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It has long been thought that small amounts of polymer additives can alter the balance between
strain and rotation in turbulent flow. Quantitative evidence for this idea, however, is scant, in part
because measuring the velocity gradient in intense turbulence is very difficult. Here we take a dif-
ferent approach to investigating this question, using the well known preferential concentration effect
of inertial particles in turbulence as a probe of the strain/rotation balance. By measuring the pair
correlation function of weakly inertial particles in a turbulent water flow with varying concentra-
tions of a high-molecular-weight polyacrylamide, we show that particle clustering is monotonically
enhanced as the polymer concentration increases. Our results are consistent with the recently de-
veloped energy flux balance model for polymer turbulence, which demonstrates that the balance
between strain and rotation is indeed modified by polymers and that this effect increases with the
polymer concentration. Our results provide further support for the energy flux balance model as
the proper description of polymer turbulence, and highlight the utility of inertial particle clustering
as a probe for characterizing the small-scale dynamics of turbulence.

Since at least the 1940s, it has been known that even tiny amounts of additives such as long-chain polymers can
significantly modify the properties of turbulent flows. The most well known effect of polymers on turbulence is the
reduction of skin-friction drag in wall-bounded flows [1–3], but polymers can also modify other aspects of the flow,
such as its heat-transfer properties [4]. The specific mechanisms by which polymer additives induce these flow changes
are still somewhat controversial, but it is by now generally agreed that polymers modify the dynamical structure of
the turbulence [3]. There is, for example, both experimental and numerical evidence that polymers tend to attenuate
the small scales of the turbulent energy cascade even in isotropic turbulence far from walls [5–12]. But in addition
to changing the energetics of the turbulence, polymers are also expected to alter the spatial structure of the flow.
In particular, it is widely accepted that polymers change the dynamically set balance between strain and rotation in
turbulence [7, 10, 13], suppressing intense rotation in favor of strain. However, there is little quantitative experimental
evidence to support this hypothesis.
A large part of the difficulty in assessing the possible modification of strain and rotation by polymers stems from

the challenges inherent in directly measuring the velocity gradient in turbulence [14, 15]. Thus, available experimental
evidence for vorticity suppression by polymers is fairly qualitative [13]. We can make progress, however, via indirect
measurements, as long as we have access some other property of the turbulence that is sensitive to the balance between
strain and rotation in a quantitatively understood way. An appealing candidate for such a probe is the well known
preferential concentration effect of inertial particles (that is, particles that are heavier than the fluid) in turbulence.
Inertial particles are well known to avoid strongly rotational regions and thus accumulate in regions of high strain
[16, 17]. Measurements of the statistical properties of the distribution of inertial particles in turbulence are therefore
sensitive to the balance of strain and rotation in the flow, and in numerical studies it has been found that polymers
change these properties in a nontrivial manner [18]. However, as we show below, we can relate these statistics to the
polymer-induced modification of the turbulence without having to measure the velocity gradient tensor itself.
Here, we describe measurements of the two-point position statistics of weakly inertial particles in a turbulent water

flow containing small amounts of a long-chain polyacrylamide. We find that the particle clustering, as quantified by
the behavior of the pair correlation function at small scales, is monotonically enhanced as the concentration of the
polymer is increased. Using theoretical results from Chun et al. [19], we relate this enhancement to the relative amount
of strain and rotation in the turbulence, showing that the polymers do indeed suppress rotation relative to strain.
We further show that our results are in excellent agreement with the recently proposed energy flux balance model for
turbulence in dilute polymer solutions proposed by Xi et al. [11], which allows us to argue how the modification of the
strain-rotation balance scales with the polymer concentration. Our results demonstrate compellingly that polymers
alter the relative amounts of strain and rotation in turbulence in a concentration-dependent way, and provide further
support for the energy flux balance model of turbulence in dilute polymer solutions. Additionally, our results highlight
the efficacy of using the preferential concentration of inertial particles as a probe of small-scale turbulence dynamics.
The preferential concentration (often referred to as “clustering”) of inertial particles in turbulence has been a very

