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Abstract

The flow field of a five-bladed marine propeller operating at design condition, obtained using

Large Eddy Simulation (LES), is used to calculate the resulting far-field sound. The results of three

acoustic formulations are compared and the effects of the underlying assumptions are quantified.

The integral form of the Ffowcs-Williams and Hawkings (FW-H) equation is solved on the propeller

surface, which is discretized into a collection of N radial strips. Further assumptions are made

to reduce FW-H to a Curle acoustic analogy and a point-force dipole model. Results show that

although the individual blades are strongly tonal in the rotor plane, the propeller is acoustically

compact at low frequency and the tonal sound interferes destructively in the far field. The propeller

is found to be acoustically compact for frequencies up to 100 times the rotation rate. The overall

far-field acoustic signature is broadband. Locations of maximum sound of the propeller occur

along the axis of rotation both up and downstream. The propeller hub is found to be a source

of significant sound to observers in the rotor plane, due to flow separation and interaction with

the blade-root wakes. The majority of the propeller sound is generated by localized unsteadiness

at the blade tip which is caused by shedding of the tip vortex. Tonal blade sound is found to be

caused by the periodic motion of the loaded blades. Turbulence created in the blade boundary

layer is convected past the blade trailing edge leading to generation of broadband noise along the

blade. Acoustic energy is distributed among higher frequencies as local Reynolds number increases

radially along the blades. Sound source correlation and spectra are examined in the context of

noise modeling.
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I. INTRODUCTION

Rotors are extensively used in both aerodynamic and hydrodynamic applications, e.g.,

propellers (airplanes, ships, submarines), helicopter rotors, wind turbines, and fans. They

are a large source of unwanted noise. The production of sound by low speed rotors has re-

ceived less attention in the literature than sound produced by their high speed counterparts.

Differences in speed and environment can be described by Mach number (M) which is the

ratio of speed, usually total tip speed (Utip), to the speed of sound (c) as M =
Utip
c

. The

focus of the present study is the sound produced by a marine (low Mach) propeller operating

at design condition.

There are three main physical mechanisms of producing marine sound: (i) cavitation, (ii)

vibration and deformation of the surface, and (iii) interaction of the flow with the physical

surface [1, 2]. The blades of a non-cavitating propeller interact with the mean inflow,

turbulence, and stationary velocity defects created upstream, resulting in very complex and

unsteady flow conditions. At low Mach numbers, it can be shown that unsteadiness in the

wake is an inefficient source of radiated sound, thus the propeller surface acts as the primary

sound source.

Surface noise is traditionally classified as either ingestion noise or self noise. Ingestion

noise is due to the convection of unsteadiness present in the flow into the vicinity of the

surface and is generally an inviscid mechanism. Self noise is created by viscous interaction

of the surface with the flow, which can lead to vortex shedding, turbulent boundary layers,

and flow separation. The surface noise can also be classified as broadband or tonal. Tonal

sound results from the (i) periodic motion of blades under a steady load and (ii) periodic

loading. Periodic loading can be caused by the ingestion of stationary velocity defects

generated upstream or by the interaction between blades. Broadband sound is generated by

the ingestion of small scale turbulence and also by the creation and convection of turbulence

in the boundary layer past the blade trailing edge.

The study of aeroacoustics dates back to Gutin [3]. Most practical analyses are built upon

the work of Lighthill [4] in the 1950s. The Ffowcs-Williams and Hawkings (FW-H) equation

[5] is the most general form of Lighthill’s acoustic analogy, which decouples the mechanisms

of sound generation from its propagation through the fluid to an observer. Historically, it

has been very difficult to obtain the detailed aerodynamic knowledge required for precise
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numerical solution of the FW-H equation. Early work was analytical and empirical, making

approximations to the geometry, the nature of sources, and the motion of the body to draw

conclusions about the physics while maintaining a level of practicality and applicability.

These practical assumptions of Refs. [6–8] have been used for analytical solution, shown by

Refs. [9–11] for helicopters. The geometry is typically assumed to be thin or flat and of

constant chord. The relative importance of impingement noise, tonal shedding noise, and

trailing edge scattering noise should be also known a priori. Then empirical models, such as

those found in the work of Graham [12], can be used to express both the spectral properties

and spatial correlation of the sources [13].

More recently, work has been done to validate approximations in Amiet’s model [14],

account for the effects of thickness, camber, finite chord, and trailing edge back-scattering

[15, 16], varying chord length [17], inhomogeneity and blade-blade cascade effects [18–20],

and to improve the necessary models for correlation length and source energy spectra [21–

23]. Computations are able to obtain high resolution results with limited intrusion and are

positioned to provide guidance on development of these models, specifically in areas where

experiments are limited, such as the vicinity of the trailing edge.

Reynolds-averaged Navier–Stokes (RANS) and unsteady RANS (URANS) approaches are

popular for computing far-field sound among the fan and turbine communities due to their

reduced computational cost. Brentner and Farassat [24], and Tadamasa and Zangeneh [25],

note that RANS and URANS are unable to accurately capture the broadband turbulent

noise. Wall-resolved Large Eddy Simulation (LES) is able to provide the spatially and

temporally accurate flowfield, including turbulence. Thus, the unsteady propeller loading

from the LES may be supplied as input to the numerical solution of the FW-H equation to

reduce the number of assumptions necessary to obtain far-field sound.

Arakawa et al. [26] were the first to use compressible LES in combination with FW-H for

a two bladed wind turbine at low Mach number. However, due to limited computational

resources, only a fraction of a rotation was simulated and results were only presented for the

near field. More recently, Wang et al. [27–29] have used incompressible LES to investigate

noise produced by a low Mach fan due to ingestion of both homogeneous, isotropic turbulence

and the wake of a turbulent cylinder. The interaction between the acoustic waves and the

flowfield becomes very weak with decreasing Mach number; their effect on the flowfield and

sound sources may be neglected, and incompressible LES may be used.
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The present results are obtained from LES, which reduces the computational cost com-

pared to a full direct simulation. Kumar and Mahesh [30] and Keller et al. [31] used incom-

pressible LES to analyze the physics of the flow field generated by the five-bladed propeller,

DTMB 4381, at design operating condition showing good agreement with experiments. In

this paper, the LES solution is used to predict the far-field sound for a FW-H strip acoustic

analogy, Curle strip acoustic analogy (CSA), and a point-force dipole model (PFD). Each

of these formulations can be derived from the full FW-H equation with varying levels of

generality; the comparative accuracy of the far-field sound is assessed quantitatively with

respect to the underlying assumptions. The CSA as well as the FW-H analogies are derived

for the physical surface of the propeller. Each blade is discretized into a number of radial

strips and the effects of this blade resolution on the acoustics (i.e. acoustic compactness)

are examined. Two discretizations of five and ten strips per blade are used.

