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The notion of sympathetic interactions between solids immersed in fluids is ubiquitous in applied
physics, and the complexity of these interactions often results in unexpected outcomes. In this paper,
we study the water entry of a rigid wedge in the presence of a neutrally-buoyant solid cylinder below
the water surface. We combine particle image velocimetry and direct measurements to elucidate
the fluid-structure interaction. While the fluid confinement from the cylinder elicits a predictable
increase in the pressure close to the keel, it is also responsible for a surprising reduction in the
pressure toward the pile-up. Through a detailed solution based on potential flow theory, we offer an
explanation for this phenomenon. Our results may find application in the study of marine vessels
that maneuver in occluded waters and seabirds that plunge and dive close to rocks or ice.

PACS numbers: 46.40.Jj, 47.55.dr, 47.80.Fg, 47.80.Jk, 47.85.Dh

I. INTRODUCTION

Water entry refers to a general class of problems in which a solid body, rigid or compliant, “enters” the surface of
an otherwise quiescent fluid at a high speed [1, 2]. During the entry, the fluid piles up at the intersection between the
solid and the free surface, called pile-up region, and a spray jet forms. The fluid velocity is maximized in the pile-up
and spray jet, where most of the impact energy is transferred [3]. The large velocity attained in the pile-up region is
responsible for a concurrent increase in the fluid pressure with respect to the fluid bulk.

Water entry problems are typically dominated by inertia, so that gravity, viscosity, compressibility, and surface
tension can be neglected to a first degree of approximation, as shown in several studies [2]. For example, computational
simulations by Facci and Ubertini [4] have investigated the roles of viscosity and gravity, through pertinent Reynolds
and Froude numbers, on the physics of impact of a rigid wedge. Campana et al. [5] studied compressibility effects
in water entry of wedges and cylinders, and Vella and Metcalfe [6] investigated the extent of surface tension effects
on water entry of small-scale objects. Notwithstanding the possibility of neglecting these secondary phenomena with
respect to inertia, a full understanding of water entry remains elusive.

The most studied instance of water entry is constituted by hull slamming of marine vessels [2, 7], which has been the
object of intense scrutiny since the seminal studies of von Karman [8] and Wagner [9] early last century. In fact, the
repeated entry of the hull of a vessel on the water surface induces persistent, large impulsive loadings on the structure,
which could reduce the lifetime of the vessel and hinder its maneuverability [1]. Beyond nautical engineering, instances
of water entry are routinely found in engineering and life science, such as water landing of crew capsules and seaplanes
in aerospace engineering [10], plunging and diving of seabirds [11], and basilisk lizards running on water [12].

This vast array of applications has fueled a large number of experimental and theoretical studies. Building on
the classical work of von Karman [8] and Wagner [9], the community has made significant progress in the experi-
mental quantification [13–15] and theoretical prediction of the impact [2, 16]. For example, we have recently seen
breakthroughs in understanding how the elastic compliance of the solid could help modulate the hydrodynamic load-
ing [17, 18]. Similarly, recent findings have brought about new insight on the role of the shape of the impacting body,
hinting at the possibility of optimal shape design with respect to the hydrodynamic loading and energy transfer [19, 20].

In all these studies, the impacting body is considered as the sole solid object that interacts with the fluid, leaving
untouched an entire field of investigation. The need to contemplate the presence of obstacles in the fluid is evident in
the study of marine vessels that maneuver in occluded waters and seabirds that plunge and dive close to rocks or ice.
In principle, these obstacles could sympathetically interact with the entering body, thereby transforming the physics
of the impact.

The notion of sympathetic interactions between solids immersed in fluids is ubiquitous in applied physics, ranging
from hydrodynamic coupling of vibrating beams [21, 22], implosion of cylindrical shells in confining tubes [23], and
fish swimming in tandem [24]. The complexity of the hydrodynamic coupling often results in unexpected outcomes.
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FIG. 1: Schematics of the problem and definition of significant quantities: (a) experimental apparatus and data
acquisition system; wedge, fluid, and cylinder at (b) the onset of the impact (red markers label the location of the
pressure sensors); and (c) few milliseconds into the entry.

For example, results by Khalid et al. [24] have shown a surprising inverted drag advantage for the leading fish over
the following one.

In this paper, we delve into sympathetic interactions during water entry. Specifically, we experimentally study
the water entry of a rigid wedge in the presence of a neutrally-buoyant cylinder below the water surface. Particle
image velocimetry (PIV) is performed at the mid-span of the wedge where three-dimensional effects are minimal [25].
These measurements are synergistically combined with direct readings via an array of sensors, toward a comprehensive
characterization of the fluid-structure interaction. Informed by experimental observations, we establish a potential
flow solution based on the modified Logvinovich model (MLM) [26, 27], which offers an improvement of the classical
Wagner theory for wedges of moderate deadrise angle.

II. EXPERIMENTS

A. Experimental setup and data analysis

The experimental setup used in this study is equivalent to the one described in [28]. Here, we briefly describe the
main features of the setup, consisting of a custom-made apparatus and a data acquisition system. The apparatus
comprises a water tank of dimensions 800× 320× 350 mm, an aluminum frame that holds the tank 800 mm above the
floor, and a free-fall mechanism to release the wedge. Specifically, the mechanism includes a 1.5 m vertical aluminum



3

rail and a carriage system. The carriage system consists of a cart that runs along the rail and an aluminum arm
rigidly attached to the cart. The system is connected to a wedge-shaped specimen with length L = 190 mm, width
W = 200 mm, and deadrise angle β = 37◦ which symmetrically impacts the water surface, see Fig. 1. The total dry
mass of the impacting body, which includes the carriage system and wedge, is Mt = 0.89 kg. Through a magnet, the
impacting body is held at the desired height of H = 500 mm.

The data acquisition system consists of planar PIV setup and an array of sensors that are embedded in the wedge and
apparatus. Briefly, the sensors include one potentiometer that estimates the wedge entry depth ξ, two accelerometers
(one capacitive and one piezoelectric) that measure the acceleration during free-fall and impact, and two pressure
sensors that are symmetrically placed at a distance Ls from the wedge keel, along the oblique sides of the wedge, see
Fig. 1. The acquisition frequency of the PIV system and the sensors are set to 6 kHz and 10 kHz, respectively.