active area of research over the past few decades [20]. Although the precise details of the mechanisms responsible for
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preferential concentration are still debated, it is generally agreed that inertial particles tend to be found in regions of
high strain more commonly than in regions of high vorticity; and thus, because the particles dynamically avoid some
regions of the flow, they appear to cluster together. This clustering is manifest as an enhancement of the particle pair
correlation function g(r) (sometimes also known as the radial distribution function) at small scales, such that g(r)
scales as a power law in r with an exponent that depends on the particle inertia [19, 21, 22]. g(r), defined as

g(r) =
〈
∑

i

∑

i6=j δ(r − rij)〉

n̄
− 1 (1)

where rij is the distance between particles i and j, is the ratio of the likelihood of finding a particle a distance r away
from a target particle to the mean number density (n̄) of particles in the fluid; and note that here, we subtract 1 from
this ratio so that g(r) = 0 if the particles are homogeneously distributed. By perturbatively expanding the relative
position and velocity of pairs of inertial particles in powers of the Stokes number St, which characterizes the inertia
of the particles relative to the carrier flow, Chun et al. [19] argued that for small St, g(r) ∼ (r/η)−ξ, where η is the
Kolmogorov length scale and

ξ ∝ St τ2η 〈Q〉L. (2)

Formally, this relation holds for r ≪ η, where the flow is nearly linear; however, in practice, it tends to hold for
larger r as well [22]. Here, τη is the Kolmogorov time scale and Q = ΩijΩij − sijsij is the second invariant of the
velocity gradient tensor, where sij is the strain rate tensor, Ωij is the rotation rate tensor, and summation is implied
over repeated indices. The operator 〈·〉L is an average taken over ensembles of Lagrangian trajectories. ξ is therefore
sensitive both to the relative amount of strain and rotation in the flow and to the way inertial particles sample these
two fields. Thus, if polymers modify the balance between strain and rotation in the turbulence, we would expect ξ to
change.
Since the original empirical results of Toms [1] and others, many models have been developed to try to explain the

way that polymers modify turbulent flows. Of particular interest for non-wall-bounded flows are predictions for how
the dynamical scales that characterize the turbulent energy cascade will change when polymers are introduced. Most
of these models take advantage of standard analogies between polymer molecules and entropic springs that can be
stretched by strain in the flow, storing elastic energy that is then released (presumably at smaller scales) when the
molecules relax. What differs between various models is the assumption of which properties associated with these
springs determine the coupling to the flow. Lumley, for example, conjectured that the most relevant property of
the polymers was their relaxation time τp [2], while Tabor & de Gennes instead based their model on the amount
of elastic energy stored in the polymer molecules [23, 24]. Neither of these models, however, appears to correctly
explain experimental findings [9, 11, 12]. Lumley’s model, for example, cannot explain the observed dependence on
polymer concentration φ. The Tabor & de Gennes model does include a concentration effect, including a critical
concentration below which the polymers are not expected to influence the turbulence, but has not been found to
be quantitatively correct and is internally inconsistent [11, 25]. To remedy these issues, Xi et al. instead recently
proposed a model based on balancing the flux of elastic energy into and out of the polymers with the flux of energy
through the turbulence cascade rather than working with the energy itself [11]. This elastic energy flux balance model
is much better supported by available experimental evidence, correctly predicting, for example, the dependence of
turbulence statistics on polymer concentration [11, 12]. Of particular relevance here, the elastic energy flux balance
models predicts that length scales should rescale with the polymer concentration by a factor of φ2/5 [11], and time
scales with a factor of φ4/15 [12]. For example, the apparent Kolmogorov length scale in a polymer solution ηp is
predicted to scale as ηp ∼ ηwφ2/5, where ηw is the Kolmogorov scale in a Newtonian fluid under the same driving
conditions, and the Kolmogorov time scale in a polymer solution to scale as τpη ∼ τwη φ4/15.
We can use this model to make a prediction for how the scaling of g(r) should change in the presence of polymers.