The objective of the present work is to (i) calculate the sound produced by the propeller

at design operating condition, (ii) assess the performance of various acoustic formulations,

(iii) analyze the mechanisms of sound production, and (iv) provide empirical guidance for

noise modeling. The simulation details and acoustic formulations are described in Sec. II

and III respectively. Results are used to assess the three acoustic formulations and discuss

the physics of sound generation, by the propeller as a whole (Sec. IV) and by the hub (Sec.

V) and by blades (Sec. VI) independently. The implications of the results for noise modeling

is discussed in Sec. VII. Finally, a brief summary of the paper is presented in Sec. VIII.

II. PROPELLER SIMULATION DETAILS

Accurate prediction of the sound generated by a propeller relies on the accuracy of the

unsteady blade loading obtained from numerical simulation. Capturing the complicated

unsteady physical mechanisms of sound generation in the flow field is vital to the sound

calculation. Segalini and Inghels [32] examined confinement effects on measurements of

wind-turbines and propellers, showing that the domain size affects the width and pitch

of the propeller wake, hence, the size of the domain should be large enough to avoid any

confinement effects. The computation of acoustic signals is dependent on the frequencies to

be resolved and, as such, requires high-fidelity knowledge of the flow field both spatially and

temporally. Both of these requirements make this problem prohibitively expensive for direct
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numerical simulation (DNS); LES is able simulate a large domain extent at the necessary

temporal resolution. The accuracy and capability of LES to predict complex phenomena

are demonstrated by Mahesh et al. [33].

A. Numerical method

In LES, large-scale flow features are resolved by the spatially filtered Navier–Stokes equa-

tions whereas the effect of the small scales is modeled. The present simulations are performed

in a frame of reference that rotates with the propeller; the spatially-filtered incompressible

Navier–Stokes equations, in the rotating frame of reference, are formulated for the absolute

velocity vector as follows:

∂ui
∂t

+
∂

∂xj

[
ui
(
uj − εjklΩkxl

)]
= − ∂p

∂xi
− εijkΩjuk + ν

∂2ui
∂xjxj

− ∂τij
∂xj

,

∂ui
∂xi

= 0,

(1)

where xi are the coordinates of the rotating, non-inertial reference frame, ui is the velocity

measured in the non-rotating frame, p is the pressure, Ωj is the angular velocity of the

rotating frame, ν is the kinematic viscosity, εijk denotes the permutation tensor, and the

approximation uiεjklΩkxl ≈ uiεjklΩkxl is used. The terms containing Ωj in Eq. (1) take

into account the effect of the rotating reference frame which is non-inertial; the Coriolis

acceleration is represented by ∂
∂xj

(−uiεjklΩkxl) whereas −εijkΩjuk is the centrifugal accel-

eration. The overbar ( ) denotes the spatial filter and τij = uiuj − uiuj is the sub-grid

stress. The sub-grid stress is modeled by the Dynamic Smagorinsky model [34, 35]. The

Lagrangian time scale is dynamically computed based on surrogate–correlation [36] of the

Germano–identity error [37].

Equation (1) is solved using the algorithm developed by Mahesh et al. [38] for unstruc-

tured grids. The algorithm is derived to be robust without use of numerical dissipation by

discretely conserving kinetic energy. Discrete energy conservation ensures that the flux of

kinetic energy has contributions only from the boundary faces. It is a finite volume method

where the Cartesian velocities and pressure are stored at the centroids of the cells; the face

normal velocities are stored independently at the centroids of the faces. A predictor-corrector

approach is used; the predicted velocities at the control volume centroids are first obtained

and then interpolated to obtain the face normal velocities. The predicted face normal ve-
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locity is projected so that the continuity equation, shown in Eq. (1), is discretely satisfied,

yielding a Poisson equation for pressure which is solved iteratively using a multigrid ap-

proach. The pressure field is used to update the Cartesian control volume velocities using a

least-square formulation. Time advancement is performed using an implicit Crank-Nicolson

scheme. The algorithm has been used extensively in previous studies of this propeller in

multiple configurations and operating conditions [30, 39–46] as well as other problems over

a range of Reynolds numbers [38].

B. Computational setup

The simulations are performed on propeller DTMB 4381 at design conditions, i.e. an

advance ratio (J = U/nD) of 0.889 and a Reynolds number (Re = UD/ν) of 894, 000. U is

the free-stream velocity, n is the propeller rotational speed, and D is the diameter of the pro-

peller disk. The propeller geometry, computational domain, and boundary conditions used

in the present work are identical to those used in the work of Kumar and Mahesh [30]. The

propeller is right handed with variable pitch, no skew, and no rake; the geometric details of

the propeller are reported by Bridges [47]. The external boundary of the LES computational

domain is a cylinder of diameter 7D and length 10D. The reference coordinate system is

chosen such that the blades of the propeller are located at the origin and the flow is in the

positive x-direction. The propeller is positioned 2D downstream of the inflow boundary, as

shown in Fig. 1.

Freestream boundary conditions are prescribed both at the inflow and radial boundaries;

convective boundary conditions are prescribed at the outflow. The velocities in the governing

equations (1) are measured in the non-rotating reference frame and the velocity boundary

conditions are consistent. The velocity boundary conditions on the rotor are ~u = ~Ω× ~r and

on the shaft are no-slip conditions, ~u = 0.

