by the
liquid in these three configurations, we performed additional experiments of impacts on a pole. The pole radius d
corresponds to the distance the liquid travels on solid before taking off, so it is equivalent to the offset d defined for
the impact near an edge. We considered two ratios of pole to drop size, d/R0 ∈ {1.5, 2.4} and three Weber numbers
We ∈ {370, 700, 1340}. The substrate material and the impacting drop (size, composition) are the same as for the
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FIG. 10. (Colour online) (a) Non-dimensional acceleration an of the sheet normal to the edge as a function of offset δ. Inset
shows the absolute value of an, averaged over δ, as a function of We. The solid line is Eq. (10). (b) Normalized time of
maximum normal extension (tnM − td)/tc as a function of the offset δ. The solid line corresponds to Eq. (11). Symbols in We:
186 (©), 367 (⊲), 700 (⋆), 1340 (�), 2435 (♦).

edge configuration. Fig. 11b compares prior models of sheet extension: (i) the maximum spreading radius on a solid
RsM from [72] [Eq. (3)], (ii) the maximum radial extension of the liquid sheet (from impact point) from [38], and [40]:

lnM + d

R0

≃
√
We, (12)

with a prefactor 0.22 in Eq. (12) corresponding to the rounded average between the prefactor 0.227 for d/R0 ∈ {1, 1.4}
by [38] and the prefactor 0.22 for d/R0 = 1.67 in [40]. Equation (12) is in good agreement with our experimental

data on pole. The power-law lnM ∼ We
1/2 [Eq. (8)] for the edge is similar to the dependence in

√
We of Eq. (12)

obtained for the pole [38, 40].
Fig. 11b shows that the liquid sheet for large We and small offsets goes further than the liquid only spreading

on the solid. Indeed, spreading on solid dissipates energy through viscous friction well captured by a Blasius-type
boundary layer [42], that reduces liquid spreading. The experimental values of RsM are in good agreement with
Eq. (3). More surprisingly, the maximal distance reached by the liquid sheet is always higher with a straight edge
than with a circular edge at the same distance d/R0 from impact point. This is counter-intuitive since in all directions
not normal to the straight edge, the liquid spreads more than d on the solid prior to taking-off from the edge. By
contrast, in the pole configuration, the liquid sheet forms at the same time after the same spreading distance d in
every direction. A possible explanation for this larger distance reached by the sheet from a straight edge is that the
rupture of symmetry enables retraction from the back of the sheet leading to further extension normal to the edge.

D. Expansion/retraction of the liquid sheet in the air, along the edge

We proceed by rationalizing the time evolution of the liquid sheet in the vicinity of the edge. As seen in Fig. 2b-d,
the extension of the sheet along the edge initially closely follows the spreading on solid during the expansion phase. By
contrast, dewetting on solid is much slower than the retraction of the sheet along the edge. This tangential extension
should therefore be geometrically related to the spreading law Rs(t) through lt(t) =

√

Rs(t)2 − d2. Combining this
equation with Eqs. (2) and (5) yields

lt(t) = RsM

√

1− δ2
√

τs(2− τs), with τs =
t− td

tsM − td
. (13)

Again, this square root of time can be interpreted as a kinematic signature of a circle (the sheet) intercepting a
straight line (the edge). By identification of Eqs. (2) and (13), we would infer that

ltM = RsM

√

1− δ2. (14)
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FIG. 11. (Colour online) (a) Schematics of the geometrical similarity between the sheet extension for the edge and pole config-
urations. (b) Comparison of the maximum radial distance from the impact point reached by the liquid for three configurations:
full spreading on a solid (filled green symbols, RsM/R0), liquid sheet from a flat edge (shaded area, (lnM + d)/R0), and liquid
sheet from a pole (empty triangles, (lnM + d)/R0). Two ratios of pole to drop radius were considered: d/R0 = 1.5 (△) and
d/R0 = 2.4 (▽). The crossed ▽ and △ represent the maximal distance reached in edge experiments with the same offsets
d/R0. The solid and dashed lines correspond to Eqs. (3) and (12), respectively.
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FIG. 12. (Colour online) (a) Maximum tangential extension ltM of the liquid sheet along the edge normalized by the maximum
spreading on solid RsM , as a function of offset δ. The solid line is

√
1− δ2, in agreement with Eq. (14). (b) Time evolution of

the sheet extension along the edge lt(t), normalized by its maximum value ltM for the six examples of Figs. 4 and 5. Colours
correspond to scenarios: I (black), II (reddish/grey) and III (blue/clear). The solid line for τs < 1 represents Eq. (13). Symbols
are We: 186 (©), 367 (⊲), 700 (⋆), 1340 (�), 2435 (♦).

This prediction is fairly well verified by the experimental measurements of the maximum tangential extension in
Fig. 12a.

In Fig. 12b, the extension lt(t) tangent to the edge is represented for the 6 examples of Figs. 4 and 5, normalized
by its maximum value ltM and plotted as a function of τs. Thanks to this normalization, data from these different
experiments collapse well onto the curve of Eq. (13) during the expansion phase (τs < 1). However, data from different
offsets δ diverge from each other during the retraction phase (τs > 1). This scattering of the retraction kinematics
along the edge may be linked to the uncontrolled dewetting on this flat vertical edge.

Finally, the time at which the sheet collapses along the edge is defined as tr − td. This time is different from the
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FIG. 13. (Colour online) Normalized time of collapse τr = (tr− td)/(tnM − td) of the liquid sheet along the edge as a function of
the offset δ. Symbols corresponds to We in table I. The solid line is the average across We and δ and the grey area corresponds
to one standard deviation.

full collapse of the liquid sheet only for the experiments of scenario (III). This collapse time normalized by the time
of maximum normal extension is defined as τr = (tr − td)/(tnM − td) and is illustrated in Fig. 13. It increases from
τr ≃ 1.3 at low δ, then saturates at τr ≃ 2 at large δ. It is only slightly dependent to We for intermediate δ. Its
average value is τr = 1.76, with a standard deviation of 0.2.