The presence of the cylinder in the fluid causes a large shadow in its trail, if the laser sheet only arrives from one
direction. To mitigate this effect, the laser sheet is divided into two sheets of equal power through a rectangular
splitter that is mounted below the water tank. Each of the sheets is then reflected on the measurement plane via two
mirrors, one installed below the tank and the other on the side, see Fig. 1(a). Polyamide seeding particles of 50µm
in diameter are used as PIV tracers.

The cylinder (radius of R = 20 mm and length of 150 mm) is fabricated by a resin casting process to control for
its density. Based on preliminary experiments, we found that the obtained specific gravity of 1.01 is sufficient for
considering the cylinder to be neutrally buoyant, since its average sinking velocity is 30 times less than wedge entry
velocity V0 = 3.07 m/s. Neutral buoyancy is herein relevant since we aim at mitigating experimental confounds
associated with gravity effects, such that the motion of the cylinder could be univocally related to its sympathetic
interaction with the entering wedge.

Data acquisition is initiated when the wedge is released through the magnet. Experiments are performed at room
temperature and repeated three times. A maximum of 90 PIV frames are stored for a total of 15 ms of recording.
During the wedge free-fall, the cylinder slowly sinks until it reaches an averaged vertical location yc = 28.7 mm at the
onset of the impact, set to t = 0. Similar to Russo et al. [28], the velocity of the wedge is estimated by integrating
the accelerometers reading.

To quantify the cylinder’s effect on the flow physics, we measure the velocity field by processing the PIV images
using the open source MATLAB GUI PIVLab [29]. Similar to our previous work [15], we perform a masking procedure
that excludes the area above the water surface, the wedge, and the cylinder from PIV processing. The mask also
serves to estimate the left c1 and right c2 wetted widths.

In addition, PIV images are analyzed via Xcitex ProAnalyst software (www.xcitex.com) to track two points on
the cylinder and estimate its motion as the average of the two. This provides the horizontal, xc, and vertical, yc,
coordinates of the cylinder in time.

B. Results

By comparing the measured displacement ξ, velocity ξ̇, and acceleration ξ̈ with those presented in [28], see Fig. 2,
we do not notice any effect of the cylinder presence on the wedge motion. Results are averaged across the repetitions
and presented along with their standard deviations. Figure 2 demonstrates that the influence of the cylinder on the
wedge kinematics is negligible, whereby the results of the new experiments presented in this study closely follow the
results in [28] until the wedge touches the cylinder. After the wedge touches the cylinder, at t = 13.5 ms into the
entry, we register large fluctuations in the acceleration data.

We present the PIV velocity field in Fig. 3(a). The results correspond to the fluid velocity field overlaid with the
contours of the velocity magnitude at t = 7.5 ms. The presence of the cylinder creates a confined flow between the
wedge and the cylinder, causing an asymmetric velocity distribution with respect to the wedge keel. In contrast
with expectations, we do not register an increase in the velocity field on the right-hand-side (where the cylinder
should confine the fluid) with respect to the left-hand-side. Such expectations would be based on previous results on
shallow water entry [31, 32] and vibrations of structures close to confining walls [33, 34], which have shown that fluid
confinement results in an increase of the velocity. But, our results display a surprising decrease on the right-hand
side, due to the presence of the cylinder.

Such a unexpected disturbance in the velocity distribution was echoed by an equivalently surprising distribution
for the hydrodynamic loading experienced by the wedge. Specifically, the pressure time-histories at the locations
of the pressure sensors installed at Ls = 47 mm on the two sides of the wedge, shown in the top row of Fig. 3(b),
indicate that the hydrodynamic loading is lower on the cylinder side until the wedge touches the cylinder at 13.5 ms
into the entry. At the onset of the impact, we observe large fluctuations in the pressure loading, but until then, a
clear reduction of the pressure due to the cylinder is registered. Interestingly, the observed asymmetry in the pressure
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FIG. 2: (a) Entry depth ξ, (b) velocity ξ̇, and (c) acceleration ξ̈ of the wedge from experiments in the presence (solid
black) and in the absence (dashed blue) of the cylinder (results reproduced from [28]) as functions of time. The time
instant of the contact between the wedge and the cylinder is highlighted by a vertical red line. Results are averaged
across repetitions and presented with their corresponding standard deviations.

does not manifest into a change of the total force experienced by the wedge with respect to our previous experiments
in [28] in the absence of the cylinder, as can be seen from acceleration data in Fig. 2.

The physical underpinning of our unexpected findings should be sought in the presence of the free surface, which
makes the water entry problem fundamentally different from previous studies on the dynamics of structures close to
confining walls [33, 34] or vibrating in close proximity to each other [21, 22]. These studies would in fact posit an
increase in the pressure with the inverse of the distance between the wedge and the cylinder. Previous studies on
shallow water entry [31, 32] would also support this hypothesis, but the finite extent of the cylinder with respect to
a theoretically infinite bottom wall induces a difference between the problems.

For further insight, we display the location of the cylinder in Fig. 4(a). Based on these findings, we conclude that
the cylinder does not appreciably move vertically during the impact. On the other hand, a more noticeable horizontal
displacement is observed due to the hydrodynamic loading from the fluid. However, in comparison to the wedge,
the cylinder movement is an order of magnitude smaller. Thus, to a first degree of approximation, it is tenable to
hypothesize that the cylinder remains stationary during impact.

Also, we track two points on the cylinder to estimate its rotation as the change of the angle ∆θ between them from
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FIG. 3: (a) PIV images overlaid with velocity vectors and contour plot of the velocity magnitude in m/s at 7.5 ms;
the blue markers identify the location of the pressure sensors on the right-hand side of the wedge. (b) Pressure time-
histories at the locations of the pressure sensors at Ls = 22 mm (bottom) and 47 mm (top) [30]. The time instant of
the contact between the wedge and the cylinder is highlighted by a vertical red line. Note that the results in (b) are
averaged across the repetitions and presented with their corresponding standard deviations.
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FIG. 4: (a) Horizontal xc and vertical yc coordinates of the cylinder (top) and time-histories of the left c1 and right
c2 wetted widths (bottom). (b) Rotation of the cylinder during impact. Note that the results in (a) and (b) are
averaged across the repetitions and presented with their corresponding standard deviations.

the initial configuration. The results in Fig. 4(b) display that the cylinder does not rotate throughout the impact,
suggesting that it experiences a negligible torque during entry. The time-histories of c1 and c2 indicate that the
wetted widths closely follow each other throughout the whole duration of the impact, with c2 being slightly smaller.
This may indicate that the presence of the cylinder influences the spatio-temporal evolution of the pile-up on the
right-hand side of the wedge, as also evidenced by the pressure measurements in Fig. 3(b).

