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We provide the first demonstration that gas-kinetic methods incorporating molecular 

chaos can simulate the sustained turbulence that occurs in wall-bounded turbulent shear flows. 

The Direct Simulation Monte Carlo (DSMC) method, a gas-kinetic molecular method that 

enforces molecular chaos for gas-molecule collisions, is used to simulate the Minimal Couette 

Flow (MCF) at Re 500= . The resulting Law of the Wall, the average wall shear stress, the 

average kinetic energy, and the continually regenerating coherent structures all agree closely 

with corresponding results from Direct Numerical Simulation (DNS) of the Navier-Stokes 

equations. These results indicate that molecular chaos for collisions in gas-kinetic methods does 

not prevent development of molecular-scale long-range correlations required to form 

hydrodynamic-scale turbulent coherent structures.  
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Turbulent flows are characterized by coherent structures [1], which are long-range 

correlations that survive over long times and distances [2]. These coherent structures grow out of 

“noise” and interact with each other and nearby walls, thereby sustaining turbulence through a 

continual cycle of regeneration and decay while simultaneously enabling energy to cascade from 

larger to smaller scales. Formation of coherent structures at the hydrodynamic scale requires 

long-range correlations at the molecular scale over distances significantly longer than the gas-

molecule mean free path. Unlike steady laminar flow, in which correlations are merely 

preserved, sustained turbulent flow has correlations that continually form, propagate, decay, and 

regenerate.  

The question of whether gas-kinetic methods that employ molecular chaos, which include 

the Boltzmann equation (BE), are capable of simulating sustained turbulent flow in a gas was 

first posed a half century ago by multiple investigators [3]-[12]. Although gases are usually 

simulated using continuum hydrodynamic methods, gas-kinetic molecular methods are often 

used when thermal fluctuations, thermodynamic non-equilibrium, rarefaction, or chemical 

reactions are important [13]. Deterministic molecular-dynamics (MD) methods [14], which treat 

N-body interactions accurately and thus inherently maintain correlations, could also be used in 

principle, but they have high computational costs compared to gas-kinetic methods. However, 

whether molecular chaos would allow or prevent gas-kinetic methods from forming the long-

range correlations required to form the coherent structures that sustain turbulent flow remained 

unclear.  

Answering this question generated some controversy because of the ambiguity of the role 

of the assumption of molecular chaos in the derivation of the BE. More specifically, some 

investigators explicitly use this assumption, but other investigators use different assumptions that 
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are not obviously equivalent to assuming molecular chaos. Moreover, part of this controversy 

revolves around precisely what is meant by the assumption of molecular chaos. Heuristically, 

molecular chaos implies a lack of correlation between molecular quantities in space and/or time 

[5], but how this lack of correlation is applied differs from one investigator to another.  

Some investigators [9]-[12] applied the idea of molecular chaos in a broad sense. More 

specifically, they enforced this lack of correlation globally throughout the gas. In this approach, 

all correlations present in the initial state are ignored. This interpretation of molecular chaos 

appears to preclude the development of turbulent flow because molecules fail to retain the long-

range correlations essential for sustained turbulent flow. With this rationale, Tsugé [9] asserted 

that molecular chaos prevents gas-kinetic methods such as the BE from forming long-range 

correlations and thus questioned the ability of gas-kinetic methods to simulate sustained 

turbulent flow. By truncating the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) [3,4] 

hierarchy to two points without assuming molecular chaos, Grad, Tsugé, and Sastri derived a 

generalized BE and showed that this equation allows long-range correlations. They subsequently 

derived the NSEs from low-order moments of their generalized BE, so they inferred that 

molecular chaos must be absent from gas-kinetic methods in order for such methods to allow 

correlations and thereby simulate sustained turbulent flow.  

Other investigators [5][6] applied the idea of molecular chaos in a more restricted sense. 

More specifically, they enforced molecular chaos for gas-molecule collisions but not for gas-

molecule motion between collisions. Thus, gas molecules lose correlation only during collisions 

but retain correlation in space and time during motion from one location to another (transport). 

This approach is motivated by the fact that the gas-molecule mean free path is typically much 

longer than the range of the forces that govern gas-molecule collisions [5]. With this more 



Physical Review Fluids, submitted 4 Gallis et al. 