E. Asymmetry and sheet envelope

In Fig. 4, we have observed three qualitatively different scenarios of sheet expansion and retraction. Each scenario
is observed in a given region of the diagram (We, d/R0) in Fig. 6. Boundaries between these regions are non-trivial
in this diagram. The preceding investigation of the sheet kinematics highlighted the importance of the dimensionless
offset δ = d/RsM . Moreover, a key difference between the scenarios is the relative asymmetry of the sheet, which could
be represented by the ratio lnM/ltM . The separation of scenarios appears more clearly in the diagram (δ, lnM/ltM )
of Fig. 14. With this representation, the transition from scenarios (III) to (II) occurs approximately at

δ = 0.3, (15)

and the transition from scenarios (I) to (II) at

lnM
ltM

= 0.85. (16)

The distance travelled by the liquid spreading on the solid strongly influences the subsequent shape of the liquid
sheet in the air. Based on this observation, we propose a first-order model to reconstruct the maximal region accessible
to the expanding sheet. On the solid, the liquid spreads radially from the impact point and reaches the edge after
a distance dθ = d/ cos θ, where θ is the angular position from the impact point, measured from the symmetry axis
(Figs. 7 and 15). Since dθ is bounded by RsM , θ must be smaller than θM = cos−1 δ. By replacing d by dθ (or
equivalently δ by δ/ cos θ) in Eq. (8), we obtain a prediction of the maximum extension lθ reached by the sheet in
direction θ from the normal to the edge:

lθ
R0

= 0.36
√
We

(

0.9− δ

cos θ

)

. (17)

Since the time of maximum extension varies with the direction considered (i.e., tnM 6= tsM ), Eq. (17) does not predict
the shape of the sheet at a given instant. It rather gives the envelope accessible to the sheet during its expansion,
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FIG. 14. (Colour online) Scenarios of liquid sheet expansion/retraction, in a (δ, lnM/ltM ) diagram. The symbols correspond to
different We given in table I and the colours to different scenarios: I (black), II (reddish/grey) and III (blue/clear). The solid
and dashed lines correspond to Eqs. (15) and (16) respectively. Horizontal line: lnM/ltM = 0.85, vertical line: δ = 0.3.

FIG. 15. (Colour online) Time superposition of snapshots from a given experiment, with t ∈ [ttM , tnM ]. The curved solid lines
(red in online version) represent the reconstructed envelope region accessible to the sheet, predicted by Eq. (17). (Top line)
From left to right, We = 1340 and δ = 0.79, 0.54, 0.34. (Bottom line) From left to right, We = 1340, 700, 367 and d/R0 = 1.3,
with δ = 0.22, 0.24, 0.28. Scale bars are 4 mm.

as shown in Fig. 15 for various We and δ. Eq. (17) captures well the sheet outer envelope and only overestimates
that envelope for the largest We and smallest d (bottom left picture in Fig. 15) that corresponds to scenario (III). In
that particular case, the time of the maximum normal distance to the edge occurs much later than the tangential one
which depends on the details of pinning and contact line not captured by Eq. (17).

V. DROPLET EJECTION

In this section, we characterize the ejected droplets from a statistical point of view, and we relate their properties
to the asymmetric kinematics of the sheet. We first discuss the mechanisms and direction of ejection then, the initial
speed and mass to rationalize the travelled distance of ejected droplets. Finally we take a look at the number of
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FIG. 16. (Colour online) Mechanisms of droplet ejection: (a) Radial ejection from the rim. Successive snapshots are separated
by 0.4 ms, from 6.2 ms after impact. The highlighted droplet is ejected at τn = 1.02, with a mass m = 0.23 mg and a speed
v = 0.28V0. Its ejection angles are θx = 4◦ and θv = −9◦. (b) Tangential ejection from the rim. Successive snapshots are
separated by 0.6 ms, from 4 ms after impact. The highlighted droplet is ejected at τn = 1.17, with a mass m= 0.29 mg and a
speed v = 0.46 V0. Its ejection angles are θx = 48◦ and θv = 7◦. (c) Collapse of the sheet. Snapshots are taken at 11.8 ms,
12.2 ms and 13 ms after impact. Scale bars are 2 mm. The orange and blue solid lines join the centre of mass of the ejected
droplets across frames. The vertical black lines are at fixed position, so they highlight the left-to-right motion of the droplets.
These three snapshots correspond to zooms on the droplet ejections framed in Fig. 4. Panels b) and c) display also a small
part of the solid substrate. The edge is then the horizontal black line.

ejected droplets and we summarize the effect of sheet asymmetry on droplet distributions. More details on droplet
tracking and mass estimation are provided in appendix A.

A. Ejection mechanisms and direction of ejection

Three ejection mechanisms are identified and illustrated in Fig. 16. They are differentiated according to the time,
position, and directionality of the ejections (Fig. 17). The selected snapshots correspond to parts of the movies
illustrated in Fig. 4.

• The first mechanism is called radial ejection (Fig. 16 - a). It concerns droplets from the rim of the sheet (i.e.,
before sheet collapse), for which the ejection direction θv is closely aligned on the radial position from the impact
point θx (definition in Fig. 7). Each droplet originates from a corrugation along the rim. This corrugation grows
in a radial filament (almost normal to the sheet) by inertia, owing to the constant deceleration of the sheet. The
filament then destabilizes into one or several droplets that are ejected perpendicularly to the rim. The droplets
mostly inherit the normal velocity that the sheet had during the early growth of the corrugations. They also
inherit a small velocity tangent to the rim, that corresponds to a slight lateral displacement of the corrugation.