The grid is designed carefully to capture all the essential features of the flow field and

is clustered close to all solid surfaces. Ten layers of hexahedral cells are extruded from the

surface with minimum wall-normal spacings of 1.7× 10−3D on the blades and 1.7× 10−4D

on both the hub and shaft surfaces to resolve near-wall flow features. A growth ratio of 1.02

is applied at all solid surfaces to transition from fine to coarser resolution away from the

surface. The grid is refined in the near-wake region of the propeller to capture the small
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FIG. 1. The setup of the acoustic problem, computational domain, and boundary conditions. The

propeller rotates about the x-axis with the origin located at the center of the rotor disk. All

acoustic results were calculated at an observer radius of 100D at 360 locations in the xy-plane; one

such observer location is shown.

scales.

The entire grid consists of 181 million hexahedral control volumes and is partitioned

over 2048 processors. The simulations are performed with a non-dimensional time step

of 0.001 unit, non-dimensionalized with U and D, corresponding to 1 rotation in 10, 668

computational time steps.

III. ACOUSTIC COMPUTATION

A. Acoustic formulations

The FW-H equation is derived in detail by Brentner and Farassat [24]; it has three source

terms which are typically referred to as the monopole, dipole, and quadrupole terms. The

integral form of the equation is derived using the free-space Green’s function, which is valid

for all sources in the embedded flow problem of the FW-H equation.

The observer space and time variables respectively are ~x and t and the acoustic source

space-time variables are ~y and τ . The condition t = τ+ |~r|/c relates the source and observer
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where ~r = ~x − ~y is the radiation vector from the acoustic source to the observer, and c is

the speed of sound in the undisturbed fluid. The observer is assumed to be at rest. The

integration is performed over a prescribed acoustic surface, which in the present work is

chosen to be the physical propeller surface. The FW-H equation for a physical surface is,

4πp′(~x, t) =
∂

∂t

∫
S

[ρ0vn + ρ(��*
0un − vn)

|1−Mr||~r|
]
ret
dS(~y, τ)

− ∂

∂xi

∫
S

[ρ��>0
ui(��*

0un − vn) + fi
|1−Mr||~r|

]
ret
dS(~y, τ) (2)

+
∂2

∂xixj

∫
Vext

[ Tij(~y, τ)

|1−Mr||~r|
]
ret
dVext(~y, τ),

where ρ and ρ0 are the local and static densities of the fluid, un = 0 is the normal velocity

of the fluid at the impenetrable acoustic surface, vn is the normal velocity of the acoustic

surface, and Mr = vr/c is the Mach number of the surface in the direction of ~r. The local

force on the surface is expressed in terms of the compressive stress tensor (Pij) and the local

normal vector (nj) as fi = ∆Pijnj and Tij is Lighthill’s stress tensor [4]. The subscript

ret implies that the integrand is evaluated at the emission time (τe) and emission position

(~re) which implies t = τe + | ~re|/c and the subscript ext implies that the volume integral is

performed on the volume external to the acoustic integration surface.

When the acoustic surface corresponds to a physical (impenetrable) surface, the monopole

and dipole may be referred to as the thickness and loading terms respectively, giving some

insight to their physical nature. It can be shown, from scaling arguments [4, 48–50], that the

acoustic efficiency of quadrupoles decreases with a decrease in Mach number, when compared

to monopole and dipole sources. This eliminates the need to compute the quadrupole volume

integral and greatly reduces the computational cost of the analogy.

If the acoustic surface is constrained to be immobile, i.e., there is no normal velocity of

the surface, vn = 0, and Mn = 0, then Curle’s [51] acoustic analogy for a physical surface is

recovered from Eq. (2).

4πp′(~x, t) = − ∂

∂xi

∫
S

[ fi
|~r|
]
ret
dS(~y, τ), (3)

The assumption neglects the displacement of fluid by the movement of the surface and will

be examined in Section IV.

Blake [1] shows that, when the acoustic surface is acoustically compact, the i-component

of the net force (Fi =
∫
S
fidS(~y)) can be modeled at some point ~y0 contained by the surface
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S(~y). The propeller can be considered compact when the acoustic wavelength of the radiated

sound, which is dependent on the speed of sound of the medium (c) and frequency (f) as

λ = c/f , is much larger than the characteristic size (L) of the acoustic surface. Thus,

when compact, the presence of the surface is modeled by the equivalent point force on the

fluid where Fi is only a function of τ and the radiation vector is constant over the surface,

~r = ~x− ~y. Equation (3) becomes,

p′(~x, t) = − 1

4π

∂

∂xi

Fi
|~r|
∣∣∣
ret
. (4)

The validity of this assumption will be examined in Sec. IV. For a general source Qi(τ), it

can be shown that

∂Qi

∂xi
= − r̂i

c

∂Qi

∂τ
, (5)

where r̂i is the component of the unit radiation vector in the i-direction. In the far field,

∂Qi

∂τ
=

∂

∂τ

( Fi
|~r|
)

=
1

|~r|
∂Fi
∂τ
− Fi
|~r|2

∂|~r|
∂τ

≈ 1

|~r|
∂Fi
∂τ

, (6)

where Qi = Fi/|~r|. Thus, the Curle analogy becomes

p′(~x, t) ≈ 1

4π

r̂i
|~r|c

∂Fi
∂τ

∣∣∣
ret

(7)

=
1

4π

r̂i
|~r|c

∂Fi(τe)

∂t
. (8)

If the propeller is discretized into k integration surfaces composed of radial strips, the

linear nature of the governing equations can be leveraged, allowing the k sources to be

treated independently and superimposed. This is done for the Curle analogy by Blake [52]

and the FW-H analogy by Succi [10].

The assumption that the acoustic surface is stationary in the derivation of the Curle

acoustic analogy remains intact when the point forces are allowed to rotate about the origin.

The compact point forces can be thought of as moving on an axisymmetric ring of radius |~y0|
which includes the space between the blades. The symmetry of the ring allows the locations

of the point forces to move on the immobile surface; therefore, the specific geometry of

the propeller is neglected (consistent with the assumptions of Eq. (4)), but the effects of

compactness and rotation can be examined.
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FIG. 2. A schematic showing how the propeller is broken down into strips for the case of five strips

per blade resulting in 25 strips in total. The strips are equal in thickness along the radial direction.