As displayed in Fig. 3(a), the sensors at Ls = 47 mm are outside the confined flow region between the wedge and
the cylinder, in the initial stage of the entry. To offer insight into the hydrodynamic loading within this confined
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flow region, we perform another set of measurements (five repetitions) using two pressure sensors at Ls = 22 mm,
see the bottom row of Fig. 3(b). In agreement with our original expectations, we register an increase of pressure on
the right-hand side of the wedge. Besides a higher peak value, the pressure is slightly larger on the right-hand side,
suggesting that the fluid confinement is, in fact, responsible for an increase in the pressure, albeit restricted to the
confined region between the wedge and cylinder. This increase in pressure is, in turn, accompanied by the reduction
in the hydrodynamic loading away from the confinement region.

III. THEORETICAL EXPLANATION

Overall, our experimental results offer compelling evidence that the cylinder, albeit nearly stationary, influences the
physics of the impact, and it does so in a rather complex manner. A possible explanation for this empirical evidence
could be proposed based on the classical added mass explanation, first presented by von Karman [8]. On the right-
hand side where the cylinder is present, a lesser amount of water is displaced during the impact, thereby reducing
the pressure experienced by the wedge. While a simplistic added mass explanation might predict the decrease in the
pile-up, it would not suffice to predict the contradictory increase toward the keel.

Toward a principled analysis of the fluid-structure interaction, we propose a theoretical formulation based on the
MLM model, which describes the fluid flow within a two-dimensional potential flow theory and solves for the pressure
by retaining second-order nonlinearities in the Bernoulli equation [26, 27]. Compared to Wagner’s solution [9], the
MLM allows for the study of moderately large deadrise angles, compatible with our experiments.

A key step in the implementation of the MLM is the solution of the mixed boundary value problem resulting from
the presence of the cylinder in the fluid. Toward an accurate description of the experiment, we account for the motion
of the cylinder from Fig. 4(a). In addition, we consider the left and right wetted widths to be different, and compute
them as part of the solution. A boundary integral representation of the velocity potential is obtained through the
method of Green’s functions [35], which we numerically solve using the Weierstrass approximation theorem with
Legendre polynomials as basis functions. Details of the MLM formulation is discussed in what follows.

A. Modeling framework

Within the MLM approach, neglecting gravity, viscosity, compressibility, and surface tension effects, the pressure
profile on the wetted portion of the wedge is obtained through the nonlinear Bernoulli equation [27, 28]

p(x, yw(x, t), t) = −ρf

∂φ(x, y, t)

∂t

∣∣∣∣
y=0

− ξ̈(t) (|x| tanβ − ξ(t)) +
1

2

1

1 + tan2 β

(
∂φ(x, y, t)

∂x

∣∣∣∣
y=0

)2

+
1

2
ξ̇2(t)

 , (1)

where ρf is the fluid density, φ is the velocity potential obtained via Wagner formulation, and yw = |x| tanβ − ξ is
the position of the wedge at time t. The first two terms on the right-hand side of Eq. (1) relate to the pressure from
the unsteady portion of the flow, while the remaining two are associated with the dynamic pressure.

Within Wagner theory, we linearize the boundary conditions for the velocity potential which are imposed on the
undisturbed free surface at y = 0, such that we arrive at the following mixed boundary value problem:

∆φ(x, y, t) = 0, (2a)

∂φ(x, y, t)

∂y
=
∂yw(x, t)

∂t
, y = 0 and − c1(t) < x < c2(t), (2b)

∂φ(x, y, t)

∂n
= vc(t) · n, R =

√
(x− xc(t))2 + (y + yc(t))2, (2c)

φ(x, y, t) = 0, y = 0 and x < −c1(t), x > c2(t), (2d)

φ(x, y, t)→ 0, y → −∞ and x→∞, (2e)

where ∆ is the Laplace operator, n is the inward unit normal to the cylinder, vc(t) = (ẋc(t), ẏc(t)) is the cylinder
velocity, c1 and c2 are the left and right wetted widths, respectively, and a dot indicates inner product. Irrotationality
and incompressibility of the flow are imposed through Eq. (2a); Eqs. (2b) and (2c) enforce the no-penetration boundary
condition on the wetted portion of the wedge and on the immersed cylinder, respectively; the pressure is set to zero
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on the undisturbed free surface through Eq. (2d); and Eq. (2e) indicates that the flow is at rest far away from the
entry region.

By defining the nondimensional coordinates x̂ = x/a1 + a2 and ŷ = −y/a1, where a1 = (c1 + c2)/2 and a2 =
(c1 − c2)/(c1 + c2), we transform the mixed boundary value problem into

∆φ(x̂, ŷ, t) = 0, (3a)

∂φ(x̂, ŷ, t)

∂ŷ
= a1(t)ξ̇(t), ŷ = 0 and |x̂| < 1, (3b)

∂φ(x̂, ŷ, t)

∂n
= a1(t) (vc(t) · n) , R̂(t) =

√
(x̂− x̂c(t))2 + (ŷ − ŷc(t))2, (3c)

φ(x̂, ŷ, t) = 0, ŷ = 0 and |x̂| > 1, (3d)

φ(x̂, ŷ, t)→ 0, ŷ → −∞ and x̂→∞, (3e)

where R̂ = R/a1, x̂c = xc/a1 + a2, and ŷc = yc/a1.
We establish a solution of the mixed boundary value problem in Eq. (3) through the theory of Green’s functions.