• The second mechanism is called tangential ejection (Fig. 16 - b) and it again concerns droplets ejected from the
rim of the sheet. In this case, the ejection direction θv is not aligned anymore on the radial position θx. This
mechanism mostly appears on the sides of the sheet in the most asymmetric scenarios, i.e., (II) and (III). Owing
to inertia, the corrugations in which liquid accumulates travel along the rim, away from the edge. When the rim
retracts tangentially to the edge, these corrugations destabilize into droplets. However, the velocity inherited
by the droplets now mostly comes from the motion of the corrugations along the rim, and not anymore from
the velocity of the sheet. Consequently, these droplets are ejected in a direction almost parallel to the rim,
and perpendicular to its retraction velocity. As the capillary force from the sheet does not directly oppose the
motion of these corrugations, the resulting droplets tend to go faster than the droplets ejected radially. This is
illustrated in Fig. 16.

• The last mechanism occurs when the sheet collapses (Fig. 16 - c). The resulting liquid filament has a very complex
shape and it breaks up in a wide variety of droplets. These droplets may inherit from the late retraction speed
of the sheet. A particular collapse event is present when the sheet retracts in scenarios (II) and (III). The two
rims of the sheet near the edge converge quickly towards each other. Their violent collision generates many
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FIG. 17. (Colour online) Angle of the ejection velocity θv as a function of the angular position of ejection θx measured from
the impact point (defined in Fig. 7), for We = 1340. Symbols without black contour (resp. with black contour) correspond
to δ ∈ [0.2, 0.3] (resp. δ ∈ [0.7, 0.8]). The colour refers to the ejection time: (dark blue) during sheet expansion, i.e., τn < 1,
(light blue) during sheet retraction, i.e., 1 < τn < τr, and (red) after sheet collapse, i.e., τn > τr. The inclined solid line is the
bisector θv = θx. The vertical lines correspond to the maximum sheet angle θM (defined in Fig. 15), for δ = 0.25 (dotted) and
δ = 0.75 (solid).

droplets that are much smaller than those emitted from the first two mechanisms. The direction of ejection can
also be out of the plane of the sheet (Fig. 2g-h).

The prevalence of each ejection mechanism is observed in Fig. 17, where the direction θv of droplet ejections is
plotted against their angular position θx. Droplets are distinguished according to the sheet kinematics (expansion,
retraction, collapse) at the moment of their ejection. During sheet expansion (τn < 1), most droplets are ejected
radially, i.e., with θv ≃ θx. Tangential ejections only appear during sheet retraction (1 < τn < τr), when the sheet
asymmetry is sufficiently developed. At small offset δ, most of them satisfy |θv| < |θx|, so their ejection direction is
more normal to the edge than a droplet ejected radially from the same position. Droplets ejected from the collapse
of the sheet (τn > τr) remain localized close to the symmetry axis, in |θx| . 20◦. However, their ejection direction θv
is much more scattered than for other mechanisms.

The radial ejection mechanism was already observed in the axisymmetric configuration of impact on a pole [38, 39],
and the mass distribution was characterized. The collapse mechanism is also observed in such impacts when the sheet
experiences local piercing [38, 39] - this typically occurs when the impact is not perfectly centred on the pole. The
tangential ejection mechanism and the filament breakup are not present in axisymmetric impacts such as impact on
pole.

B. Droplet ejection speed

We now examine how the mechanisms of ejection can affect the speed of the droplets through the asymmetry of
the sheet. The speed v at which each droplet is ejected is represented as a function of its ejection time in Fig. 18a,
for the six examples of Figs. 4 and 5. The speed v is naturally normalized by the impact speed V0, while the time
τn is normalized by the time of maximum extension of the sheet normal to the edge. All the data corresponding to
normal extension (τn < 1) collapse onto a single curve, so v/V0 is a decreasing function of τn only, for all We and δ.
The ejection speed becomes more scattered as soon as τn > 1, i.e., during the retraction and collapse of the sheet.
The time τr at which the sheet collapses along the edge also corresponds to a maximum scatter of the ejection speed.

The influence of the sheet kinematics on droplet ejection can be better assessed by looking at the speed of the sheet
in the direction normal to the edge [derived from Eq. (7)]:
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FIG. 18. (Colour online) Time evolution of the droplet ejection speed v (a) Normalized by the impact speed V0 (b) Normalized
by vT , for the six examples of Figs. 4 and 5. The time τn is normalized according to the normal extension of the sheet. Each
data point corresponds to a single droplet. Symbols correspond to Weber number, We = 367 (⊲), 700 (⋆), 1340 (�), while
colours indicate degree of asymmetry from lowest (I) to highest (III) with I (black), II (reddish/grey) and III (blue/clear). The
grey area indicates the time τr at which the sheet has fully retracted from the edge (average across We and δ, plus/minus
standard deviation). The numbers 1, 2 and 3 indicate periods of time of the sheet (1 - sheet expansion, 2 - sheet retraction
and 3 - after full sheet retraction along the edge). In (a), horizontal rectangles represent the duration of the sheet retraction.
The darker blue rectangle in scenario (III) corresponds to the retraction of the sheet after it has pinched from the edge. The
inclined solid lines correspond to Eq. (18) for the six examples (one line per scenario). The dotted line represents Eq. (19).
Circled data points correspond to the snapshots of Fig. 16.

1

V0

dln
dt

=
2lnM

V0(tnM − td)
(1− τn) ≃ 1.47

√
0.9− δ(1 − τn). (18)

The normal extension speed of the sheet is again proportional to the impact speed V0 at first order. It is reported in
Fig. 18a, where it sets a lower limit to the droplet ejection speed. Indeed, ejected droplets during the sheet expansion
must go faster than the sheet from which they detach.