The notation of the subscript k is adopted to denote variables that are strip dependent

and does not follow the summation convention, i.e. p′k(~x, t),
~Fk, and ~rk are the pressure, net

force, and radiation vector of the kth strip. The k concentric rings are then superposed to

predict the acoustic field generated by the whole propeller. Thus,

p′(~x, t) =
∑
k

p′k(~x, t) =
1

4π

r̂ki
| ~rk|c

∂Fki(τe)

∂t
. (9)

will be referred to as the Curle strip analogy (CSA). This was the result obtained by Lowson

and Ollerhead [53] for a helicopter modeled as a collection of rotating point forces.

In the limit of k = 1, the entire propeller surface is assumed to be acoustically compact

(λ >> D) and all phase information between correlated sources across the surface is lost.

The propeller is reduced to a point at the origin (r̂i → x̂i),
∂
∂τ

becomes ∂
∂t

, and the source

strength becomes equal to the net force on the propeller. Equation (8) is recovered, and will

be called the point-force dipole (PFD) in the remainder of the text.

Succi [10] originally derived the FW-H equation for compact radial strips on a physical

surface. The result, reproduced by Farassat and Succi [11], is the analogy employed in this

study, excluding near-field terms.

p′k(~x, t) =
ρ0
4π

{ ψk
(1−Mkr)

∂

∂τ

[ 1

(1−Mkr)

∂

∂τ

( 1

| ~rk|(1−Mkr)

)]}
ret

+
1

4π

{ 1

| ~rk|(1−Mkr)
2

[ r̂ki
c

∂Fki
∂τ

+
Fki r̂ki

(1−Mkr)

( r̂kj
c

∂Mkj

∂τ

)]}
ret
,

(10)

where Mi is the mach number of the moving surface, Mki = 1
c

∂y0ki
∂τ

. As pointed out by

Farassat and Succi [11], this result matches Lowson’s [54] result. The first term, in square
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brackets, is the monopole (thickness) term and is dependent on the volume of the strip

ψk, which is not present in the CSA. The second term is the dipole (loading) term. As

Mkj → 0, Doppler amplification and rotational acceleration are neglected, thus the loading

term reduces to the CSA.

In the case of a propeller rotating about the 1-axis at ~Ω = Ωê1,

∂y0ki
∂τ

=


0 if i = 1,

−Ωy0k sin(Ωτ) if i = 2,

Ωy0k cos(Ωτ) if i = 3.

With the motion of the propeller prescribed analytically, the time derivatives of (10) can be

evaluated,

p′k(~x, t) =
ρ0ψk
4π

[ 3

| ~rk|(1−Mkr)
5

(Ω2y0k
c

)2(
r̂k2 cos(Ωτ)− r̂k3 sin(Ωτ)

)2
+

1

| ~rk|(1−Mkr)
4

(Ω3y0k
c

) (
r̂k2 sin(Ωτ)− r̂k3 cos(Ωτ)

)]
ret

(11)

+
1

4πc

{ 1

| ~rk|(1−Mkr)
2

[
r̂ki
∂Fki
∂τ
− Fki r̂ki

(1−Mkr)

(Ω2y0k
c

)(
r̂k2 cos(Ωτ)− r̂k3 sin(Ωτ)

)]}
ret
.

It should be pointed out that the only assumptions about the nature of the sound sources

for FW-H are (i) the low Mach number allows the exterior quadrupole sources to be neglected

and (ii) the integration surfaces are acoustically compact. The assumption of acoustic com-

pactness leads to the interference of both correlated and uncorrelated sources alike. The CSA

is further restricted by the assumption of a stationary surface, which neglects the effects of

thickness and also the acceleration of the forces. No assumptions have been made regarding

the character of the sound sources (e.g. broadband, tonal), where they are produced on the

surface (e.g. leading edge, trailing edge, along the surface), nor their correlation.

B. Application of acoustic methods

To increase computational efficiency, all vectors and forces are computed in the inertial

frame attached to the origin, rather than in the rotational frame of the propeller. Equation

(8) will be applied at the propeller origin with strength equal to the net force on the blades.

Equation (9) will be applied at each of the rotating strip locations with the strength equal to

the net force on the strip; the compactness of the propeller and rotation of the sources will
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TABLE I. Flow parameters and mean values of thrust and torque coefficients for DTMB 4381 and

J = 0.889.

Re Rec 〈KT 〉 〈KQ〉

Kumar & Mahesh 2017 (LES) 8.9× 105 8.3× 105 0.21 0.041

Jessup et al. 2004 (OW) 11× 105 10.2× 105 0.201 0.0421

Jessup et al. 2006 (WT) 8.9× 105 8.3× 105 0.18 0.038

Hecker & Remmers 1971 (OW) 6.47× 105 6× 105 0.211 0.042

be examined. Equation (11) is applied to more completely examine rotation by including the

effects of the blade thickness and Doppler amplification due to the surface motion relative

to the observer.

The effects of acoustic compactness are examined through the comparison of two surface

discretizations, where five and ten strips comprise each propeller blade, for both the CSA

and FW-H methods. Sound below f = c/D ≈ 1, 000 Hz has a wavelength (λ) much larger

than the diameter of the propeller (D); sound below f ≈ 10, 000 Hz has a wavelength much

larger than the characteristic size of the radial strips. The compactness of the propeller

breaks down for the PFD (Eq. (8)) at high frequencies; the CSA and FW-H are valid over

a much wider range for the present discretizations.

Lastly, all sound calculations are performed at an observer radius of 100D from the

propeller origin at 360 locations in the xy-plane, as shown in Fig. 1.

IV. PROPELLER SOUND

A. Propeller loading

In this section, the computed flow field and the unsteady loads of the propeller, which

are used as input to the acoustic models, are discussed. For a detailed validation of the

LES results and description of the mechanisms of the propeller wake evolution, the reader

is referred to Kumar and Mahesh [30]. Kumar and Mahesh also demonstrated the grid

convergence of both the flowfield and resulting propeller loads.

