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Vorticity fluxes are analyzed in fully-developed turbulent flow through rectangular ducts with a width-
to-height ratio of 3, and both straight and semi-cylindrical side-walls, at a centerplane friction Reynolds
number Reτ,c ' 180. The transport of secondary Reynolds stresses by the secondary flow of Prandtl’s
second kind is analyzed from a vorticity-flux perspective. This analysis reveals that the in-plane transport
of viscous stresses locally counteracts the inhomogeneous distribution of the turbulent shear-stress gradient
in the spanwise direction. A relationship is established between the mean and fluctuating transport terms
that can be useful to improve turbulence models and their ability to accurately predict the secondary flow.
Finally, quadrant analysis is used to evaluate the contribution from the different types of bursting events to
the fluctuating transport terms.

The connection between the vorticity fluxes and the primary Reynolds shear-stress was first considered by Taylor,1

and it has been used in a number of flow cases, including turbulent wakes2 and plane channels.3 The
vorticity-transport perspective can be useful to study the transfer of viscous stress to Reynolds stress in the near-wall
region. This analysis framework was used by Eyink4 to study the role of the flux of spanwise vorticity in
pipe and channel flows. Furthermore, the vorticity fluxes in turbulent channel flow were recently analyzed
by Brown et al.5 and in plane Couette flow by Brown,6 where the important role of the streamwise vorticity and the
near-wall quasi-streamwise vortices were discussed.

In the present study, this analysis is extended to fully-developed turbulent flow through rectangular ducts with
straight and semi-cylindrical side-walls and aspect ratio AR = 3, defined as the total width of the duct divided
by its total height. The main difference between the rectangular duct and the plane channel flow is the presence of
vertical side-walls, which introduce three-dimensional effects such as boundary-layer growth in the spanwise direction
and secondary motions of Prandtl’s second kind.7 The term secondary motions refers to the non-zero mean velocity
components in the vertical V and spanwise W directions, which are normal to the mean streamwise velocity U . The
relationship between the vorticity-flux terms v′ω′

z and w′ω′
y, and the primary Reynolds-shear stresses u′v′ and u′w′

is shown in equation (1) for fully-developed turbulent flow through a rectangular duct. In this equation, y and z are
the vertical and spanwise directions, u′, v′ and w′ are the streamwise, vertical and spanwise fluctuating velocities and
ω′
y and ω′

z are the vertical and spanwise fluctuating vorticities, respectively. Note that in plane channel and Couette
flows the second term on the left-hand side of the equation is zero since the flow is homogeneous in the spanwise
direction. Interestingly, equation (1) is also valid for the mean velocity components in fully-developed turbulent flow
with secondary motions, as shown in equation (2). The continuity equation and ∂(·)/∂x = 0 (where x is the streamwise
direction) due to the fact that the flow is fully developed are used to cancel the terms in equation (2). Since this
relation is separately valid for the fluctuating and averaged quantities, it must also be valid for the corresponding
time average of the instantaneous products, see equation (3). This was reported by Klewicki8 for turbulent
channel flows, where the second term on the left-hand side is zero. Note that lowercase letters without
primes are used to refer to the instantaneous components.
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∂uv

∂y
+
∂uw

∂z
= wωy − vωz. (3)

The main characteristics of the cases under study are shown in Table I. The results were obtained from direct
numerical simulations (DNSs) using the spectral-element code Nek5000 developed by Fischer et al.9 at the Argonne
National Laboratory. The setup of the simulations is described by Vinuesa et al.10 and Vidal et al.11 for the ducts
with straight and semi-cylindrical side-walls, respectively. The results presented in this work were calculated from
the instantaneous velocity fields generated in these two studies, thus, there is a discrepancy between the number of
samples and averaging periods. However, the turbulence statistics are sufficiently converged to compare both cases.

TABLE I. Summary of the cases under study, where r/h is the rounding radius of the side-walls, Reb is the Reynolds number
based on the bulk velocity and the half-height of the duct, Reτ,c is the friction Reynolds number based on the friction velocity
at z/h = 0 and taUb/h is the averaging time expressed in convective time units.