A careful examination of Fig. 18a indicates that, for τn > 1, the scattering of ejection speed at a given time depends
on the considered scenario. In order to better quantify this scattering, we define the average speed vT (τn) of all the
droplets radially ejected at a given τn. These considered droplets are from all scenarios together when τn < 1, and
only from scenario (I) when τn > 1. This average velocity is well approximated by:

vT
V0

= 2.1e−2.5τn + 0.1, (19)

as illustrated in Fig. 18a. The deviations of the ejection speed from vT are visible in Fig. 18b.

Data from scenario (I) align in the continuity of the curve observed for τn < 1, without much scattering. The
corresponding droplets are radially ejected, through the same mechanism as all the droplets ejected in τn < 1. By
contrast, the ejection speed at τn > 1 is much more scattered for scenarios (II) and (III), which suggests the emergence
of tangential ejections. The filament breakup occurs in τr and it coincides with the maximum of scattering for these
scenarios.

The scattering of ejection speeds can be investigated more systematically through the definition of averages over
specific time intervals for all experiments at given (We, δ). These averages are defined for any variable X as follows:



18

δ
0.2 0.4 0.6 0.8

〈
v v T
〉1

0

0.5

1

1.5

2

2.5

v
vT

0 1 2

P
D
F
(〈

v v T
〉1
)

0

2

4

(a)

δ
0.2 0.4 0.6 0.8

〈
v v T
〉2
-3

0

0.5

1

1.5

2

2.5

(b)

FIG. 19. (Colour online) Average (large symbols) and standard deviation (small symbols) of v/vT for each (We, δ). (a) Over
the sheet expansion (τn < 1). The dotted line is the average over all (We, δ). Inset: PDF of v/vT during the sheet expansion.
The solid line is a fit with a Gaussian distribution of mean 1.05 and standard deviation 0.2. (b) After sheet expansion (τn > 1).
The dotted line is the average over all (We, δ) for τn < 1. Symbols in We = 186 (©), 367 (⊲), 700 (⋆), 1340 (�), 2435 (♦).

〈X〉1 : average over sheet expansion, τn < 1

〈X〉2 : average over sheet retraction, 1 < τn < τr

〈X〉3 : average after full sheet retraction from the edge, τn > τr

〈X〉2-3 : average after sheet expansion, τn > 1,

〈X〉 : average over all time τn > 0. (20)

As seen in Fig. 19a, the average speed during sheet expansion is very close to the theoretical speed of radially-ejected
droplets, i.e., 〈v/vT 〉1 ∼ 1, for all We and δ, which is expected from the definition of vT . The corresponding standard
deviation is about seven times smaller than the average value, which confirms the good collapse of the data already
seen for τn < 1 in Fig. 18. Furthermore, the Probability Distribution Function PDF

(

〈v/vT 〉1
)

, that includes all
droplets ejected for τn < 1, follows a Gaussian distribution of mean 1.05 and standard deviation 0.2 (Fig. 19a - inset).
During the retraction and collapse of the sheet (so as soon as τn & 1), both the average 〈v/vT 〉2-3 and corresponding
standard deviation decrease linearly with increasing δ (Fig. 19b). The larger scatter at small δ can be attributed to
the presence of additional ejection mechanisms (namely the tangential droplets and the filament collapse). . There is
almost no dependence to We, which indicates that the sheet asymmetry (measured by δ) pilots the droplet ejection
pattern during the sheet retraction and collapse only.

C. Droplet mass

We now focus on the mass of the ejected droplets which is a key property that also determines the distance travelled.
Information concerning mass estimation can be found in appendix A. The mass m of the ejected droplets is reported
as a function of their normalized ejection time τn in Fig. 20a, for the six examples of Figs. 4 and 5. Contrary to
the ejection speed v, the mass m varies on more than three orders of magnitude and it is scattered at all time.
Nevertheless, viscosity sets a lower bound to the size of ejected droplets. In the context of partial coalescence, the
inhibition of inertial liquid break-up by viscosity was observed for Ohnesorge numbers Oh & 0.025 [76, 77]. It here
corresponds to a minimum radius of 0.02 mm, and a mass m/M0 ≃ 5×10−7. This size is slightly below the resolution
of our camera. m is clearly bounded by a maximal mass that increases with time for τn < 1 and saturates to a
constant value for τn > 1. This maximal droplet mass is still 50 times smaller than the mass M0 = 4πρR3

0/3 of the
impacting drop.
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FIG. 20. (Colour online) (a) Time evolution of the mass m of the ejected droplets (normalized by the mass M0 of the impacting
drop) as a function of their normalized time of ejection τn, for the six examples of Figs. 4 and 5. Each data point corresponds
to a single droplet. Symbols correspond to Weber number, We = 367 (⊲), 700 (⋆), 1340 (�), while colours indicate scenario, I
(black), II (reddish/grey) and III (blue/clear). The grey area indicates the time τr at which the sheet has fully retracted from
the edge (average across We and δ, plus/minus standard deviation). The inclined solid line represents Eq. (21). The horizontal
lines correspond to the cut-off mass Φ(m/M0) during retraction with We = 367 (dotted), We = 700 (dashed) and We = 1340

(solid). (b) Probability Distribution Function (PDF) of the normalized mass m/(M0τn
5/2) of droplets ejected during sheet

expansion (τn < 1), pooled per We (all δ together). The symbols correspond to different We = 186 (©), 367 (⊲), 700 (⋆),
1340 (�), 2435 (♦). Inset: Saturation value Φ of the PDF, for each We and δ. The dotted line corresponds to the coefficient
of Eq. (21).