The net load on the propeller can be decomposed into thrust (axial) and side-force (rotor

plane) components. Thrust (T ) can be non-dimensionalized using ρ, n, and D as the thrust
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FIG. 3. (a) Pressure and viscous contribution to thrust (KTP ,KTV ) generated by the propeller and

(b) Radial distribution of thrust coefficient: pressure side, –4–; suction side, –�–.

coefficient, KT = T
ρn2D4 . Likewise, the axial component of the moment of force, torque

(Q), can be non-dimensionalized as KQ = Q
ρn2D5 . The computed mean KT and KQ are

compared to the experimental results of Hecker and Remmers [55], and Jessup et al. [56, 57]

as shown in Table I. Jessup et al. [56, 57] report experiments conducted in a 36 in. water

tunnel (WT) and open-water towing tank (OW), Hecker and Remmers [55] report only

experiments conducted in an open-water towing tank. LES results for J = 0.889 (Table I)

show good agreement with experiments for the mean value of thrust and torque coefficients.

The measured value of the loads is smaller in the water tunnel, possibly due to tunnel

confinement effects of the tunnel and the blockage effects of the experimental apparatus.

The computed values of mean thrust and torque coefficients show good agreement with

tow-tank data.

Thrust comprises both viscous and pressure forces (note that the viscous force is negative);

the magnitudes of the viscous contribution to thrust and the pressure contribution are

compared in Fig. 3(a). The pressure force generated by the propeller is two orders of

magnitude larger than the viscous force due to the high Reynolds number of the flow.

In order to understand the contribution to KT from different parts of the blade, the blade

is split into 10 equal parts in the radial direction, on the pressure and suction sides each. The

contribution from each part is shown in Fig. 3(b). Note that most of the thrust is generated

in the region around the mid-span (≈ 0.7R) of the blades. In that region, the blade has the

largest chord-length, and hence, a larger surface area upon which lift is generated.

At design operating conditions, the side-force component of the net propeller force is
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FIG. 4. Directivity of total sound pressure level (SPL) at r = 100D, perpendicular to the rotor

plane comparing each of the models for a blade discretization of ten strips. Every fifth data point

has been plotted for clarity. The origin is set to 40 dB.

very small compared to thrust. Non-dimensionalizing the same as thrust, the mean value

〈KFy〉 is 3.2 × 10−8 compared to thrust, 〈KFy〉 = 0.21. However, sound is intrinsically

unsteady and it is important to examine the inherent amounts of unsteadiness that accom-

pany the loads on the propeller. The root mean square (RMS) of the time derivatives of

KT and KFy , K̇TRMS
and K̇Fy,RMS

respectively, are 0.54 and 0.20. Although the magnitude

of the side-force is small, it is important to sound production.
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TABLE II. Mean difference of root mean square pressure between the strip methods and the

point-force dipole method for both five and ten strips.

Average difference with PFD (%)

Method 5 strips 10 strips

CSA 13.998 14.023

FW-H 13.090 13.094

B. Sound field

Figure 4 shows directivity plots of sound pressure level (SPL) in the xy-plane, perpendic-

ular to the rotor plane, for each method using ten strips. SPL is calculated as 20log10

(p
RMS

pref

)
where pref = 1 µPa. The angle θ = 0◦ is aligned with the direction of the propeller wake and

all sound is calculated at an observer radius of 100D. The propeller creates a sound field

characteristic of a dipole source, indicated by the two lobes along the axis of rotation. A

true dipole source would have perfect cancellation in the rotor plane whereas the propeller

shows a decrease of only 8.63dB in Fig. 4. While thrust unsteadiness is the main source of

sound, oscillations in side-force are generating a noticable level of sound.

Note that there are two PFD directivities plotted; the dashed line represents the sound

generated when the net force is calculated over the whole of the propeller (hub and blades)

whereas the solid line represents the sound generated when the net force is calculated only

over the surface of the blades. The hub can be thought of as being an additional strip

applied at the propeller origin. Ergo, it is indifferent to the various rotation and geometry

assumptions between the CSA and FW-H.

The signature of hub sound is primarily seen in the rotational plane where it accounts for

up to 20% of p
RMS

; The level of sound generated by the hub is much smaller than blade sound

along the axis of rotation (≈ 1% p
RMS

). The contribution of the hub is constant across the

various methods due to the rotational symmetry of the hub. Hence, any differences between

the methods are not caused by the flow on the hub, examined independently (Sec. V) from

blade generated sound (Sec. VI).

Table II shows a comparison of each of the strip methods against the point-force dipole;

it shows the average difference of the methods for both five and ten strips. For each of the
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FIG. 5. Comparison of the additional FW-H loading ( ) and thickness ( ) sources with CSA

(–). Every fifth point has been plotted for clarity. The origin is 0 dB.

acoustic analogies, the average difference between results computed using five strips and ten

strips are below 0.04% of p
RMS

whereas the comparative difference between the CSA and the

FW-H method is approximately 1% of p
RMS

, and 14% when compared with the PFD. The

inclusion of the thickness source and the acceleration of the surface forces accounts for the

1% difference between CSA and FW-H.

Figure 5 shows the additional thickness and loading sources of FW-H are much much

smaller than the the overall sound levels of CSA. Most marine propellers have thin cross

sections and slower rotational speeds than their aerial counterparts. Thus it is expected that

for a rotor producing a comparable amount of thrust at a higher Mach number in air, the

differences between CSA and FW-H would be more evident.

Overall, there is a decrease in SPL that occurs for both the CSA and FW-H methods when

compared with the PFD. Table II shows an average gain in accuracy of 14% obtained by

discretizing the propeller into strips. The discretization allows the assumption of acoustic

compactness to be satisfied over a wider range of frequencies, as seen in Fig. 6 (b) and

(c). Frequencies beyond the compact frequency limit of 1 kHz for the PFD, established

in subsection III B, still contain significant acoustic energy. Above 1 kHz, the wavelength

of sound is comparable to the propeller diameter, but the PFD does not account for the
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(a)

(b)

(c)

FIG. 6. Comparison of the energy spectra of the point-force dipole to: (a) the point-force dipole

with the contribution of the hub, (b) the Curle strip acoustic analogy and (c) the Ffowcs-Williams

and Hawkings strip acoustic analogy. Spectra are calculated at an observer position of θ = 90◦.

destructive interference that occurs. For five strips per blade, the CSA and FW-H have a

much greater compactness limit of 10 kHz, larger than the Nyquist frequency of the present

work which is 5, 882 Hz. The effects of sampling were examined by increasing the Nyquist

frequency by a factor of ten (not shown here) and the conclusions did not change.