Specifically, we define the Green’s function g(x̂c, ŷc, R̂, x̂, ŷ|ζ, η) as the solution of the following mixed boundary value
problem [35, 36]:

∆g(x̂c(t), ŷc(t), R̂(t), x̂, ŷ|ζ, η) = −δ(x̂− ζ)δ(ŷ − η), (4a)

g(x̂c(t), ŷc(t), R̂(t), x̂, ŷ|ζ, η) = 0, ŷ = 0 (4b)

∂g(x̂c(t), ŷc(t), R̂(t), x̂, ŷ|ζ, η)

∂n
= 0, R̂(t) =

√
(x̂− x̂c(t))2 + (ŷ − ŷc(t))2, (4c)

g(x̂c(t), ŷc(t), R̂(t), x̂, ŷ|ζ, η)→ 0, ŷ → −∞ and x̂→∞. (4d)

The solution of Eq. (3) is then obtained by substituting the Green’s function from Eq. (4) into Eq. (6.0.13) in [35],
see also Example 1.1.4 in [36], to arrive at

φ(x̂, ŷ, t) =

∫ 1

−1

φ(ζ, 0, t)
∂g(x̂c(t), ŷc(t), R̂(t), x̂, ŷ|ζ, η)

∂η

∣∣∣∣
η=0

dζ

−
∫ π

−π
a1(t)R̂(t) (ẋc(t) cosα+ ẏc(t) sinα) g(x̂c(t), ŷc(t), R̂(t), x̂, ŷ|R̂(t) cosα, R̂(t) sinα) dα,

(5)

where α is measured counterclockwise from the horizontal axis x̂. Eq. (5) demonstrates that the knowledge of the
velocity potential on the wetted wedge is sufficient to compute the fluid flow everywhere, through an integration
involving the Green’s function. The pressure in the MLM formulation in Eq. (1) is also determined upon knowledge
of φ(x̂, 0, t). We seek to find φ(x̂, 0, t) in Eq. (5) through the boundary condition in Eq. (3b); substitution of Eq. (5)
into Eq. (3b) yields the following integral equation for φ(x̂, 0, t)

a1(t)ξ̇(t) =

∫ 1

−1

φ(ζ, 0, t)
∂2g(x̂c(t), ŷc(t), R̂(t), x̂, ŷ|ζ, η)

∂ŷ∂η

∣∣∣∣∣
η=0, ŷ=0

dζ

−
∫ π

−π
a1(t)R̂(t) (ẋc(t) cosα+ ẏc(t) sinα)

∂g(x̂c(t), ŷc(t), R̂(t), x̂, ŷ|R̂(t) cosα, R̂(t) sinα)

∂ŷ

∣∣∣∣
ŷ=0

dα.

(6)

The details to determine the Green’s function as the solution of the mixed boundary value problem in Eq. (4) is
summarized in Appendix A.

The unknowns a1 and a2 are yet to be determined to achieve complete closure of the formulation. These unknowns,
which depend on the wetted widths c1 and c2, might be found using the Wagner condition [37]. This condition states
that the free surface elevation should match the body profile at c1 and c2, that is,

yw(x, t)

∣∣∣∣
x=c1(t),−c2(t)

= − 1

a1(t)

∫ t

0

∂φ(x/a1(τ) + a2(τ), ŷ, t)

∂ŷ

∣∣∣∣
ŷ=0,x=c1(t),−c2(t)

dτ. (7)
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The complexity of the formulation does not permit the direct use of Eq. (7) due to the temporal integration involved.
To obviate this difficulty, we define a displacement potential, following [38, 39],

ψ(x, y, t) =

∫ t

0

φ(x, y, t) dτ, (8)

and solve the complementary boundary value problem for ψ

∆ψ(x, y, t) = 0, (9a)

∂ψ(x, y, t)

∂y
= yw(x, t), y = 0 and − c1(t) < x < c2(t), (9b)

∂ψ(x, y, t)

∂n
= lc(t) · n, R =

√
(x− xc(t))2 + (y + yc(t))2, (9c)

ψ(x, y, t) = 0, y = 0 and x < −c1(t), x > c2(t), (9d)

ψ(x, y, t)→ 0, y → −∞ and x→∞, (9e)

where lc(t) = (lx, ly), and lx = xc(t)− xc(0) and ly = yc(t)− yc(0) are the horizontal and vertical components of the
cylinder displacement, respectively. Changing to nondimensional coordinates, we establish

∆ψ(x̂, ŷ, t) = 0, (10a)

∂ψ(x̂, ŷ, t)

∂ŷ
= −a1(t)yw(x̂, t), ŷ = 0 and |x̂| < 1, (10b)

∂ψ(x̂, ŷ, t)

∂n
= a1(t) (lc(t) · n) , R̂(t) =

√
(x̂− x̂c(t))2 + (ŷ − ŷc(t))2, (10c)

ψ(x̂, ŷ, t) = 0, ŷ = 0 and |x̂| > 1, (10d)

ψ(x̂, ŷ, t)→ 0, ŷ → −∞ and x̂→∞. (10e)

Solution of the boundary value problem in Eq. (10) can be undertaken within the same framework introduced to
solve φ. Specifically, by utilizing the Green’s function theorem, we arrive at

− a1(t)yw(x̂, t) =

∫ 1

−1

ψ(ζ, 0, t)

 1

π(x̂− ζ)2
+
∂2gc(x̂c(t), ŷc(t), R̂(t), x̂, ŷ|ζ, η)

∂ŷ∂η

∣∣∣∣∣
η=0, ŷ=0

 dζ

−
∫ π

−π
a1(t)R̂(t) (lx cosα+ ly sinα)

[
∂gw(x̂, ŷ|R̂(t) cosα, R̂(t) sinα)

∂ŷ

∣∣∣∣
ŷ=0

+
∂gc(x̂c(t), ŷc(t), R̂(t), x̂, ŷ|R̂(t) cosα, R̂(t) sinα)

∂ŷ

∣∣∣∣∣
ŷ=0

 dα.

(11)

By construction, ψ does not have singularities at the jet root locations c1 and c2, unlike φ; therefore, Wagner
condition for this problem reduces to the determination of the wetted widths for which the displacement is finite at
the jet roots [38, 39]. Since ψ(x̂, 0, t) = 0 on the free surface, it is trivial that

∂ψ(x̂, 0, t)

∂x̂

∣∣∣∣
x̂=±1

= 0. (12)

Although the current formulation allows for the simultaneous computation of the wedge and cylinder motion through
the use of Newton’s second law of motion, we have opted to use experimental data of the wedge and cylinder motion
to avoid confounds in the calculation of the hydrodynamic loading. The details of the semi-analytical treatment of the
mathematical model are presented in Appendix B. We input the experimental time-traces of the wedge and cylinder
motion, as well as their derivatives into the MLM formulation and take ρf = 1000 kg/m3 to estimate the loading
from Eq. (1). More specifically, we solve the following equations: Eqs. (B4), (B9), (B15), and (B16). To compute the
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velocity and acceleration of the cylinder from experimental data (horizontal lx and vertical ly), we fit the horizontal
and vertical displacements with linear functions in χ, where χ = ξ − V0t.