The increase of this upper bound on mass during sheet expansion (τn < 1) satisfies a power law

m

M0

≤ 0.013τ5/2n , (21)

that is valid for each scenario so it is presumably independent of the offset δ. Equation (21) suggests to analyze the

statistical distribution of droplet mass, normalized by τ
5/2
n (Fig. 20b). The Probability Distribution Function

PDF

(

〈 m

M0τ
5/2
n

〉1
)

is calculated on all our data, pooled per We (all δ together), which is denoted with a simple overline. This distribution
presents a mode that approximately varies as We

−0.2, so faster incoming drops generate smaller ejected droplets.
There is a cut-off on the right end of this PDF, which corresponds to the maximal mass. We define the maximal value
of any variable X as the cut-off Φ(X) of its statistical distribution. This cut-off is here obtained by approximating
the tail of the corresponding Cumulative Distribution Function (CDF) of X with a quadratic function that reaches a
maximum of 1 in Φ. The least-square fit is performed with data from quantiles 0.85 to 0.995.
The cut-off mass at τn < 1 is determined for each δ and We independently (Fig. 20b - inset). It is remarkably

independent of δ and We, and its average value is given by Eq. (21). Similarly to the droplet speed, once this cut-off
mass is expressed as a function of the sheet time τn, any explicit dependence to We and δ disappears, which is
characteristic of the droplets radially ejected during sheet expansion.
During retraction and after sheet collapse, the distribution and cut-off value of the mass are almost independent of

δ, and they slightly decrease with increasing We. A more detailed analysis is available in appendix C.

D. Distance travelled by the droplets

The ballistic trajectory x(t) = x(t)ex + z(t)ez of each ejected droplet in a vertical plane (ex, ez) can be computed
from Newton’s law, as a function of its mass m and ejection speed v (Appendix B).
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FIG. 21. (Colour online) Maximum horizontal distance Φ(Ψ/R0) travelled by the ejected droplets, pooled together per We and
δ. Symbols correspond to different We (table I) while colours indicate scenario, I (black), II (reddish/grey) and III (blue/clear).
The dashed lines correspond to Eq. (22). Inset: Φ(Ψ/R0) during the whole ejection process compared to the one dictated by
the droplets ejected during the sheet extension. The solid line is the bisector. Symbols correspond to different We = 186 (©),
367 (⊲), 700 (⋆), 1340 (�), 2435 (♦).

We here consider the horizontal direction of ejection ex, and compute x(t), the distance travelled horizontally since
ejection, no matter in which direction θv. Owing to air drag, the horizontal speed decreases with time and x(t) reaches
an asymptotic value Ψ = limt→∞ x called the aerodynamic wall [78].
The cut-off Φ(Ψ) of the statistical distribution of Ψ is calculated by pooling all ejected droplets from different

experiments at given We and δ (Fig. 21). When the offset δ is in the range of scenarios (II) and (III), Φ(Ψ) is fairly
independent of δ. By contrast, when δ is in the range of scenario (I), Φ(Ψ) decreases with increasing δ. The similarity
of Φ(〈Ψ〉) and Φ(〈Ψ〉1), illustrated in inset of Fig. 21, suggests that the cut-off distance Φ(Ψ) is already reached by
the droplets ejected during the sheet expansion (τn < 1), if any [i.e., for scenarios (II) and (III)]. Droplets ejected
afterwards (τn > 1) can travel as far, but not significantly farther. The upper bound of Ψ first increases with time,
until a maximum value ΨM is reached slightly before τn = 1. This maximum ΨM during expansion can be predicted
from the maximal mass Φ (m/M0) given by Eq. (21), and the quantile 90% of the ejection speed. During sheet
expansion, the speed distribution is approximately gaussian with mean vT and standard deviation 0.2vT (Fig. 19),

so this quantile is estimated as Q90 (vT /V0) =
(

1 + 0.2
√
2erf−1(0.8)

)

(vT /V0) = 1.26vT/V0. Since both mass and
speed bounds are independent of δ during sheet expansion (Figs. 19a - and 20b - inset), ΨM is also independent of
δ. Droplets of scenario (I) are only ejected in τn > 1, when the average speed is already low (Fig. 18 - middle) while
the mass is not necessarily larger (see Appendix C). As a result, droplets from scenario (I) travel much less far than
those of other scenarios.
For the range of We considered in this study, ΨM is approximately given by

ΨM

R0

≃ 23We
2/5, (22)

which provides a practical first-order approximation of the distance that ejected droplets can possibly reach at a given
We in the worst case scenario (scenarios II and III).
This upper bound on travelled distance, originally derived from droplets ejected during sheet expansion, seems to

hold for droplets ejected when the sheet retracts and collapses. This implies that the sheet early dynamics conditions
the maximum distance travelled by the droplets for scenarios (II) and (III) independently on the offset.

E. Global effects of the sheet asymmetry

The previous section showed that the maximum distance travelled by the ejected droplets is fairly insensitive to
the sheet asymmetry (i.e. to the offset). However, this asymmetry still greatly influences the dispersal ability. For
example, the mass of droplets ejected at a given distance Ψ (usually during sheet retraction and collapse) can be 10
times larger than the mass of droplets ejected during the sheet expansion, provided that the offset is sufficiently small.
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FIG. 22. (Colour online) Mass m of the ejected droplets, normalized by the mass of the impacting drop, as a function of their
travelled distance Ψ for We = 1340 (�). (a) δ ∈ [0.2− 0.3]. (b) δ ∈ [0.5− 0.6]. The colour indicates the ejection time: during
sheet expansion (τn < 1, dark blue), during sheet retraction (1 < τn < τr, light blue) and after sheet collapse (τn > τr, red).
The vertical dotted lines represent Eq. (22).