Figure 6 shows a comparison of the acoustic energy spectra from the PFD of the blades

against (a) the PFD of the blades and hub, (b) CSA, and (c) FW-H. All spectra are calculated

at an observer position of θ = 90◦ to examine the effects of rotation and possible tonality

of the sound; for observers out of the rotor plane the sound becomes intrinsically more

broadband due to the nature of thrust generated sound. The signals are all broadband.

Figure 6 (a) and Fig. 4 show that the hub itself is altering the sound intensity as well

as the frequency content of this propeller. It appears that the hub affects sound at low and
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y

FIG. 7. The instantaneous total propeller sound field (p′) at an arbitrary time step from r = 100D

to 150D in the xy-plane. Note the axes in (−100D, 100D) are not plotted to scale. The most

intense oscillations occur in the positive and negative x directions which agrees with the directivity

in Fig. 4.

mid-frequencies, the higher frequencies appear to be the same in Fig. 4. Comparing with the

PFD, both the CSA and FW-H have the largest differences occurring at high frequencies.

By comparing the spectra of FW-H and CSA, small differences can be seen at specific

data points, but the overall shape is consistent. When the spectra are computed over an

increased number of windows, the two signals converge.

Figure 7 shows the instantaneous sound field of the propeller from r = 100D to 150D in

the xy-plane. Note that the axes on the interval (−100D, 100D) are not plotted to scale to

show the character of the sound. The largest amplitude oscillations are seen occurring in the

positive and negative x directions which agrees qualitatively with Fig. 4. Lastly, the variety

of wavelengths (frequencies) indicate the broadband nature of far-field radiated sound.
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FIG. 8. Logarithmic contour levels of pRMS on the propeller surface highlight the interaction

between the blade roots and hub. The propeller rotates clockwise.

V. HUB SOUND

As was observed by Kumar and Mahesh [30], flow separation in the region near the hub

and blade root creates a region of increased turbulence that persists for approximately three

propeller diameters downstream. The elevated levels of unsteadiness on the hub surface

contribute to the overall sound signature of the propeller. Figure 8 shows the RMS surface

pressure on the propeller blades and hub, which indicates the strength of the acoustic source.

Around the edge of the hub, where the flow initially separates, there is a ring of high p
RMS

;

the flow separation is a significant source of hub sound.

The propeller wake consists of five helical tip vortices (one originating from each blade

tip) and an axial hub vortex. LES captures the coherent vortical structures in the propeller

wake as visualized using λ2 criterion [58] colored with axial velocity, Fig. 9. The structures

very near the propeller root are formed by the shedding of vorticity in the wakes of individual

blades. The signatures of these root wakes can be seen very clearly on the surface of the

hub and indicate interaction between the blade-root wakes and the hub.

Figure 10 shows the directivity of hub generated sound. The directivity is slightly el-
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FIG. 9. Isocontour of λ2 colored with axial velocity to show the hub, blade root, and tip vortices.

FIG. 10. Directivity of the hub’s contribution to SPL, perpendicular to the rotor plane. The origin

is 0 dB. The maximum value is 46.4 dB in the rotor plane, and 44.3 dB along the rotation axis.
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FIG. 11. Energy spectrum of the hub’s contribution to overall sound calculated at an observer posi-

tion of θ = 90◦. The spectrum shows the broadband nature of the hub sound which is characteristic

of turbulence.

liptical, showing bias toward the rotor plane; the maximum SPL produced by the hub is

46.4 dB in the rotor plane and 44.3 dB along the axis of rotation. The spectrum of hub

sound, θ = 90◦, is shown in Fig. 11. The overall shape of the spectrum is characteristic of

turbulence. Compared with Fig. 6 (a), the hub sound contains additional energy at many

mid-to-low frequencies, likely due to the interaction of the individual blade-root wakes and

the separated flow around the hub.

VI. BLADE SOUND

The circular directivity of Fig. 10 and the dipole shape of Fig. 4 reveal that the blades

are the major source of sound for most observer locations. The discretization into a number

of strips provides insight into the physics of blade loading and sound generation.
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(a)

(b)

(c)

(d)

(e)

FIG. 12. Time histories of ∂KF /∂τ at five equally spaced radial location on the propeller, starting

at (a) r = 0.24R to (e) r = 0.88R. Time derivatives of the coefficients of thrust and the y-

component of the side-force are plotted for all five blades at each radial location. Blade 1: K̇T ( ),

K̇Fy( ), blade 2: K̇T ( ), K̇Fy( ), blade 3: K̇T ( ), K̇Fy( ), blade 4: K̇T ( ), K̇Fy( ), blade

5: K̇T ( ), K̇Fy( ).

A. Blade loading

Figure 12 shows the time derivatives of both thrust and the y-component of the side-force

for each of the five blades at five equally spaced radial locations. The z-component is similar

to the y-component, but is phase shifted due to the motion of the blades and is not shown.

It is clear that over most of the blade length, there are large side-force oscillations that
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(a)

(b)

FIG. 13. Phase-averaged time histories of the non-dimensional coefficients of blade radial force (a)

and blade azimuthal force (b).

dwarf the unsteadiness in thrust. The side-force variations are phase shifted by 1/5 of a

period between neighboring blades indicating that they are due to the motion of the blades

under a quasi-steady load. Note that when summed over all blades, an unsteady net side-

force is recovered which fluctuates about the mean of zero.

Moving radially outward in Fig. 12, the amplitude peaks somewhere in the mid-span

and decreases toward the blade tip. This is contrasted by the marginal increase in thrust

unsteadiness which jumps sharply near the blade tip, due to the unsteadiness of the tip

vortex. The tip vortex is confined to a small region as seen in Fig. 9. In this region, the

thrust unsteadiness is larger than that of the blade side-force.