 

limited assumption, Kogan [6] achieved the same truncation of the BBGKY hierarchy and 

derived the BE. In contradistinction to Grad, Tsugé, and Sastri, Kogan thus suggests that 

enforcing molecular chaos only for gas-molecule collisions does not prevent the formation of 

coherent structures necessary for sustained turbulent flow because molecules retain spatial and 

temporal correlation as they move from one location to another [6].  

Hence, the ability of gas-kinetic methods to allow the formation, propagation, decay, and 

regeneration of the long-range correlations necessary for establishing the coherent structures 

essential for sustaining turbulence has been debated but has never been formally proved or 

unambiguously demonstrated. This statement applies not only to gas-kinetic methods like the 

BE, which directly solves for the molecular velocity distribution, but also to gas-kinetic 

molecular methods like Bird’s Direct Simulation Monte Carlo (DSMC) method [15],which 

indirectly solves for the molecular velocity distribution by tracking large numbers of 

computational molecules that move and collide. Gallis et al. [16]-[18] did show that DSMC can 

accurately simulate flow instabilities and decaying homogeneous isotropic turbulence. However, 

they did not show that DSMC can simulate sustained turbulence (which requires continual 

regeneration of long-range correlations and the associated coherent structures), as opposed to 

decaying turbulence (which does not require such regeneration). Thus, the question addressed 

here is whether gas-kinetic methods like the BE and DSMC, which enforce molecular chaos only 

for collisions, allow the long-range correlations associated with the coherent structures that 

sustain turbulent flow.  

DSMC [15] is a gas-kinetic molecular method that has been proved to yield solutions to 

the BE in the limit of vanishing numerical error [19]-[20]. Like the BE, DSMC is appropriate 

when the gas-molecule mean free path is much larger than the gas-molecule diameter (usually 
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the case). DSMC uses a stochastic algorithm that approximates the velocity distribution function 

with a discrete number of computational molecules or “particles”. Each particle typically 

represents a large number of real molecules, and these particles move, collide with other 

particles, and reflect from boundaries just as real molecules do.  

To ascertain whether gas-kinetic methods enforcing molecular chaos for collisions only 

can simulate sustained turbulence in wall-bounded shear flows, DSMC simulations are 

performed of the Minimal Couette Flow (MCF). The point is not to demonstrate that molecular 

methods can simulate turbulence: MD simulations of the MCF for liquids have already been 

performed [21]. Nor is the point to glean new physical insights into this flow: the MCF has been 

used extensively to study the process by which the coherent structures sustaining turbulence 

form, propagate, decay, and regenerate [22][23][24]. Instead, the MCF is investigated here 

precisely because it is a generic wall-bounded turbulent shear flow in which the regeneration 

process has been well characterized.  

 

Figure 1.  Minimal Couette Flow (MCF) physical domain.  

The MCF is a geometrically constrained three-dimensional Couette flow (see Figure 1). 

The domain is a rectangular cuboid bounded by walls on two opposite sides, and the origin of the 
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coordinate system is located at the center of the cuboid. Its length in the x  direction 

(streamwise) is 1.75xL hπ= , its length in the z  direction (spanwise) is 1.2zL hπ= , and the 

corresponding pairs of boundaries are periodic. The walls are separated in the y  direction 

(normal) by a distance 2yL h=  and slide in the x  direction with tangential velocities 0wu V= ± . 

Typically, the no-slip boundary condition is applied on the walls so that 0u V= ±  at y h= ± , 

respectively. In the DSMC simulations, these walls are fully accommodating. A fully 

accommodating wall reflects the incident particles so that the reflected particles have a velocity 

distribution function in equilibrium with the wall velocity and temperature [15]. This boundary 

condition enforces impermeability but allows a nonzero slip velocity to exist between the wall 

and the gas in the presence of shear. When the mean free path λ  is small relative to the gap half-

height h  (as is the case in these simulations), this slip velocity su  is small compared to the wall 

velocity 0wu V= . The normalized time is defined as 0T V t h= , and the Reynolds number is 

defined as 0Re V h ν= , where ν μ ρ=  is the kinematic viscosity for a gas of density ρ  and 

dynamic viscosity μ .  