This is illustrated in the (m/M0,Ψ) diagrams of Figs. 22a and 22b for two different ranges of δ. . Tangentially-ejected
droplets are often among these outperforming droplets, since they inherit from a mass similar to the radially-ejected
droplets, with a possibly larger speed. Figure 22a also displays a large number of small droplets ejected during the
collapse phase which correspond to the filament breakup mechanism.
In terms of number of droplets, the Cumulative Distribution Function (CDF) of the normalized time τn at which

droplets are ejected, i.e., the number of droplets ejected before a given τn, is represented in Fig. 23a for the 6 examples
of Figs. 4 and 5. The number of droplets increases with We and decreases with increasing δ. For all scenarios, the
ejection rate (slope of the CDF) remains steady during sheet extension, then it strongly decreases during retraction.
In scenarios (II) and (III), there is an additional outburst of droplets at the moment of collapse τr , which corresponds
to the filament breakup mechanism. The ejection rate decreases again for larger τn. For scenarios (II) and (III), the
first ejections occur during the expansion of the sheet. Conversely, in the isotropic scenario (I), ejections only start
during the retraction of the sheet.
The average number N of ejected droplets per impact is represented in Fig. 23b, where data from all experiments

have been again pooled byWe and δ. This number of droplets increases withWe, and it decreases almost quadratically
with increasing offset δ, among others since the fraction of the impacting drop that crosses the edge decreases. The
number of droplets vanishes in δ = 0.9, which also corresponds to a vanishing liquid sheet [Eq. (8)]. As confirmed in
Fig. 23b, it can be approximated by

N = 0.02We
1.4(0.9− δ)2. (23)

The increase of number of droplets with the decrease of δ could originate from three main causes: as δ decrease, (i)
more fluid crosses the edge, (ii) the filament breakup mechanism occurs which is responsible for a high number of
small droplets and (iii) the shedding of droplets begins earlier. The offset thus influences the number and mass of the
droplets. The importance of these results in relation to pathogen dispersal is discussed in the following section.

VI. DISCUSSION

There are many different configurations in which raindrops can impact on plant leaves and subsequently fragment
into droplets. Some of these configurations are particularly efficient at ejecting these droplets far away. They are
consequently of primary relevance for the dispersal of pathogens initially present on infected leaves. A common feature
observed in most impact configurations is the formation and break-up of an asymmetric liquid sheet, connected to the
substrate on one side, and delimited by a rim entirely in the air on the other side. In this paper, we have investigated
the impact of a drop at speed V0 next to the straight edge of a flat horizontal substrate. A similar sheet is formed
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FIG. 23. (Colour online) (a) Non-normalized Cumulative Distribution Function (CDF, expressed in number of ejected droplets)
of the normalized time τn for the six examples of Figs. 4 and 5. Symbols correspond to Weber number, We = 367 (⊲), 700 (⋆),
1340 (�), while colours indicate scenario, I (black), II (reddish/grey) and III (blue/clear). The grey area indicates the time τr
at which the sheet has fully retracted from the edge (average across We and δ, plus/minus standard deviation). (b) Average
number N of droplets ejected per impact, as a function of δ. Symbols in We = 186 (©), 367 (⊲), 700 (⋆), 1340 (�), 2435 (♦).
Solid lines are Eq. (23). (Inset) Second derivative of N with respect to δ, as a function of We. The solid line corresponds to
d2N/dδ2 = 0.04We1.4 in Eq. (23).

and fragmented, but the kinematics is much easier to visualize and quantify since both the sheet and the ejected
droplets move approximately in the plane of the substrate. Moreover, this configuration involves only two relevant
dimensionless parameters: the offset from the edge d and the Weber number We. We have varied both parameters,
with the latter in a range similar to that of raindrops. From video recordings, we have systematically tracked and
quantified the motion of both the sheet and the ejected droplets.

The evolution of the sheet in the direction normal to the edge is approximately symmetric in time. It is advan-
tageously described by measuring the time from its birth, at the instant td at which the liquid takes-off from the
substrate. The duration of the sheet extension tnM − td is then approximately proportional to the capillary time
tc [Eq. (11)], with a corrective factor that mostly depends on the ratio δ between the offset d and the maximum
spreading distance on the solid RsM . The maximum extension lnM of the sheet normal to the edge is approximately
proportional to V0tc [Eq. (9)], with again a corrective factor to take the initial spreading on solid into account. This
latter is linearly decreasing with δ. Remarkably, the corresponding acceleration normal to the edge, which then scales
as V0/tc, is constant with time and does not depend on δ. We have also shown that, against intuition, the sheet can
extend farther from the substrate when a drop impacts at a distance d from a flat edge than when it impacts at the
centre of a pole of radius d.

The evolution of the sheet along the edge is however not symmetric in time. Its extension follows the adjacent
spreading on the substrate, while its retraction involves dewetting of the edge. The important scatter of the corre-
sponding data suggests the presence of uncontrolled contact line pinning during this retraction phase. The asymmetry
of the sheet shape strongly depends on δ. We identified three different scenarios, that correspond to characteristic
shapes of the sheet. The boundaries between these scenarios can be rationalized by considering the competition of
sheet kinematics in directions normal and tangent to the edge.

We characterized ejected droplets statistically in terms of number, mass, speed, direction and time of ejection.
The ejection statistics is time-dependent, and varies with δ and We. Nevertheless, most of the dependence on δ is
accounted for when the rescaled ejection time τn (ejection time normalized by the time of maximal extension of the
sheet) is used. This is especially true during sheet expansion, when droplets are mostly ejected radially starting from
a time that increases with δ. Droplets ejected at the same normalized time have approximately the same speed, which
decreases with this time. Their mass distribution is more scattered, but it is bounded by a maximal ejectable mass
that is an increasing function of τn only.