It should be pointed out that while the oscillations in side-force are periodic and phase

shift between blades, there are also small-amplitude, high-frequency oscillations that re-

main when the entire propeller is considered. The large-amplitude, low-frequency, periodic

changes in side-force (which produce tonal sound) destructively interfere resulting in small

but nonzero rotor-plane sound observed in Fig. 4.

The propeller load can be decomposed into body-fitted radial and azimuthal components

(rather than inertial y and z side-force components) and non-dimensionalized in the same

manner as KT . Figure 13 shows that K̇Fr and K̇Fθ oscillate about a constant load on each

blade, implying that the the periodicity in Fig. 12 is due to the periodic motion of the blades

and the decomposition into inertial forces, not a periodic flow phenomenon such as vortex
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shedding or ingestion of a velocity deficit. Furthermore, Fig. 14 shows the energy spectrum

of the blade-frame azimuthal force at 10 locations along the blade. Note that near the blade

root, energy is concentrated around low frequencies and the propeller rotation rate. The

energy is distributed more evenly to the high frequencies moving radially outward, due to

the increasing local chord based Reynolds number. This indicates that turbulent pressure

fluctuations, and not periodic shedding of the vortex sheet, may be the primary source of

noise on the blade.

B. Blade strip sound

Figure 15 shows the directivity of each radial station, summed over all blades. It shows

how the total sound levels change over the span of the blades. There are three clear regions,

a blade root region (a)-(c), a blade loading region (d)-(h), and a tip vortex region (i,j).

Figs. 15 (a), (b), and (c) all have the circular shape, mirroring the results seen in Sec. V.

Similarly, the first strip is biased toward the rotor plane. This may indicate that interaction

of the root wakes with the flow separation and hub vortex drives the unsteadiness on the

surface of the blade root. The bias decays as the distance from the hub is increased as

shown in Fig. 15 (a-d). Figs. 15 (d)-(h) begin to take the shape of the propeller dipole;

the lobes become more clearly defined approaching the area where the blade is maximally

loaded (≈ 0.72R).

The last two subplots, Figs. 15 (i) and (j), show that most of the blade sound is being

produced at the tip. There is a small increase from strip eight (h) to strip nine (i), but there

is a larger jump between strips nine (i) and ten (j). The tip vortex is found to primarily

affect the sound generated by thrust unsteadiness; an explanation for this is that the tip

vortex is shed in the direction of the flow, seen in Fig. 12 (d) and (e) where the amplitude

of the thrust time derivative becomes much larger while the amplitude of the side-force time

derivative remains unchanged. The large increase and localization of the sound indicates

that the tip vortex (Fig. 9) dominates sound production over the rest of the blade.

Logarithmic contour levels of p
RMS

in Fig. 16 highlight source regions located along the

blade. The strongest sources are concentrated near the blade trailing edge. Moving radially

along the trailing edge, starting at the root, it is evident that there are strong coherent

regions connected by less coherent areas. There are three distinct regions, one near the hub,
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FIG. 16. Logarithmic contour levels of pRMS on the propeller surface indicate the strength of the

acoustic source. Propeller rotation is clockwise. The strongest sources are concentrated near the

blade trailing edge.

one along the mid-span, and one localized to the tip, following what was observed in Fig. 15.

There is a streak in the chord-wise direction at the root that may indicate flow separation

and interaction with the hub boundary layer. Figures 15 and 16 show that the tip zone is

most important to capturing the level of total propeller sound.

The acoustic energy spectrum was calculated at each radial strip to investigate the

sources. Figure 17 shows the mean energy spectrum of FW-H strip-generated sound, when

the blades are considered independently; the peak at the propeller rotation frequency shows

that the individual blades are creating strong, tonal sound. The method captures the first

harmonic of the tones as well. Contrasting with Fig. 6, it is clear that these tones are absent

when the entire propeller is considered. The cause of this behavior is the compactness of the

problem at low frequencies; tones emanating from individual blades destructively interfere

before reaching the far field. It appears that the tones are strongest halfway along where

the blade is maximally loaded and has the largest chord-wise lifting surface. Figure 17 also

shows a transfer of acoustic energy from mid-frequencies, near the root, to high frequen-

cies, at the tip. As the radius increases, the local Reynolds number increases and energy is

transported to higher frequencies as the flow becomes more turbulent.

There are two main mechanisms by which turbulence could generate sound on the surface
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FIG. 17. Comparison of the mean energy spectra of strip generated sound from FW-H, with five

strips per blade. Three strips are plotted to decrease clutter.

of the propeller. The first is by impingement of turbulence on the leading edge; the second

mechanism is convection of boundary layer turbulence past the trailing edge. The singularity

of the trailing edge leads to reorganization of the pressure field and improves the radiation

efficiency of the otherwise inefficient turbulent-boundary-layer quadrupole source. Figure

18 is comprised of three contour plots of turbulent kinetic energy (TKE) in the xθ-plane at

three locations along the blade, just above the hub, 0.27R (a), near location of maximum

loading, 0.72R (b), and near the blade tip, 0.96R (c). Note the contour levels of the inset

of (b) are decreased an order of magnitude to highlight the trailing edge. These plots show

that the main source of sound is turbulence, which is generated in the boundary layer and

convected past the trailing edge. In all three plots, the largest amounts of TKE are located

near the trailing edge.

Figure 18 (a) shows that near the blade root, the flow upstream of the blades is turbulent.

The flow is tripped by both the adverse pressure gradient created by the shaft contraction to

the hub, as well as the change in velocity boundary conditions the flow experiences between

the stationary shaft and the rotating hub. The flow separates at the trailing edge creating

the turbulent root wakes.

Along the mid-span (Fig. 18 b), the blade is maximally loaded. There is turbulence

generated on both the pressure and suction sides of the blade. At the trailing edge, there is
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still very concentrated but significant amount of turbulence present. The inset plot highlights

the areas with the highest relative turbulence for the radius. There is a notable lack of

turbulence at the leading edge.