Equation 2 tells us that the scaling exponent of g(r) involves the Stokes number, the Kolmogorov time scale, and
the second invariant of the velocity gradient tensor. As described above, we expect that in a polymer solution,
τpη ∼ τwη φ4/15. In turbulent flow, the Stokes number for a small spherical particle is given by

St =
1

18

ρ

ρf

(

d

ηw

)2

, (3)

where ρ is the particle mass density, ρf is the fluid density, and d is the particle diameter. The only parameter

here would we expect to change in the presence of polymers is the Kolmogorov scale, and so Stp ∼ Stwφ−4/5. And
finally, since the strain and rotation rates have units of inverse time, we would expect that 〈Q〉pL ∼ 〈Q〉wLφ

−8/15. Note
that this prediction assumes that the amount of strain and rotation may change in the presence of polymers, but
that the way a given kind of particle will sample the fields will not. This is a reasonable assumption in light of the
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FIG. 1. (a) The pair correlation function g(r) as a function of r/ηw for pure water and five different polymer concentrations.
Note that, as mentioned in the text, we define g(r) so that g(r) = 0 for homogeneously distributed particles. At small scales,
the peak of g(r) increases monotonically with concentration. (b) The same data shown on logarithmic scales. For small r, we
observe roughly power-law behavior, which we fit to determine scaling exponents. We performed these fits between r/ηw = 15
to 60 for φ = 0, 1, and 5 ppm and r/ηw = 40 to 100 for φ = 10, 15, and 20 ppm, as highlighted by the bold curve segments

.

significant amount of experimental evidence that typical turbulence scaling still holds, even in a Lagrangian sense, for
dilute polymer solutions, and that the effect of the polymers is primarily felt as a rescaling of length and time scales
[8, 9, 11, 12]. Thus, the concentration dependence of the rescaled Kolmogorov time and velocity gradient cancel.
Since the theory of Chun et al. [19] was developed for a Newtonian fluid, ξ ∼ Stw (see eq. 2), and the elastic energy
flux balance model predicts that ξ ∼ φ4/5. We note that this prediction only gives a form for the dependence of ξ
on the concentration φ; the actual value of ξ will also depend on other flow and particle parameters, which may be
Reynolds-number dependent.
To test this prediction, we conducted experiments in a von Kármán swirling flow between counter-rotating disks

that we have described in detail elsewhere [12]. Briefly, we generated turbulence in a closed cylindrical tank with a
diameter of 58 cm. The impellers that drive the flow have a diameter of 44 cm, and the distance between the impellers
was 50 cm. To drive the polymers inertially rather than via boundary-layer shear (which could be altered via polymer
drag reduction [26]), the disks were baffled with 5 cm straight vanes. To ensure that the polymer molecules were not
torn apart by the turbulent shear, we controlled the rotation rate of the impellers and kept it fairly low; for this work,
it was fixed at 0.23 Hz. The working fluid was deionized water, and its temperature was kept constant in time and
uniform in space (to within 0.1 ◦C) by controlling the temperature of the aluminum top and bottom plates of the
apparatus. Under these conditions in pure water, the Taylor-microscale Reynolds number was Rλ = 420, the integral
length scale was L = 14.2 cm, the Kolmogorov length scale was ηw = 124 µm, and the Kolmogorov time scale was
τwη = 15.2 ms [12]. We note that the effective viscous dissipation scales may be larger in the polymer solutions, but
it is not yet fully understood how to capture them [9, 11, 12]; thus, we report scales for pure water only, as indicated
by the w superscript.
To measure the behavior of the flow, we used three-dimensional Lagrangian particle tracking [27]. The fluid was