Upon estimating the slope from fitting, the velocity and acceleration are readily evaluated from the wedge motion
and entry speed. The feasibility of a linear approximation for the cylinder motion with respect to χ rests upon the
loading exerted by the fluid on the cylinder, which should be a linear function of the wedge acceleration, due to
hydrodynamic coupling. Figure 5 confirms the validity of the proposed fit. Finally, we comment that the accuracy of
the numerical approach presented in this Appendix was checked against original Wagner’s solution when the cylinder
is absent.
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FIG. 5: Experimental results for the horizontal lx and vertical ly cylinder displacements versus χ, together with their
corresponding linear fits.

B. Results

The estimated time histories of c1 and c2 from the MLM formulation, along with their derivatives, ċ1 and ċ2, are
shown in Fig. 6(a). Theoretical predictions on the wetted width are in agreement with experimental data in Fig. 4(a),
whereby c1 and c2 closely follow each other throughout the impact, with c2 taking smaller values at the end. The
rate of change of the right wetted width ċ2 displays an interesting behavior: at the beginning of the impact, ċ2 closely
follows ċ1, but from t = 2 to 4.5 ms it takes slightly higher values, before dropping below ċ1 for the rest of the impact.
This behavior evidences the influence of the cylinder on the spatio-temporal evolution of the pile-up on the right-hand
side of the wedge. Based on these findings, we expect that the presence of the cylinder should have an important role
on the hydrodynamic loading distribution. In fact, in the MLM formulation, the hydrodynamic loading is proportional
to the rate of the change of the wetted widths ċ1 and ċ2. Therefore, the predicted difference between ċ1 and ċ2 should
translate into a tangible difference between the left- and right-hand side loadings, especially in the pile-up regions, as
also seen from experiments in Fig. 4.

Such a difference is demonstrated in Fig. 6(b), where we display predictions on the pressure profiles on the entire
wetted width of the wedge at three time instants. The pressure on the right-hand side at t = 4 ms is higher than
that on the left-hand side, which may be ascribed to the larger ċ2 values found in Fig. 6(a). After t = 4.5 ms, the
pressure profiles display a consistent decrease in the right pile-up with respect to the left pile-up, in agreement with the
predicted decrease of ċ2 beyond this time instant. However, the pressure in the proximity of the keel, in the confined
region between the wedge and the cylinder, still attains larger values than the left-hand side. Thus, after t = 4.5 ms,
pressure variations close to the keel offset the differences in the two pile-ups, resulting in a secondary change in the
force resultant on the right-hand side of the wedge. Such a counterbalancing effect explains the modest change of the
overall motion of the wedge due to the cylinder. From t = 2 to 4.5 ms, the force resultant on the right-hand side is
higher than the left-hand side, but values are not sufficiently large to elicit a change in the motion of the wedge.

The MLM is also successful in qualitatively anticipating the time evolution of the pressure at Ls = 22 and 47 mm,
with respect to experimental observations. More specifically, the MLM predicts an increase in the pressure on the
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FIG. 6: (a) Time-histories of the left c1 and right c2 wetted widths (top) and their derivatives ċ1 and ċ2 (bottom) from
MLM. (b) Pressure profile on the wedge wetted surface from MLM; the location of the keel and the pressure sensors
are highlighted by * (keel), + (sensors at Ls = 22 mm), and × (sensors at Ls = 47 mm). (c) Pressure time-histories
at Ls = 22 mm (blue) and Ls = 47 mm (black) on the left- (solid) and right- (dashed) hand sides of the wedge from
MLM.

right-hand side with respect to the left-hand side for the sensors closer to the keel, while it anticipates the opposite
trend for the other pair of sensors, see Fig. 6(c). The slight offset of the keel position with respect to the origin in
Fig. 6(b) and the modest lag between the pressure time histories in Fig. 6(c) are both related to the difference in the
pile-up evolution on the two sides of the wedge, which is incorporated in the MLM.

Based on the MLM results, we identify two key effects of the cylinder. On the one hand, it creates a confined flow
in the vicinity of the keel, where pressure increases. On the other hand, its presence decreases the amount of fluid
that could be transported to the pile-up, begetting a decrease of the pressure therein. Another factor that may be
important in shaping the sympathetic interaction between the wedge and the cylinder is represented by the water jets
in the pile-up regions. As shown in [3], in the absence of occluding obstacles, these jets contain most of the energy
imparted by the wedge during the impact. It is thus tenable to hypothesize that the cylinder might modulate the
velocity and thickness of the jets, ultimately inducing a nonsymmetric distribution of the pressure along the wetted
portion of the wedge. However, neither the MLM nor our experimental results can support a detailed study of the
physics of the jets. Future work might seek to develop this aspect through direct numerical simulations or detailed
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flow measurements of the jets.

IV. CONCLUSIONS

In this paper, we analyzed the water entry of a rigid wedge in the presence of a solid cylinder below the water
surface. Our study indicates a surprising effect of the presence of the cylinder. While the presence of the cylinder
elicits a predictable increase in the pressure close to the keel, it is also responsible for a pressure drop in the vicinity of
the pile-up. The unanticipated decrease of pressure can be partially explained through the added mass phenomenon,
whereby the presence of the cylinder leads to a reduction in the virtual mass that is displaced by the wedge during
its entry. However, this minimalistic model would not suffice to predict the concurrent pressure increase toward the
keel.

Further insight into the physics of water entry was obtained with a potential flow solution of the problem, which
offered a more precise quantification of the fluid-structure interaction. Based on our theoretical results we identified
two key effects of the cylinder. First, the presence of the cylinder creates a confined flow in the vicinity of the keel,
where pressure increases. Due to the presence of the cylinder, less amount of fluid is transported to the pile-up,
resulting in a decrease of the wetted width and pressure on the side where the cylinder is located.