Case AR r/h Reb Reτ,c Number of fields taUb/h

AR3r0 3 0 2581 179 334 5664

AR3r1 3 1 2800 191 700 1400
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FIG. 1. Vorticity-flux terms v′ω′
z
+

and w′ω′
y
+

on the (left) vertical and (right) horizontal symmetry planes scaled with the
kinematic viscosity ν and the local friction velocity uτ . The results from the AR3r0 and AR3r1 cases are represented by solid
and dashed lines, respectively.

Analyzing the behavior of the fluctuating, mean and instantaneous vorticity fluxes in rectangular ducts can help
us better understand the relationship between the secondary flow and the turbulent shear stresses. The fluctuating
vorticity-flux terms on the vertical centerplane (z/h = 0) are shown in Figure 1 (left) for the two cases under
consideration. On this plane u′w′ = 0 due to symmetry, and the results are in good agreement with the channel case
at Reτ = 1000 shown in Figure 1 from Brown et al.5 Note that at the walls (located at y/h = ±1) these terms must
be zero due to the no-slip condition and, from equation (1), u′v′ = ∂u′v′/∂y = 0. In a region close to the wall, i.e.
approximately for y+ < 10, the vorticity transport terms have opposite signs (w′ω′

y < 0, v′ω′
z > 0) such that both

terms contribute to the negative Reynolds shear-stress gradient ∂u′v′/∂y < 0. After y+ ' 10 the vertical-transport
term becomes negative, v′ω′

z < 0, opposing the stronger spanwise-transport term w′ω′
y. At y+ ' 30 both terms have

the same magnitude, and approximately at this wall-normal location the u′v′ must also reach its maximum value,
see equation (1). In the channel case at Reτ = 1000,5 the critical value of y+ where w′ω′

y = v′ω′
z is located farther

away from the wall, at y+ ' 50, as a direct consequence of its higher Reτ,c value12. Note that the features of the
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profiles that are being described move towards the wall under outer normalization as the Reynolds
number is increased.4 After this point, the vertical-transport term v′ω′

z is dominant with respect to w′ω′
y , as

also documented by Klewicki8 at higher Re, and the magnitude of u′v′ decreases farther towards the centerplane.
Finally, the spanwise-transport term becomes positive, w′ω′

y > 0, such that w′ω′
y + v′ω′

z = 0 and u′v′ = ∂u′v′/∂y = 0
at y/h = 0, where the horizontal symmetry plane is located. The vorticity-flux terms are reversed on the horizontal
centerplane (y/h = 0), as shown in Figure 1 (right). Note that on this plane u′w′ is maximum and u′v′ = 0 due to
symmetry. Similarly, when these profiles are scaled with the local friction velocity they show good agreement with the
channel case in the near-wall region. On the other hand, the secondary flow has a strong impact on the profiles away
from the wall. Note that additional simulations at higher Re will help to clarify the scaling behavior of
the various fluxes when sufficient inner-outer separation is present in the flow.

The fact that the profiles of the vorticity-flux terms are reversed at the side-walls implies that there must be a
reversal point along the wall where w′ω′

y ' 0 and v′ω′
z ' 0. The two-dimensional contour plots of v′ω′

z and w′ω′
y

are shown in Figures 4.3 and 4.4 from Vidal,13 respectively, together with the corresponding mean and instantaneous
transport terms. In the AR3r0 case the reversal abruptly occurs at the sharp corner, where w′ω′

y ' v′ω′
z ' 0 due

to the overlap of the horizontal and vertical boundary-layers. Note that in the near-corner region both vertical and
spanwise fluctuations are inhibited by the walls. However, in case AR3r1 this effect is not present and the reversal
occurs gradually throughout the beginning of the curved wall. Interestingly, the negative region of w′ω′

y gradually
evolves through the curved wall into the negative inner peak of the reversed profile at y/h = 0. Note that this peak
is analogous to the positive inner peak of v′ω′

z at z/h = 0. Similarly, the positive peak of v′ω′
z at z/h = 0 gradually

develops into the maximum value of v′ω′
z > 0 at y/h = 0, which is analogous to the minimum value of w′ω′

y at
z/h = 0.