seeded with 30-µm polystyrene microspheres containing a fluorescent dye. Under these conditions, the particle Stokes
number was roughly 3 × 10−3—small but not zero, and so ideal for applying the theory of Chun et al. [19], as it
follows from a perturbative expansion in Stokes number. The particle fluorescence was excited with a Q-switched
Nd:YAG laser pulsed at 10 kHz with an average power of 45 W. We tracked the motion of the particles in three
dimensions with three Photron Fastcam SA5 cameras, each running at 2000 frames per second with a resolution of
1024× 1024 pixels, arranged around the experiment using standard stereomatching and tracking techniques [27]. The
full measurement volume in these experiments had a linear dimension of 2.3 cm, and was located in the center of the
apparatus where the flow is closest to homogeneous. The typical number density of particles in the apparatus was
roughly 10−3 mm−3. We took care to appropriately normalize the contribution to g(r) of particles near the edges of
the measurement volume by accounting for the possibility of neighboring particles outside the field of view.
The polymer we used was a high-molecular-weight (18 × 106 a.m.u.) polyacrylamide (PolySciences 18522). We

used polymer concentrations φ ranging from 1 to 20 parts per million (ppm) by weight. For this polymer, the radius
of gyration Rg at equilibrium is roughly 0.5 µm, the fully stretched length is about 75 µm, and the Zimm relaxation
time τp is 43 ms. The turbulent Weissenberg number Wi = τp/τη = 2.8. Details of our polymer preparation methods
and a characterization of the properties of the flow are described elsewhere [12].
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FIG. 2. Power-law scaling exponents ξ extracted from fits to the data shown in fig. 1 as a function of polymer concentration
φ, plotted on both (a) linear axes and (b) logarithmic axes. Error bars are estimated by both considering the statistical
uncertainties from the fits and from adjusting the ranges over which we fit. The data are consistent with a power-law dependence
of ξ on φ; fitting the data gives a scaling exponent of 0.77 ± 0.04, as shown with the dashed line.

For each of these data sets, we computed the pair correlation function g(r), as shown in fig. 1(a). Even though
the Stokes number is very small, we still see some evidence of preferential concentration, given that the curve is not
flat. Indeed, for the pure water experiments, our data is consistent with that of Saw et al. [22]. But even though the
particles and Reynolds number are the same for all the experiments, we observe that the peak value of g(r) increases
monotonically with the polymer concentration φ, just as suggested by our theoretical arguments above. In fig. 1(b),
we show the same data plotted on a logarithmic scale. Although the power-law scaling range is short, we can still
estimate the scaling exponents ξ(φ) by fitting.

In fig. 2, we show the results of these fits for ξ. The relationship between ξ and φ is consistent with power-
law scaling, as expected. When we fit a power law to the data, we obtain a scaling exponent of 0.77 ± 0.04, in
excellent agreement with the prediction of 4/5 from the energy flux balance model and providing strong support
for our theoretical arguments above. Thus, given that obtaining this scaling prediction required that the difference
between the square of the rotation rate and the square of the strain rate was a function of φ, our results thus confirm
that the balance between strain and rotation is indeed modified by polymers. Quantitatively, our results show that
〈Q〉pL = 〈ΩijΩij − sijsij〉

p
L ∼ φ−8/15, so that indeed rotation is suppressed relative to strain in a way that increases

monotonically with polymer concentration.

In summary, we have measured the preferential concentration statistics of weakly inertial particles in a turbulent
flow in a dilute polymer solution. We find that the preferential concentration increases monotonically with the polymer
concentration, in a way that is quantitatively captured by the energy flux balance model for turbulence in polymer
solutions. Because preferential concentration is a result of the balance between strain and rotation in turbulence,
these results give us an indirect way to confirm that, as has long been thought, polymers modify the structure of the
velocity gradient field in turbulence. Thus, in addition to illuminating the ways in which polymers modify turbulence,
our results also point to the potential power of using inertial particles to probe the statistics of the difficult-to-measure
velocity gradient, a method we expect to find further applications in turbulence.
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