It is tenable that the water jets, in the pile-up regions, could be important in shaping the sympathetic interaction.
However, neither the MLM nor our experimental results support a detailed study of the physics of the jets. Thus, a
possible future direction might seek to investigate the effect of the jets through direct numerical simulations or detailed
flow measurements. Other possible avenues for future work might entail a distributed measurement of the pressure
on the entire wedge, parametric analysis of the geometric and physical factors, and mathematical modeling via a
generalized Wagner theory. Increasing the number of pressure sensors on the wedge may be practically difficult due
to the complex wiring that would be required. Pressure measurement might instead be simpler through a PIV-based
pressure reconstruction technique that extends our previous work [40] to treat a solid object in the fluid domain.
These additional data should be collected by systematically varying the initial position of the cylinder with respect to
the wedge, as well as their relative size to isolate key nondimensional factors of the fluid-structure interaction. Finally,
a generalized Wagner theory could assist in improving our prediction of the pressure distribution on the body profile,
by properly addressing nonlinear boundary conditions.
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Appendix A: Green’s function

The task here is to determine the Green’s function, as the solution of the mixed boundary value problem in Eq. (4).
Such a Green’s function can be easily constructed using the method of images. Within this approach, additional
free-space Green’s functions, outside the domain of interest, are subtracted from or added to the free-space Green’s
function in the domain of interest to define boundaries of Dirichlet (g = 0) or Neumann (∂g/∂n = 0) type, respectively,
see Section 6.2 in [35]. The free-space Green’s function for Laplace equation in two dimensions is [35]:

gfs(x̂, ŷ|ζ, η) = − 1

4π
ln
[
(x̂− ζ)2 + (ŷ − η)2

]
. (A1)

Using Eq. (A1), we construct the intended Green’s function for Eq. (4) as summarized in the following two steps.
First, we add a free-space Green’s function to satisfy the Neumann boundary condition on the cylinder surface

using the so-called “inversion with respect to the circle” rule, see Section 6.3 in [35]. Specifically, if we define

ρ
(
x̂c, ŷc, R̂

)
=

1

R̂

√
(ζ − x̂c)2 + (η − ŷc)2, (A2)

as the normalized distance between the center of the cylinder and the free-space Green’s function source, the added
free-space Green’s function should be placed at the same line that connects the cylinder’s center with the source, but
at a normalized distance of 1/ρ.
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The second and final step entails mirroring the Green’s function built during the first step with respect to the x̂-axis
and performing a subtraction to satisfy the Dirichlet boundary condition at ŷ = 0. Thus, we stablish:

g(x̂c, ŷc, R̂, x̂, ŷ|ζ, η) =
1

4π
ln

[
(x̂− ζ)2 + (ŷ + η)2

(x̂− ζ)2 + (ŷ − η)2

×

(
(x̂− x̂c) ρ2

(
x̂c, ŷc, R̂

)
− (ζ − x̂c)

)2
+
(

(ŷ + ŷc) ρ
2
(
x̂c, ŷc, R̂

)
+ (η − ŷc)

)2
(

(x̂− x̂c) ρ2
(
x̂c, ŷc, R̂

)
− (ζ − x̂c)

)2
+
(

(ŷ − ŷc) ρ2
(
x̂c, ŷc, R̂

)
− (η − ŷc)

)2
 , (A3)

where the first fraction in the argument of the logarithm in Eq. (A3) corresponds to the original Green’s function of
the Wagner formulation with no cylinder present, while the second fraction encapsulates the contribution from the
cylinder. We use this property to write the Green’s function as the summation of two terms, associated with the
wedge and the cylinder, namely,

gw(x̂, ŷ|ζ, η) =
1

4π
ln

[
(x̂− ζ)2 + (ŷ + η)2

(x̂− ζ)2 + (ŷ − η)2

]
, (A4a)

gc(x̂c, ŷc, R̂, x̂, ŷ|ζ, η) =
1

4π
ln


(

(x̂− x̂c) ρ2
(
x̂c, ŷc, R̂

)
− (ζ − x̂c)

)2
+
(

(ŷ + ŷc) ρ
2
(
x̂c, ŷc, R̂

)
+ (η − ŷc)

)2
(

(x̂− x̂c) ρ2
(
x̂c, ŷc, R̂

)
− (ζ − x̂c)

)2
+
(

(ŷ − ŷc) ρ2
(
x̂c, ŷc, R̂

)
− (η − ŷc)

)2
 .
(A4b)

Here, gw correspond to the wedge contribution while gc to the cylinder. Note that gc is a function of the cylinder
position. This decomposition suggests the possibility of considering more than one cylinder by simply summing their
corresponding Green’s function. Thus, the proposed mathematical framework can be extended to any number of rigid
bodies within the fluid domain.

Appendix B: Semi-analytical treatment of the mixed boundary value problem

Upon establishing a closed-form expression for the Green’s function in Appendix A, we substitute Eq. (A3) into
Eq. (6) to obtain

a1(t)ξ̇(t) =

∫ 1

−1

φ(ζ, 0, t)

 1

π(x̂− ζ)2
+
∂2gc(x̂c(t), ŷc(t), R̂(t), x̂, ŷ|ζ, η)

∂ŷ∂η

∣∣∣∣∣
η=0, ŷ=0

 dζ

−
∫ π

−π
a1(t)R̂(t) (ẋc cosα+ ẏc sinα)

[
∂gw(x̂, ŷ|R̂(t) cosα, R̂(t) sinα)

∂ŷ

∣∣∣∣
ŷ=0

+
∂gc(x̂c(t), ŷc(t), R̂(t), x̂, ŷ|R̂(t) cosα, R̂(t) sinα)

∂ŷ

∣∣∣∣∣
ŷ=0

 dα,

(B1)

where we have omitted expanding the expressions for gc and gw for brevity.
Unfortunately, due to the presence of the terms stemming from the presence of the cylinder, we could not find a closed

form solution. Thus, we present a semi-analytical method to numerically estimate φ(x̂, 0, t). To this aim, we apply
Taylor’s theorem and the Weierstrass approximation [41], which asserts that an arbitrary continuous function can be
locally approximated by a polynomial function. In a recent study, Cohen and Tan [42] showed that an approximation
based on Legendre polynomials might have improved speed and accuracy over Taylor polynomials. Thus, we adopt
the Legendre polynomials Pn(x̂) as the basis functions for our approximation. Neglecting the presence of the cylinder,

the original Wagner velocity potential on ŷ = 0 is −a1(t)ξ(t)
√

1− x̂2. Based on the original solution, we posit that
φ(x̂, 0, t) can be expressed as

φ(x̂, 0, t) = PT(x̂)s1(t)a1(t)ξ̇(t)
√

1− x̂2, (B2)
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where s1 and P are (N+1)-dimensional vectors of coefficients and Legendre polynomials, respectively, and superscript
T represents matrix transposition. If only one term is considered in Eq. (B2), since P0(x̂) = 1, we recover the original
solution by Wagner. To facilitate the computations, we express the vector of Legendre polynomials as

P(x̂) = Qr(x̂), (B3)

where rT(ζ) = [ζ0, ζ1, ζ2, . . . , ζN ] is (N + 1)-dimensional vector of polynomials while Q is an [(N + 1) × (N + 1)]-
dimensional matrix of polynomial coefficients, where the i-th row contains the polynomial coefficients of Pi(x̂).