When the sheet retracts and collapses, both droplet speed and mass distributions spread considerably (at least for
the two most asymmetrical sheet scenarios) and do depend on δ. This is partly due to the additional ejection of
tangentially-ejected droplets, i.e., droplets ejected in a direction parallel to the sheet and normal to its retraction. In
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the most asymmetrical cases (small δ), the final collapse of the sheet near to the edge triggers out-of-plane ejection
of a large number of tiny droplets.
We estimate the maximum horizontal distance that each ejected droplet would travel ballistically, as a function

of its mass and ejection speed. The upper bound of this distance is independent of δ for the two most asymmetric
sheet scenarios. It can be predicted by considering the speed and maximum mass of droplets ejected during the sheet
expansion only. Droplets ejected during the retraction and collapse of the sheet can go as far but not significantly
farther. However, for the same travelled distance, their mass can be larger by a factor of 10. The decrease in offset
allows these larger droplets to increase their distance travelled while staying bounded by the distance predicted by
the sheet early dynamics.
These results can be discussed in the context of rain-induced dispersal of foliar pathogens. Each droplet ejected

from an infected leaf is susceptible to carry some pathogenic content. The number, mass and ejection speed of these
droplets are key inputs for the epidemiological models based on droplet ballistics [79]. The likelihood of infection is
a combination of these factors. Our experiments at We ∈ [180, 2500] covered most of the range of Weber number
experienced by raindrops (We ∈ [28, 5800]). We may therefore expect that our conclusions on the impact near a
straight edge are still valid, at least qualitatively, for more complex impact scenarios encountered by raindrops on
leaves. In particular, the number, the speed of the ejected droplets and their maximal travelled distance all increase
with increasing We, but at the same time the maximal droplet mass decreases. The asymmetry of the sheet, here
measured with δ and omnipresent in complex natural impacts, does not seem to increase the maximum distance
travelled by the droplets. But it does increase their number and maximal mass at a given distance. It should
consequently increase the likelihood that a droplet containing a critical amount of pathogens lands on a distant leaf,
and so increase the overall dispersal speed of the disease.
Current mitigation techniques of foliar diseases, such as the intensive use of chemicals or genetically modified

organisms can be complemented by polyculture [13, 80, 81] or integrated culture [82]. The risk of epidemics is a
major factor to take into account in the optimization of crops [81]. Our work has showed how both impact speed
and distance from an edge shape the statistics of ejected droplets upon raindrop impact. Our results can help the
development of agricultural epidemiological models.
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Appendix A: Droplet tracking and mass calculation

On each frame, all the objects detached from the main body of the sheet were considered as ejected droplets. Their
area, perimeter and position with respect to the impact point was recorded. Their trajectory was then reconstructed.
During this process, only objects that could be consistently tracked over at least five frames were considered. This
condition removed fluid particles that either quickly merged with others, or that quickly fragmented. The ejection
time of the droplets is defined as the time at which they were first detected. The ejection velocity v is calculated from
the first frames after ejection. Merging and fragmentation of droplets are common, especially during sheet retraction
in the most asymmetrical scenarios (II - III). We chose to only consider as droplets the objects that either left the
field of view before the end of the recording, or that were still present in its last frame. By doing so, we reduced
the likelihood of counting multiple times the same fluid particle. However we also arbitrarily selected large merged
droplets instead of keeping the smaller droplets that were initially ejected. Furthermore, sometimes the residues of
the collapsed sheet did not fully fragment by the time they left the field of view.
Estimating the mass m of the ejected droplets is challenging. Indeed, they are highly deformed when they pinch

off from the liquid sheet, and they need some additional time to relax to a quasi-spherical equilibrium shape resulting
from a balance of aerodynamic drag and surface tension [57]. This relaxation time is of the order of r2/ν, where r is
such that m/ρ = 4πr3/3. Moreover, droplet collisions are common, especially when the high asymmetry of the sheet
leads to antagonist motions of the rim. It is therefore likely that the tracked droplets leave the field of view before
they become spherical.
We here estimate the droplet volume Ω = m/ρ based on a combination of the perimeter P and the area A seen and

measured on each image. A droplet pinching off from a fluid ligament is initially elongated, so at first order it can be
approximated by a pill shape, i.e., a cylinder of length L and radius R surrounded by two spherical caps of radius R.
When L ≫ R, Ω, A and P are proportional to R2L, RL and L, respectively, so the ratio ΩP/A2 should be constant.
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In general (for any L and R),

ΩP

A2
=

2πx2 +
(

2π2 + 8π
3

)

x+ 8π2

3

4x2 + 4πx+ π2
(A1)

where x = L/R. The ratio ΩP/A2 indeed tends to a constant value of π/2 for an elongated pill (x ≫ 1). In the other
limit of a quasi-spherical pill (x ≪ 1), ΩP/A2 ≃ 8/3, which is slightly larger. More complicated elongated shapes,
such as when the sheet collapses after separation from the edge (scenario III), could be seen as a sum of elongated
droplets, and it is likely that their ratio ΩP/A2 remains in the range [π/2, 8/3].
In order to estimate the droplet volume, we first calculate an approximation of x. Since P = 2R(π + x) and

A = R2(π + 2x), x satisfies the second order equation:

x2 + 2

(

π − P 2

4A

)

x+ π

(

π − P 2

4A

)

= 0 (A2)

This equation admits a single positive solution x when P 2 ≥ 4πA (the equality yields a spherical droplet). The volume
is then calculated from Eq. (A1).
In conventional image processing functions (e.g., in Matlab), A is calculated as the sum of the selected pixels, while

P is calculated by joining the centres of the edge pixels. Consequently, A is overestimated compared to P , which may
erroneously result in P 2 < 4πA. This artefact may be corrected by removing the excess of area, i.e., by replacing A
by A− ǫP/2, where ǫ is the pixel size. This correction is sufficient to ensure P 2 ≥ 4πA for all droplets.