At the blade tip (Fig. 18 c), the flow is strongly unsteady due to the tip vortex. Again,

there is a lack of turbulence at the leading edge, indicating that the primary mechanisms for

blade generated sound are convection of boundary layer turbulence past the trailing edge in

the presence of the unsteady tip vortex.

C. Total blade sound

Although, in the far field the propeller directivity has a dipole shape parallel to the

axis of rotation, Fig. 19 shows that, the large-amplitude side-force oscillations over most

of each blade (Fig. 12) behave like a much stronger dipole aligned with the rotor plane.

The individual blade produces a large amount of sound in the rotor plane as seen in Fig.

19; the blade sound (Fig. 20) is strongly tonal. The propeller is acoustically compact at

the energetic tones which leads to destructive interference in the far field. Presumably, the

major axis of the directivity Fig. 4 would shift as the observer approaches the near field.

Figure 20 shows a comparison of the blade spectrum for both the CSA and FW-H meth-

ods. The additional thickness and force-acceleration terms of the FW-H lead to prediction

of stronger tones in the rotor plane.

VII. MODELING IMPLICATIONS

Important inputs to the noise models based on the work of Amiet [6] are spectra of surface

pressure and the spanwise correlation length. The spectral properties of surface pressure have

been discussed via propeller loading. For the current operating conditions, unsteadiness due

to the shedding of the tip vortex is found to be the primary source of sound. Furthermore,

along the blade, self noise is generated by convection of boundary layer turbulence past the

blade trailing edge. This is compounded at the blade tip, where the unsteady tip vortex

is shed, producing the majority of the total sound. The sound is found to be broadband

overall. Locally on the blade, energy is transferred from mid-frequencies to high frequencies

with the radially increasing local Reynolds number.
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(c)

(b)

(a)

FIG. 18. Contour plots of turbulent kinetic energy (TKE) at three radial stations, just above the

hub, 0.27R (a), near maximum blade loading, 0.72R (b), and near the blade tip, 0.96R (c). Note

the contour levels of in the inset of (b) are decreased an order of magnitude.
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FIG. 19. Comparison of the blade generated sound pressure level from the Curle strip analogy

and Ffowcs-Williams and Hawkings strip analogy. The origin is set to 40 dB to minimize empty

plotting space.

FIG. 20. Comparison of the energy spectra of blade generated sound between the Curle strip

analogy and Ffowcs-Williams and Hawkings strip analogy.
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FIG. 21. The radial variation of the source correlation length, L.

Palumbo [59] notes that the source correlation length (L) and coherence length (`) are

related, but not equivalent. Coherence length is a function of both frequency, position,

and separation and is band specific whereas correlation length (a function of space and

separation) is a wide-band, time-domain variable, which is more convenient for describing

the broadband nature of the propeller sources. The sources are decomposed into the time

derivatives of thrust (Ṫ ) and the blade-frame azimuthal (Ḟθ) and radial (Ḟr) forces to ex-

amine source correlation without bias due to the rotational motion. Correlation length is

computed as the maximum cross-correlation (χ) over all lags (T) between radial locations

r1 and r2, normalized by the auto-correlations and integrated over the blade length at each

location,

L(r1) =

∫ L

0

|maxT(χ(r1, r2,T))|2
χ(r1, r1, 0)χ(r2, r2, 0)

dr2. (12)

Note that the cross-correlation is a function of both r1 and r2. No assumptions have been

made regarding the homogeneity of the flow or of the sources radially along the blade.

Figure 21 shows the radial variation of L normalized by blade length; unity implies that

the sources are correlated over the length of the blade. For all three sources, the mean-

radial values of L are less than 0.4R . The regions where the blade is most turbulent

( r
R
≤ 0.4 and r

R
≥ 0.88) are correlated over shorter distances, as expected. Note that for

both propeller-strip discretizations, the characteristic size of the strip (∆r) is less than the
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minimum correlation length on the blade.

VIII. SUMMARY

Sound is predicted for flow over a propeller at design operating condition. The accuracy of

the sound prediction depends on the accuracy of the flow field, hence LES is used to compute

far-field noise. Each blade of the propeller is decomposed into multiple radial strips and the

sound at an observer radius of 100 diameters is computed using three different acoustic

analogies: PFD, CSA, and FW-H strip acoustic analogy. Far-field sound is computed for

five and ten strips per blade for both the CSA and FW-H.

The generated sound is dependent on the unsteadiness of the propeller loading. For the

present operating condition, it is seen that the propeller hub and locations near the blade tips

are where the most unsteadiness occurs while the blade is maximally loaded in the midspan,

near0.7R. The effect of the tip vortex is found to be highly localized to the outermost strip,

which is confirmed by the flow field. The propeller is found to produce maximum levels of

sound along the axis of rotation, which decay to a minimum in the rotor plane for the far

field.

The propeller hub is found to be a quasi-omnidirectional sound generator, most important

to overall sound levels in the rotor plane. The primary mechanism of sound generation

is suggested to be flow separation on the hub as well as interaction of the surface with

the turbulent wakes of the blade roots. The generated sound is broadband and contains

significant energy at mid-low frequencies.

The individual blades produce strongly tonal low frequency sound at the rotation rate. At

this frequency, the propeller is acoustically compact and the sound destructively interferes

in the far field. At high frequency, the propeller and individual blades are broadband; in this

broadband region, there is a shift of energy from the mid-frequencies to high frequencies,

moving radially outward, due to the increasingly turbulent nature of the flow. The blades

are found to generate a significant level of self noise; the mechanism of sound generation

is found to be convection of turbulence in the boundary layer past the blade trailing edge.

Additionally, unsteadiness confined to the tip vortex region couples with turbulent self noise

to generate the majority of the propeller sound.

Results from the three applied methods agree very well. The propeller becomes acous-
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tically non-compact for sound at frequencies above 1, 000 Hz leading to over prediction of

sound levels by the PFD. The turbulent nature of the propeller sound results in frequencies

above 1, 000 Hz containing significant acoustic energy. Consistent results are found for a

discretization of as few as five and ten strips per blade. In the far field, the thin nature the

blades and slow rotation of the propeller result in negligible difference between the CSA and

more computationally expensive FW-H.
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