Next, we substitute Eq. (B2) into Eq. (B1), multiply both sides by P(x̂), and integrate from [−1, 1] to establish

Q
(
K1 + K2

(
x̂c(t), ŷc(t), R̂(t)

))
QTs1(t) = Qd1 + Qd2

(
x̂c(t), ŷc(t),

ẋc(t)

ξ̇(t)
,
ẏc(t)

ξ̇(t)
, R̂

)
, (B4)

where we have defined

d1 =

∫ 1

−1

r(x̂) dx̂, (B5a)

d2

(
x̂c(t), ŷc(t),

ẋc(t)

ξ̇(t)
,
ẏc(t)

ξ̇(t)
, R̂

)
=

∫ 1

−1

r(x̂)f1

(
x̂c(t), ŷc(t),

ẋc(t)

ξ̇(t)
,
ẏc(t)

ξ̇(t)
, R̂(t), x̂

)
dx̂, (B5b)

K1 =

∫ 1

−1

r(x̂)bT
1 (x̂) dx̂, (B5c)

K2

(
x̂c(t), ŷc(t), R̂(t)

)
=

∫ 1

−1

r(x̂)bT
2 (x̂c(t), ŷc(t), R̂(t), x̂) dx̂, (B5d)

with

b1(x̂) =

∫ 1

−1

r(ζ)

π

√
1− ζ2

(x̂− ζ)2
dζ, (B6a)

b2(x̂c, ŷc, R̂, x̂) =

∫ 1

−1

r(ζ)
√

1− ζ2 ∂gc(x̂c, ŷc, R̂, x̂, ŷ|ζ, η)

∂ŷ∂η

∣∣∣∣∣
η=0, ŷ=0

dζ, (B6b)

f1

(
x̂c, ŷc,

ẋc

ξ̇
,
ẏc

ξ̇
, R̂, x̂

)
=

∫ π

−π
R̂

(
ẋc

ξ̇
cosα+

ẏc

ξ̇
sinα

)
(B6c)

×

∂gw(x̂, ŷ|R̂(t) cosα, R̂(t) sinα)

∂ŷ

∣∣∣∣
ŷ=0

+
∂gc(x̂c, ŷc, R̂, x̂, ŷ|R̂(t) cosα, R̂(t) sinα)

∂ŷ

∣∣∣∣∣
ŷ=0

 dα.

The integral involving b2 is regular, thus, K2 can be numerically computed with ease. However, the integral for b1 is
singular, thereby its principal value must be calculated. We compute the principal value analytically using Wolfram
Mathematica software and then evaluate K1 numerically. The analytical expressions for b1 are presented until the
eight power in ζ as

b1,1(x̂) =

∫ 1

−1

ζ0

π

√
1− ζ2

(x̂− ζ)2
dζ = −1, (B7a)

b1,2(x̂) =

∫ 1

−1

ζ1

π

√
1− ζ2

(x̂− ζ)2
dζ = −2x̂, (B7b)

b1,3(x̂) =

∫ 1

−1

ζ2

π

√
1− ζ2

(x̂− ζ)2
dζ =

1

2
(1− 6x̂2), (B7c)

b1,4(x̂) =

∫ 1

−1

ζ3

π

√
1− ζ2

(x̂− ζ)2
dζ = x̂(1− 4x̂2), (B7d)
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b1,5(x̂) =

∫ 1

−1

ζ4

π

√
1− ζ2

(x̂− ζ)2
dζ =

1

8
(1 + 12x̂2 − 40x̂4), (B7e)

b1,6(x̂) =

∫ 1

−1

ζ5

π

√
1− ζ2

(x̂− ζ)2
dζ =

x̂

4
(1 + 8x̂2 − 24x̂4), (B7f)

b1,7(x̂) =

∫ 1

−1

ζ6

π

√
1− ζ2

(x̂− ζ)2
dζ =

1

16
(1 + 6x̂2 + 40x̂4 − 112x̂6), (B7g)

b1,8(x̂) =

∫ 1

−1

ζ7

π

√
1− ζ2

(x̂− ζ)2
dζ =

x̂

8
(1 + 4x̂2 + 24x̂4 − 64x̂6). (B7h)

Once a is computed at each time step from Eq. (B4), φ is known from Eq. (B2).
To close the semi-analytical solution, we need to compute φt and φx, and substitute them into Eqs. (1). The

computation of φx is straighforward, therefore, it is omitted here. For φt, we have

φt(x̂, 0, t) = a1(t)rT(x̂)QT
(
ṡ1(t)ξ̇(t) + s1(t)ξ̈(t)

)√
1− x̂2

+ ȧ1(t)ξ̇(t)

(
rT(x̂)

√
1− x̂2 − x̂rTx̂ (x̂)

√
1− x̂2 +

x̂2rT(x̂)√
1− x̂2

)
QTs1(t),

(B8)

where the term including ξ̈ can be viewed as the added mass effect, while the rest as slamming force [7]. Here, ȧ is
computed by differentiating Eq. (B4) with respect to t, such that

a1(t)Q (K1 + K2(t))QTṡ1(t) = QK3(t)QTs1(t)−Qd3(t), (B9)

where

K3(t) =

∫ 1

−1

r(x̂)

((
(x̂c(t)− a2(t))ȧ1(t)− ȧ2(t)a1(t)− ẋc(t)

)
∂bT

2 (x̂c(t), ŷc(t), R̂(t), x̂)

∂x̂c
(B10a)

+

(
ŷc(t)ȧ1(t)− ẏc(t)

)
∂bT

2 (x̂c(t), ŷc(t), R̂(t), x̂)

∂ŷc
+ R̂ȧ1(t)

∂bT
2 (x̂c(t), ŷc(t), R̂(t), x̂)

∂R̂

)
dx̂,

d3(t) =

∫ 1

−1

r(x̂)

((x̂c(t)− a2(t))ȧ1(t)− ȧ2(t)a1(t)− ẋc(t)
)∂f1 (x̂c(t), ŷc(t), ẋc(t)

ξ̇(t)
, ẏc(t)
ξ̇(t)

, R̂(t), x̂
)

∂x̂c
(B10b)

+

(
ŷc(t)ȧ1(t)− ẏc(t)

)∂f1 (x̂c(t), ŷc(t), ẋc(t)