In both cases, the mean transport terms WΩy and V Ωz exhibit non-zero values in the reversal region. In the
AR3r1 case, the mean transport terms compensate the gradual transition of the fluctuating terms leading to a more
abrupt variation of the instantaneous terms wωy and vωy. The phenomenon occurs in the transition point between
the curved and straight walls, where wωy ' vωy ' 0. The secondary flow convects positive Ωy along the horizontal
symmetry plane (y/h = 0) towards the side-walls (W < 0) and along the near-wall region towards the horizontal wall
(W > 0). Similarly, negative Ωz is driven towards the rounded walls (V < 0) and away (V > 0) from the straight
walls. Therefore, the net effect of the secondary flow is to homogenize the mean wall-normal vorticity by reducing Ωz
on the straight wall and to increase Ωy on the side-walls. A similar behavior is observed in the AR3r0 case, where
the secondary flow convects both Ωz and Ωy into the corner and away from the adjacent walls.

The distribution of (w′ω′
y − v′ω′

z) is shown in Figure 2 (top) for the two cases under study together with the mean
and instantaneous components. Interestingly, at some locations along the perimeter of the ducts the isolines of the
distribution are lifted away from the wall, as can be clearly appreciated at z/h ' −2 and y/h ' −0.5 in the AR3r0
case and at z/h ' −1.5 the AR3r1 case. The resulting distribution exhibits a negative region of (w′ω′

y − v′ω′
z)

extending farther away from the wall. This behavior can be better understood by analyzing the distribution of the
primary and secondary Reynolds shear-stresses, which are also shown in Figure 2. In the AR3r1 case, the primary
Reynolds shear-stress is rotated such that u′x, u′n and u′t are the fluctuating streamwise, wall-normal and wall-tangent
velocity components. These components are defined with respect to the closest wall and such that the rotated and
the non-rotated components coincide on the horizontal wall. Note that the rotation does not affect the subtraction
of both terms such that w′ω′

y − v′ω′
z = u′tω

′
n − u′nω′

y. Consequently, u′xu
′
n and u′xu

′
t are the primary and secondary

Reynolds shear-stresses. The Reynolds shear-stresses were not rotated in the AR3r0 case as there is no simple way
to do this. Nevertheless, note that u′v′ and u′w′ are the primary and secondary Reynolds shear-stresses on the
horizontal wall, respectively, and their roles are reversed on the vertical wall.

The location where the isolines are lifted corresponds to the preferential location of an ejection (u′ < 0, v > 0),11

which generates the peak of u′v′. Ejections are flanked by two counter-rotating streamwise vortices, see Kim,14 which
generate u′w′ > 0 on the left and u′w′ < 0 on the right of z/h ' 1.5. Therefore, both terms in equation (1) are negative
(∂u′w′/∂z < 0 and ∂u′v′/∂y < 0) and stronger above the buffer layer, increasing the local value of (w′ω′

y − v′ω′
z).

Furthermore, quadrant analysis and conditional averaging of these geometries reveal that the preferentially-located
ejections contribute to the mean cross-flow.11 Note that in the AR3r0 case the maximum value of (w′ω′

y − v′ω′
z) is

located near the sharp corner. In this region the isolines of the primary stresses concentrate leading to larger positive
∂u′v′/∂y and ∂u′w′/∂z values. The secondary shear stresses also contribute to the positive ∂u′v′/∂y and ∂u′w′/∂z
values along the corner bisector.

The distribution of (W+Ω+
y − V +Ω+

z ) is also shown in Figure 2 (middle). Similarly, rotation does not affect the
subtraction of both terms. This quantity is distributed such that (wωy − vωz) is homogeneous in the wall-tangent
direction, as shown in Figure 2 (bottom). Therefore, the transport of viscous stresses by the secondary flow opposes
the increased turbulent shear-stress gradients. The behavior agrees with the main conclusion of Gessner,15 stating that
the secondary flow is the direct result of the turbulent shear-stress gradients, and highlights the role of the secondary
shear-stresses. This relationship between the mean and fluctuating transport of vorticity is valuable to turbulence
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FIG. 2. Distributions showing 10 contours of (w′ω′
y
+ − v′ω′

z
+

), (W+Ω+
y − V +Ω+

z ) and (wωy
+ − vωz

+). (Left-top and left-

middle panels) contours every 0.1 units of (white) u′v′
+

and (black) u′w′+. (Right-top and right-middle panels) contours every

0.1 units of (white) u′
xu′

n
+

and (red) u′
xu

′
t

+
, where x, n and t are the streamwise wall-normal and wall-tangent directions,

respectively. Solid and dashed lines are used to denote positive and negative shear-stresses. All quantities are scaled with ν
and uτ,c.