DSMC simulations of the MCF are performed at Re 500= . This value is used because 

results from Direct Numerical Simulation (DNS) of the Navier-Stokes equations (NSEs) indicate 

that turbulence is not sustained below Re 300≈  [22]. The gap half-height is 500 mh μ= , and 

the domain is divided into 1982×721×1359 cells (about 2 billion in total), which yields nearly 

cubical cells with a side length of 1.387 ms μΔ = . Each of these cells has an average of 30 

particles per cell (about 58 billion particles in total). To improve the spatial discretization, 

collision partners in a cell are selected from other particles lying within a sphere having a radius 

that equals the distance traveled by the particle during a time step. The gas has the molecular 

mass and specific heat ratio of argon ( 2766.3 10  kgm −= × , 5 3γ =  [15]) and an initial pressure 
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and temperature of 0 18190 Pap =  and 0 273.15 Kwθ θ= =  (the wall value), which corresponds 

to a sound speed of 0 307.9 m/sc = . The wall velocity is 0 92.35 m/sV = , which corresponds to a 

Mach number of 0.3, so the simulation conditions marginally satisfy the incompressibility 

assumption [26]. A time step of 45.6 pstΔ =  is used, so particles move roughly 1% of the cell 

size during each time step.  

Initially, the gas has a velocity field that is the sum of laminar Couette flow ( 0u V y h= ) 

plus a perturbation. A perturbation is needed to enable the MCF to become turbulent because 

linear stability theory indicates that laminar Couette flow is stable for all Reynolds numbers [22]. 

DSMC simulations initialized with only the unperturbed laminar profile remain laminar until the 

simulations terminate (at 100T = ), in agreement with linear stability theory.  

Gas-molecule collisions are performed using the Hard Sphere (HS) collision model [15], 

which produces a viscosity proportional to the square root of the temperature. The discretization 

errors in DSMC act to increase the effective transport properties [26]. For these simulations, the 

effective viscosity μ  and hence the effective Reynolds number Re  are determined by 

comparing a one-dimensional DSMC simulation of laminar Couette flow (the domain consists of 

a single column of three-dimensional cells in the y  direction) to the analytical expression for the 

wall shear stress of laminar Couette flow ( 0V hτ μ= ). This comparison indicates that the 

discretization used for these simulations leads to an effective Reynolds number of Re 500= .  

The DSMC code SPARTA [28][29] is used to perform these simulations. SPARTA is an 

exascale-class open-source code capable of running efficiently on massively parallel, 

heterogeneous-architecture computational platforms. The MCF simulations are performed on 

Sequoia, an IBM Blue Gene/Q supercomputer, and use just over a million MPI tasks on a half-

million cores (32K nodes, 1/3 of the machine) for 1200 hours.  
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To assess the DSMC simulations, corresponding DNS simulations are performed using 

the spectral element code NEK5000 [30]. The fluid is continuum, incompressible, and 

isothermal. The DNS domain is discretized using 32 seventh-order spectral elements along each 

coordinate direction, with each element containing 83 grid points at the Gauss-Lobatto nodes, for 

a total of 256 grid points along each side of the domain. To confirm mesh independence, the 

simulations are repeated with 192 and 320 grid points along each coordinate axis, with no 

significant changes observed in the turbulence statistics (e.g., Reynolds stresses change by less 

than 2%). The DNS simulations are initialized with the same initial conditions used in the DSMC 

simulations. To ensure sampling statistics from a fully turbulent flow field, the DNS simulation 

is run without sampling until 200T =  and then run with sampling up to 3000T = . Convergence 

of the turbulence statistics is quantified by monitoring the profile of average shear stress through 

the channel, which is constant for statistically converged turbulent Couette flow. Here, the 

average shear stress profile differs from a constant by less than 0.6% across the channel, 

indicating sufficient sampling.  
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Figure 2.  DSMC MCF streamwise velocity profiles on mid-plane between walls show 

sustained turbulence with several cycles of regeneration and decay of coherent 

structures.  

Figure 2 presents DSMC profiles of the streamwise velocity component u  on the mid-

plane between the walls ( 0y = ) at 27 consecutive times for the MCF. The first profile is at time 

267.408T = , and adjacent profiles are separated by a time increment of 8.422TΔ = . Two 

vortices of opposite sense that are oriented predominantly in the streamwise direction are 

present. These vortices have diameters comparable to the gap height 2h , so two vortices fit well 

into the spanwise extent of the domain since 2z yL L≈ . As time progresses, these vortices pass 

through several cycles of regeneration and decay: the vortices are disrupted significantly in 

Profiles 4, 8, 12, 16, and 20, and more vortices appear transiently in Profiles 18, 21, 22, and 26. 