ξ̇(t)
, ẏc(t)
ξ̇(t)

, R̂(t), x̂
)

∂ŷc
+ R̂(t)ȧ1(t)

∂f1

(
x̂c(t), ŷc(t),

ẋc(t)

ξ̇(t)
, ẏc(t)
ξ̇(t)

, R̂(t), x̂
)

∂R̂

−a1(t)f2

(
x̂c(t), ŷc(t),

ẋc(t)

ξ̇2(t)
,
ẏc(t)

ξ̇2(t)
,
ẍc(t)

ξ̇(t)
,
ÿc(t)

ξ̇(t)
, ξ̈(t), R̂(t), x̂

)]
dx̂,

with

f2

(
x̂c, ŷc,

ẋc

ξ̇2
,
ẏc

ξ̇2
,
ẍc

ξ̇
,
ÿc

ξ̇
, ξ̈, R̂, x̂

)
=∫ π

−π
R̂

((
ẍc

ξ̇
− ẋc

ξ̇2
ξ̈

)
cosα+

(
ÿc

ξ̇
− ẏc

ξ̇2
ξ̈

)
sinα

)
∂g(x̂c, ŷc, R̂, x̂, ŷ|R̂(t) cosα, R̂(t) sinα)

∂ŷ

∣∣∣∣
ŷ=0

dα.

(B11)

Similarly, for ψ we can again posit

ψ(x̂, 0, t) = PT(x̂)s2(t)a1(t)ξ(t)
√

1− x̂2, (B12)

and substitute Eq. (B12) into Eq. (11) to establish
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ξ(t)Q

(
K1 + K2

(
xc(t)

a1(t)
,
yc(t)

a1(t)
,
R

a1(t)

))
QTs2(t) = ξ(t)Qd1

+ Qd2

(
xc(t)

a1(t)
,
yc(t)

a1(t)
, lx, ly,

R

a1(t)

)
− a1(t)Qd4(a2(t)),

(B13)

where

d4(a2(t)) =

∫ 1

−1

r(x̂)|x̂− a2(t)| tanβ dx̂. (B14)

Substituting for ψ from Eq. (B12), we find that Eq. (12) is satisfied if and only if

rT(±1)QTs2(t) = 0. (B15)

Eq. (B15) in combination with Eq. (B13) form a system of nonlinear algebraic equations that should be solved
simultaneously to determine a1 and a2. Note that Eq. (B13) itself is a system of linear algebraic equations for
s2, controlled by a1 and a2. We use the “mldivide” function in MATLAB to express s2 in Eq. (B15), based on
the coefficient vectors and matrices of Eq. (B13). Then, the “fsolve” function in MATLAB is utilized to solve the
nonlinear algebraic equations to determine a1 and a2.

The derivatives ȧ1 and ȧ2 can then be estimated by differentiating Eq. (B15) with respect to t, such that

rT(±1)QTṡ2(t) = 0, (B16)

where ṡ2 is substituted by differentiating Eq. (B13), that is,

a1(t)ξ(t)Q
(
K1 + K2

(
x̂c(t), ŷc(t), R̂(t)

))
QTṡ2(t) =

Q
(
a1(t)ξ̇(t)

(
K1 + K2

(
x̂c(t), ŷc(t), R̂(t)

))
+ ȧ1(t)ξ(t)K4(t)− ȧ2(t)ξ(t)K5(t)− ξ(t)K6(t)

)
QTs2(t)

− ȧ1(t) (Qd6(t) + a1(t)Qd4(a2(t))) + ȧ2(t)
(
−a1(t)Qd7(t) + a21(t)Qd8(t)

)
+ Qd5(t) + a1(t)ξ̇(t)Qd1(t).

(B17)

Here,

d5(t) =

∫ 1

−1

r(x̂)

ẋc(t)∂f1
(
x̂c(t), ŷc(t), lx(t), ly(t), R̂(t), x̂

)
∂x̂c

(B18a)

ẏc(t)
∂f1

(
x̂c(t), ŷc(t), lx(t), ly(t), R̂(t), x̂

)
∂ŷc

+ a1(t)f2

(
x̂c(t), ŷc(t), ẋc, ẏc, R̂(t), x̂

) dx̂,

d6(t) =

∫ 1

−1

r(x̂)

(x̂c(t)− a2(t))
∂f1

(
x̂c(t), ŷc(t), lx(t), ly(t), R̂(t), x̂

)
∂x̂c

(B18b)

+ŷc(t)
∂f1

(
x̂c(t), ŷc(t), lx(t), ly(t), R̂(t), x̂

)
∂ŷc

+ R̂(t)
∂f1

(
x̂c(t), ŷc(t), lx(t), ly(t), R̂(t), x̂

)
∂R̂

 dx̂,

d7(t) =

∫ 1

−1

r(x̂)
f1

(
x̂c(t), ŷc(t), lx(t), ly(t), R̂(t), x̂

)
∂x̂c

dx̂, (B18c)

d8(t) =

∫ 1

−1

r(x̂) sign (x̂− a2(t)) tanβ dx̂, (B18d)
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K4(t) =

∫ 1

−1

r(x̂)

(
(x̂c(t)− a2(t))

∂bT
2 (x̂c(t), ŷc(t), R̂(t), x̂)

∂x̂c
+ ŷc(t)

∂bT
2 (x̂c(t), ŷc(t), R̂(t), x̂)

∂ŷc
(B18e)

+R̂(t)
∂bT

2 (x̂c(t), ŷc(t), R̂(t), x̂)

∂R̂

)
dx̂,

K5(t) =

∫ 1

−1

a1(t)r(x̂)
∂bT

2 (x̂c(t), ŷc(t), R̂(t), x̂)

∂x̂c
dx̂, (B18f)

K6(t) =

∫ 1

−1

r(x̂)

(
ẋc(t)

∂bT
2 (x̂c(t), ŷc(t), R̂(t), x̂)

∂x̂c
+ ẏc(t)

∂bT
2 (x̂c(t), ŷc(t), R̂(t), x̂)

∂ŷc

)
dx̂, (B18g)

where “sign(·)” represents the sign function. Eq. (B16) in combination with Eq. (B17) define a system of bilinear
algebraic equations for unknowns ȧ1 and ȧ2. The procedure to compute ȧ1 and ȧ2 is similar to the one described for
a1 and a2, and is therefore omitted for brevity. The only difference is that the “mldivide” function in MATLAB is
used instead of “fsolve”, since the system is linear.
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