modeling of complex flows, and can contribute to the improvement of those turbulent models when it comes to
accurately predicting the secondary flows,16 and to the development of novel data-driven modelling frameworks.17

Note that simple eddy-viscosity models based on linear constitutive relations, such as the standard κ− ε model, fail
to properly predict the mean cross-flow in turbulent ducts.18

The mechanisms that contribute to the vorticity fluxes are further analyzed in the AR3r1 case. To this end, the
homogeneity of the streamwise direction can be used to simplify the vorticity-flux terms v′ω′

z and w′ω′
y to −v′∂u′/∂y

and w′∂u′/∂z, respectively, as shown in equation (4). This simplification leads to the set of equations (5), which are
also separately valid for the fluctuating, averaged and instantaneous quantities.

v′ω′
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The correlation between the instantaneous cross-flow and the in-plane derivatives of the fluctuating streamwise
velocity is strongest in the buffer-layer region. This region is characterized by the presence of high- and low-velocity
streaks which alternate in the spanwise direction and contribute to the non-zero ∂u′/∂z′ and ∂u′/∂y′ terms. Another
important characteristic of the buffer layer is the presence of bursting events. The bursting events generate strong
cross-flow fluctuations that contribute to the transfer of momentum between the near-wall region and the core of the
flow. These events are often categorized with respect to the sign of the velocity fluctuations in the vertical v′ and
streamwise u′ directions,19 as shown in Table II. In the present work, quadrant analysis and conditional averaging
are used to analyze the contribution of the different types of bursting events to both fluxes. A similar approach was
followed by Kim14 to study the turbulence structures associated with the bursting events in turbulent channel flow.
Doing so, the role of the near-wall streamwise vortices in the fluxes of vorticity is further characterized.

TABLE II. Conditions used for quadrant analysis and conditional averaging.

Event name u′ v

Q1 or outward motion + +

Q2 or ejection − +

Q3 or inward motion − −
Q4 or sweep + −

In plane channel and pipe flows, the behavior of bursting events is homogeneous in the wall-tangent direction,
i.e., sweeps and ejections are homogeneously distributed in the spanwise (or azimuthal) direction and are as likely
to turn in clockwise or anti-clockwise directions. These events were analyzed in rectangular ducts with rounded
side-walls by Vidal et al.11 The authors showed that sweeps are preferentially located in the transition point between
the curved side-walls and the straight horizontal wall, where the mean cross-flow is maximum. Similarly, ejections
tend to be located at the beginning of the horizontal wall and both types of events preferentially tilt towards the core
of the flow. This behavior leads to an inhomogeneous distribution of the primary shear stresses in the wall-tangent
direction. Similar observations were made in square and hexagonal ducts by Huser and Biringen20 and Marin et
al.21 Furthermore, Pinelli et al.22 and Vinuesa et al.23 showed in square and rectangular ducts that the near-wall
quasi-streamwise vortices are responsible for the non-zero mean streamwise vorticity Ωx. As discussed by Hallez
and Magnaudet,24 in certain cases it is possible to predict some aspects of the secondary flow. For
instance, in turbulent ducts of complex shape the secondary flow convects streamwise velocity away from
the core towards the walls located farther away from it, and low-momentum fluid from the closer walls back to
the core. Furthermore, sweeping events convect high-momentum fluid from the core of the duct to the near-wall
region and ejections inject low-momentum fluid from the near-wall region into the core of the duct. Equations (5)
show that a similar analogy is present between the instantaneous and mean vorticity fluxes. Therefore, the secondary
flow could be associated with the inhomogeneous part of the vorticity fluxes.