This continuous cycle of regeneration and decay sustains the turbulence in this flow. As 

discussed earlier, the details of the kinematics and dynamics of regeneration and decay have 

been discussed extensively in the literature [22][23][24] and are not the subject of this work. 
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Figure 3 presents the shear stress from DSMC and DNS averaged over both walls as 

functions of time, and Figure 4 presents the volume-averaged kinetic energy from both methods. 

Here, the turbulent values are normalized by their laminar values: lam 0V hτ μ= , 2
lam 0 6k Vρ= . 

Over the time interval of 200-600T = , the DSMC simulation yields a normalized shear stress of 

3.13 0.18± , which agrees closely with the corresponding DNS value of 3.13 0.20±  (if the DNS 

averaging duration is increased to 200-3000T = , the expected value is unchanged). Similarly, 

the DSMC simulation yields a normalized kinetic energy of 0.449 0.048± , which again agrees 

closely with the DNS value of 0.449 0.047± . Although not identical in detail because turbulent 

flow is chaotic, the DSMC and DNS fluctuations have similar magnitudes and durations.  

The quasi-periodic random fluctuations observed in the shear stress and the kinetic 

energy are an essential feature of turbulent flow and are characteristic of the regeneration and 

decay process [22]. These fluctuations indicate that the long-range correlations leading to these 

coherent structures continually regenerate and decay in the DSMC simulation. Thus, the 

agreement between the DSMC and DNS results suggests that DSMC, a gas-kinetic molecular 

method that enforces molecular chaos only in collisions, does continually regenerate the long-

range correlations and coherent structures necessary to sustain turbulence in wall-bounded shear 

flows. This conclusion goes beyond those of Grad [8], Tsugé [9], Sastri [10], and Tsugé and 

Sagara [11].  
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Figure 3.  Shear stress averaged over both walls versus time from DSMC and DNS simulations.  

 

Figure 4.  Average kinetic energy per unit volume versus time from DSMC and DNS 

simulations.  
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Figure 5.  Law of the Wall from DSMC and DNS simulations.  

Figure 5 presents the mean velocity profiles from the DSMC and DNS simulations. These 

profiles are found by averaging the streamwise velocity component u  over times of 

200-600T =  and over the streamwise and spanwise coordinates x  and z  at each fixed value of 

the normal coordinate y . The resulting profiles are plotted using standard wall-based quantities: 

position *ˆy yv ν+ =  and velocity *ˆu u v+ = , where *
wv τ ρ= , ˆ wy y y= − , ˆ wu u u= − , 

wy h= ± , 0wu V= ± , and wτ  is the average wall shear stress. The profiles from both walls are 

virtually indistinguishable, so their average is presented. The DSMC and DNS mean velocity 

profiles are almost identical and agree closely with the inner law u y+ +=  in the viscous sublayer 

( 8y+ < ). The log law ( )1 lnu y Bκ+ += +  with 0.41κ =  and 5.1B =  is plotted for comparison. 

The DSMC and DNS mean velocity profiles approach the log law from below near 20y+ = , but 

the Reynolds number of Re 500=  is too low for the log law to be observed over a large portion 

of the domain. Although the DNS profiles exactly satisfy the no-slip condition at the walls, the 
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DSMC profiles have a slip velocity of 0.5 m/ssu ≈ , which is small relative to the wall velocity 

of 0 92.35 m/sV =  and thus not dynamically significant.  

The many aspects of agreement between the DSMC and DNS results indicate that the 

nonlinear regeneration processes in gas-kinetic methods (e.g., the BE) and continuum methods 

(e.g., the NSEs) are basically the same. The fact that the DSMC and DNS results agree closely 

for the MCF, a canonical wall-bounded turbulent shear flow, indicates that gas-kinetic methods 

like DSMC and, by extension, the BE that enforce molecular chaos for gas-molecule collisions 

can be used for quantitative investigations of turbulence. This conclusion is of significance to 

gas-kinetic theory because the assumption of molecular chaos for gas-molecule collisions plays 

key roles in derivations of the BE and of gas-kinetic molecular methods like DSMC. Conversely, 

DSMC could complement DNS because phenomena such as thermal relaxation and chemical 

reactions can be incorporated into DSMC at the molecular level in a straightforward manner.  
 

Sandia National Laboratories is a multimission laboratory managed and operated by National 
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International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under 
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Department of Energy or the United States Government. 
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