Appendix B: Travelled distance: the aerodynamic wall

The ballistic trajectory x(t) = x(t)ex + z(t)ez of each ejected droplet can be computed from Newton’s law, as a
function of its mass m and ejection speed v:

m
d2x

dt2
= −mgez − 6πµar

dx

dt

[

1 +
c

100
Re

2/3
]

for Re =
2rρa
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∣

∣

∣
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∣

∣

∣
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m
d2x

dt2
= −mgez −
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2
dx

dt
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∣

∣
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∣

∣

∣

for Re > 1000 (B1)

where Re is the Reynolds number, r = (3m/4πρ)1/3 is the droplet radius, c is a fitting parameter, and ρa and µa are
the density and dynamic viscosity of the air, respectively. We here consider ex as the horizontal direction of ejection,
and x(t) is the distance travelled horizontally since ejection, no matter in which direction θv. In Eq. (B1), the air
drag is calculated with an approximation valid for spherical objects in a large range of Reynolds number (cf. similar
models in [83]). A fit on experimental data from [84] yields c ≃ 16.
Owing to air drag, the horizontal speed decreases with time and x(t) reaches an asymptotic value Ψ = limt→∞ x

called the aerodynamic wall [78].
First, Eq. (B1) is non-dimensionalized with characteristic timescale T and length scale L defined in the limit of

small Reynolds number,T = 2ρr2/(9µa), L = gT 2, y = x/L, τ = t/T
from which we obtain:

d2y

dτ2
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∣
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where the dimensionless parameter β is defined as β = (mgρa)/(3πµ
2
a) = (4ρaρgr

3)/(9µ2
a).

This differential equation can be integrated, with an initial horizontal dimensionless speed dy/dτ |τ=0
· ex = u =

(9µa)/(2ρgr
2)v.

1. Exact solution at low Reynolds number

There is an exact solution to Eq. (B2) at low Reynolds number, i.e., for droplets that are sufficiently small so β ≪ 1.
Equation B2 then simplifies into:

d2y

dτ2
+

dy

dτ
= −ez (B3)
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FIG. 24. Maximum travelled horizontal distance Ψ, as a function of the dimensionless droplet size β. Each symbol corresponds
to a different ejection speed v: (©) v = 10−3 m/s, (⊲) v = 10−2 m/s, (⋆) v = 10−1 m/s, (�) v = 1 m/s, (♦) v = 10 m/s. The

solid line corresponds to Ψ(β)/Ψ(0) ≃ 12β−1/2.

Time-integration yields y = (1− e−τ ) (uex + ez)− τez .
The maximum horizontal distance travelled is then y∞ = limτ→∞ y · ex = u
or, in dimensional form Ψ0 = Ψ(β ≪ 1) = y∞L = 2ρr2v/(9µa).
The condition Re < 1 yields

2rρaL

µaT
< 1 ⇒ β < 1 (B4)

2. Numerical solution for any Reynolds number

The droplets ejected during the sheet fragmentation are in the range m/M0 ∈ [3× 10−6, 3× 10−2] (Fig. 20a), which
corresponds to r ∈ [0.035, 0.75] mm and β ∈ [0.67, 6700]. The ejection speed can reach 10 m/s, so the Reynolds
number at ejection can be as high as 1000. Therefore we need to solve Eq. (B2) numerically.
The solution is represented for dimensionless size β ∈ [10−4, 107] and ejection speed v ∈ [10−3, 10] m/s, in Fig. 24.

Once normalized by Ψ0, the aerodynamic wall Ψ does not depend on ejection speed v anymore, except for very large
speed (here v = 10 m/s) where Ψ/Ψ0 can be twice smaller than at moderate speed. So in first approximation,

Ψ

Ψ0

= F (β) (B5)

where F (β) → 1 for β → 0 and F (β) → 12/
√
β when β → ∞.

The function F (β) satisfies F (0) = 1 (low Reynolds limit), and it scales as F ∼ β−1/2 for β ≫ 1 (high Reynolds
limit). Since β is only dependent on droplet size r and not on speed v, the aerodynamic wall at a distance Ψ is always
approximately proportional to the ejection speed v.

Appendix C: Droplets masses after maximum extension

During retraction, the mass distribution is almost independent of δ, and it is slightly shifted to lower mass with
increasing We. By contrast, the distribution after collapse does depend on both δ and We. The cut-off Φ of the
mass distribution of ejected droplets is again calculated separately for each We and δ, first during sheet retraction
(Fig. 25a) and second after sheet collapse (Fig. 25b). During retraction, the variation of Φ

(

〈m/M0〉2
)

with δ is very
small. Consequently, data from different δ can be pooled, which reveals a power-law dependence in We (Fig. 25a -
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FIG. 25. (Colour online) Cut-off Φ of the mass distribution of ejected droplets, pooled per We and δ: (a) during the retraction
of the sheet, and (b) after collapse of the sheet. Symbols correspond to different We = 186 (©), 367 (⊲), 700 (⋆), 1340 (�),
2435 (♦). Insets: Dependence to We of the cut-off Φ: (a) after pooling all δ. The solid line is Eq. (C1). (b) After pooling
scenarios (II) and (III). The solid line is Eq. (C2).

inset) given by

Φ

(

〈 m

M0

〉2
)

≃ 2.9We
−3/4. (C1)

After the collapse of the sheet, Φ
(

〈m/M0〉3
)

is almost independent of δ at high We, but it sharply decreases
with increasing δ at lower We. The pooling of scenarios (II) and (III) reveals a decrease of the average cut-off with
increasing We given by

Φ

(

〈 m

M0

〉3
II-III)

≃ 104We
−1.7 (C2)

The comparison of Eq. (C1) and Eq. (C2) reveals that, for We . 4000, the mass cut-off is larger after collapse than
during retraction of the sheet. This fact could be the consequence of (i) the likely merging of ejected droplets after
collapse, and (ii) the presence of a very large liquid filament detached from the edge [e.g., in scenario (III)] that does
not instantly destabilize into smaller droplets.
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