The decomposition of v′ω′
z = −v′∂u′/∂y into the contributions from each type of event is shown in Figure 3 for

the AR3r1 case at z/h = 0, −1.5 and −2, respectively. Note that these are the locations of the vertical symmetry
plane, the preferential position of ejections and the transition between the curved and straight walls, respectively.
The figure shows that the contribution to the vorticity-flux terms from each type of event are both qualitatively and
quantitatively different.

First, we focus on a region very close the wall where an ejection, i.e., a region of positive wall-
normal v > 0 and negative streamwise fluctuating velocities u′ < 0, is present. At the wall u′ = 0, thus,
∂u′/∂y < 0 and −v′∂u′/∂y > 0, a fact that explains the positive part of v′ω′

z in the viscous sublayer. Since
v′ > 0 and both terms in v′ω′

z are highly correlated in the near-wall region, v′ω′
z is zero at y+ ' 11 only if

∂u′/∂y = 0. Therefore, the magnitude of u′ < 0 associated with the ejections is maximum at y+ ' 11, which is close

to the location of the inner-peak of the streamwise fluctuations u′2 at y+ ' 14 (see for instance Jiménez and Moin12).
After this point, the magnitude of u′ < 0 decays in the wall-normal direction, thus, ∂u′/∂y > 0 and v′ω′

z < 0.
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FIG. 3. Conditionally-averaged v′ω′
z
+

and v′ω′
z
+

at z/h = 0 (solid line), z/h = −1.5 (dashed line) and z/h = −2 (dotted line),
where the labels refer to the conditions in Table II. All quantities are scaled with ν and the local uτ .

Furthermore, the value y+ ' 11 is also the location of the minimum value of the contribution from the ejections to
w′ω′

y = w′∂u′/∂z. In the near-wall bursting cycle, ejections are flanked by two counter-rotating streamwise vortices
directed such that w′ > 0 and w′ < 0 on the left and right sides of the ejections, respectively. During an ejection
event the magnitude of u′ is minimum with respect to the spanwise direction, i.e., ∂u′/∂z = 0. Therefore, on the
left side of the ejection ∂u′/∂z < 0 and w′ > 0 whereas on the right side ∂u′/∂z > 0 and w′ < 0 such that
the term w′∂u′/∂z is always negative and leads to w′ω′

y < 0. Note that the contribution from the ejections is much

stronger in the w′ω′
y profile at z/h = −1.5, where this type of event is preferentially located. The contribution to

v′ω′
z is also stronger at this location but to a lesser extent. The stronger negative w′ω′

y, which is caused by ejections

and Q1-events, is responsible for the region of negative (w′ω′
y − v′ω′

z) away from the wall.

Second, we focus on a region very close to the wall exhibiting a sweeping event, i.e., negative wall-
normal v < 0 and positive streamwise fluctuating velocities u′ > 0. The contribution of the sweeping events to the
v′ω′

z distribution is qualitatively similar to that of the ejections, although weaker in the viscous sublayer, and
can be explained with equivalent arguments. At the wall u′ = 0, thus, ∂u′/∂y > 0 and −v′∂u′/∂y > 0, which

again leads to a positive contribution to v′ω′
z below the buffer layer. In this case, v′∂u′/∂y = 0 at y+ ' 8,

and ∂u′/∂y < 0 after this point. This behavior indicates that sweeping events turn in the wall-tangent direction
at y+ ' 8 generating a spanwise layer of maximum u′ > 0. Note that the maximum value of u′ in a sweeping
event is located closer to the wall than the minimum value of u′ corresponding to an ejection , since sweeping
events are directed towards the wall and ejections away from it. Therefore, the opposite wall-normal directions
associated with both types of events explains the phase difference of their contributions to v′ω′

z. Finally, note that
the contribution from the sweeping events to the v′ω′

z profile is slightly stronger at z/h = −1.5 and −2, where these
events are preferentially located.

Interestingly, the point where ∂u′/∂y = 0 also corresponds to the maximum contribution from the sweeps to

w′ω′
y = w′∂u′/∂z < 0. As sweeping events turn in the wall-tangent direction they generate wall-tangent

velocity fluctuations that convect the high-momentum fluid in this direction. Note that the positive
spanwise fluctuations w′ > 0 generate ∂u′/∂z < 0 whereas the negative ones w′ < 0 generate ∂u′/∂z < 0.
However, the contribution of sweeping events to w′ω′

y is significantly lower.

Finally, the contribution of outward motions or Q1-events to w′ω′
y is very similar the one corresponding to the

ejections. Both distributions have similar minimum values and are shifted in the wall-normal direction by roughly
one viscous unit. However, Q1-events are much more unlikely to occur in the near-wall region than ejections, which
means that the contribution from this type of events is stronger and short-lived. This strong intermittent behavior

was already reported by Brown et al.5 These authors calculated the probability density function (pdf) of w′ω′
y

+
at

y+ = 5, as shown in Figure 2 from Brown et al.5 Note that the contribution of the Q1-events at y+ = 5 is stronger
than the sum of all the other contributions and explains the high kurtosis present in their pdf . Interestingly, inward
motions or Q3-events also play a relevant role generating w′ω′

y > 0 at y+ > 10 and are mainly responsible for the



Vorticity fluxes and secondary flow: relevance for turbulence modelling 7

w′ω′
y > 0 present at y+ > 40. Note that Q1-events are also preferentially located at z/h = −1.5, which increases their

local contribution to the w′ω′
y profile. Moreover, their contribution is weaker at z/h = −2, where sweeping events are

preferentially located.

To summarize, the vorticity-flux terms (w′ω′
y

+
and v′ω′

z

+
) are analyzed in fully-developed rectangular ducts with

straight and semi-cylindrical side-walls with AR = 3. The mean vorticity transport terms (W+Ω+
y and V +Ω+

z ), caused
by the secondary motions of Prandtl’s second kind, and the corresponding time average of the instantaneous products
(wωy

+ and vωz
+) are also analyzed showing that the same equations apply to all of these terms in fully-developed

flow. The results on the vertical symmetry plane (z/h = 0) share some similarities with those corresponding to the
channel case by Brown et al.5 On the horizontal symmetry plane (y/h = 0), the profiles are reversed and with opposite
signs but are similar to the channel case in the near-wall region when scaled with the local friction velocity. The
transition from the former to the latter configurations occurs abruptly on the sharp corner and gradually throughout
the curved wall.

The secondary flow is responsible for the mean vorticity-flux terms located in the transition region. The net
effect of the secondary flow is to homogenize the mean wall-normal vorticity by reducing Ωz on the straight wall
and increasing Ωy on the side-walls. Furthermore, the transport of viscous stresses by the secondary flow locally
counteracts the inhomogeneous wall-tangent distribution of in-plane turbulent shear-stress gradient, which is located
around z/h = −1.5. Therefore, a relationship between the mean and fluctuating transport terms was established
showing that the vorticity-flux approach can provide useful insights to the turbulence modeling of secondary motions
and three-dimensional flows.

The role of the bursting events is evaluated using quadrant analysis to compute the conditionally-averaged con-

tribution to w′ω′
y

+
and v′ω′

z

+
from each type of bursting event. Ejections and sweeps are the main contributors to

v′ω′
z

+
and their profiles are shifted in the wall-normal direction by roughly 3 viscous units. Both types of events

generate v′ω′
z

+
> 0 below the buffer layer and v′ω′

z

+
< 0 above it. The transition point given by v′ω′

z

+
= 0 occurs

at the vertical location where the magnitude of the streamwise fluctuations associated with the event is maximum,
which is close to the near-wall peak of the u′2 profile. Sweeping events are also an important contribution to the

spanwise-transport term generating w′ω′
y

+
> 0 in the logarithmic region. However, ejections and Q1-events are the

main contributors to these terms producing w′ω′
y

+
< 0 everywhere. This analysis also reveals that the inhomogeneous

region of in-plane turbulent shear-stress around z/h = −1.5 is mainly caused by preferentially-located ejections and

Q1-events leading to a stronger w′ω′
y

+
term.
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