
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Observation of the pressure effect in simulations of
droplets splashing on a dry surface

A. M. P. Boelens, A. Latka, and J. J. de Pablo
Phys. Rev. Fluids 3, 063602 — Published  7 June 2018

DOI: 10.1103/PhysRevFluids.3.063602

http://dx.doi.org/10.1103/PhysRevFluids.3.063602


Observation of the pressure effect in simulations of droplets splashing on a dry surface.

A.M.P. Boelens,1 A. Latka,2 and J.J. de Pablo3

1Department of Energy Resources Engineering, Stanford University,
397 Panama Mall, Stanford, California 94305, USA

2Department of Physics, University of Chicago, 5720 South Ellis Avenue, Chicago, IL 60637, USA
3Institute for Molecular Engineering, University of Chicago,
5801 South Ellis Avenue, Chicago, Illinois 60637, USA∗

(Dated: May 16, 2018)

At atmospheric pressure, a drop of ethanol impacting on a solid surface produces a splash. Re-
ducing the ambient pressure below its atmospheric value suppresses this splash. The origin of this
so-called pressure effect is not well understood and this is the first study to present an in-depth
comparison between various theoretical models that aim to predict splashing and simulations. In
this work the pressure effect is explored numerically by resolving the Navier-Stokes equations at a
3-nm resolution. In addition to reproducing numerous experimental observations, it is found that
different models all provide elements of what is observed in the simulations. The skating droplet
model correctly predicts the existence and scaling of a gas film under the droplet, the lamella for-
mation theory is able to correctly predict the scaling of the lamella ejection velocity as function of
the impact velocity for liquids with different viscosity, and lastly, the dewetting theory’s hypothesis
of a lift force acting on the liquid sheet after ejection is consistent with our results.

I. INTRODUCTION

A wide variety of outcomes can occur when a liquid
droplet hits a dry solid surface. Depending on impact
velocity, surface tension, viscosity, ambient pressure, and
surface roughness, one can observe deposition, splash-
ing, receding breakup, or a rebound of the droplet [1].
The effect of ambient pressure on the transition between
the smooth droplet-deposition and the splashing regimes
is particularly intriguing. While intuition suggests that
pressure should have a stabilizing effect, it has been found
that lowering, instead of increasing the ambient pressure,
suppresses splashing [2]. Despite various attempts to cap-
ture this so-called “pressure effect” in numerical simula-
tions [3–5], its origins are still unknown. This knowledge
gap has hindered technological developments, as there
are numerous applications that could benefit from control
over the splashing of droplets, including erosion, coating,
cleaning, cooling, high-throughput drug screening, and
fabrication techniques that rely on inkjet printing tech-
nology [6, 7].

When surveying the literature on splashing experi-
ments, two different observations of the effect of the am-
bient gas pressure on splashing have been reported: i)
the effect of pressure that can most readily be observed
is that, assuming the crown of the splash at atmospheric
pressure reaches a certain height, as pressure gets re-
duced the height of the splash decreases [2], and ii) when
observing the splash using Ultrafast Interference Imag-
ing [8], a thin gas film can be observed under the liquid
sheet that was ejected from the droplet upon impact. As
the ambient pressure is reduced, at a certain threshold
pressure, this gas film is not observed anymore [9].
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These two observations also help to illustrate the chal-
lenges associated with the multiscale nature of splashing.
Length scales range from the contact line, where inter-
molecular forces act at nanometer length scales, to the
characteristic length scale of the droplet itself, typically
on the order of millimeters or larger. Time scales range
from microseconds before impact, when deformation of
the droplet leads to formation of the “central” air bub-
ble [8, 10, 11], to milliseconds after impact when, as the
liquid spreads radially in a thin film or lamella, the liq-
uid sheet that was ejected from this lamella breaks up
into many smaller droplets. While past efforts have tried
to identify a single splashing criterion [12, 13], all these
length and time scales must be resolved or modeled in
order to fully capture the physics of splashing.

In this paper, by fully resolving the Navier-Stokes
equations, we reproduce the pressure effect on splashing
and, in doing so, reveal a number of features that help
explain its origins. This is achieved by performing calcu-
lations with spatial and temporal resolutions as high as
3nm and 0.5ps. These are length and time scales which
are currently inaccessible to experiments. To obtain such
high resolution, the simulations of droplets splashing on
a dry surface presented in this work are restricted to a
two-dimensional axisymmetric geometry.

In addition to reproducing the pressure effect, the sim-
ulations describe several experimentally observed phe-
nomena, including the formation of the central air bubble
[8, 10], the formation and ejection of a liquid sheet [8, 14],
and the contact line-instability leading to entrainment of
gas bubbles at the liquid/gas interface [15]. A parame-
ter sweep of lamella formation, varying impact velocity,
viscosity, and surface tension, allows us to evaluate three
recently proposed theories of splashing and lamella for-
mation. One of these proposes air entrainment at the
contact line, also known as dewetting [16], as well as the
existence of a lift force [17], as the mechanisms respon-
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sible for liquid-sheet formation and breakup. Another
theory attributes splashing to a “skating” motion of the
droplet on a thin gas film, and the deflection of liquid
on the impact surface [11]. The third theory [18] pro-
poses that lamella formation is caused by the interaction
of viscous and inertial length scales.

The simulations show that upon impact a very thin gas
film is present under the droplet. While at high enough
impact velocities this gas film is not stable and tends to
collapse, it is always present at the edge of the spreading
droplet. This is because the contact line moves at high
speed along the surface in a “rolling” fashion, continu-
ously extending the gas film at the edge of the droplet.
The observed scaling of the height of a this very thin gas
film as function of the impact velocity is consistent with
literature [11, 19]. Simulation results for an increased slip
length on the wall for the gas phase are consistent with
the hypothesis that the breakdown of the continuum as-
sumption introduces a slip length on the wall which is
pressure dependent [20]. This provides a possible expla-
nation for the experimental observation of a threshold
pressure for splashing as mentioned above [9].

While it is not possible to identify the correct scaling
of the lamella ejection velocity as function of the impact
velocity from the currently available simulation data, the
lamella formation theory is the only model that captures
the effect of viscosity as found in the simulations. In
addition, evidence is found for the existence of an early-
time viscous length scale for the height of the lamella as
proposed in the lamella formation theory [18], and a new
surface tension based length scale is found. Pertaining to
the breakup of the liquid sheet, our results support the
concept of a lift force acting on the liquid sheet, which
was proposed as part of the dewetting theory. Our results
disagree with the idea suggested by the skating-droplet
theory that it is the deflection of liquid on the solid sur-
face that causes a drop to splash.

II. THEORY & METHOD

To facilitate the tracking of topological changes, a Vol-
ume of Fluid approach [21] is adopted in this work. The
VOF approach evolves around the definition of a phase
parameter α with the following properties:

α =

 0 in gas phase
(0, 1) on interface
1 in liquid phase

(1)

The evolution of α is calculated using the following trans-
port equation:

∂α

∂t
+∇ · (α~v) +∇ · (α (1− α)~vlg) = 0, (2)

where ~v is the phase averaged velocity, and ~vlg is a veloc-
ity field suitable to compress the interface. This equation
is equivalent to a material derivative, but rewritten to
minimize numerical diffusion [22].

The phase parameter is used to calculate the phase
averaged density, ρ, velocity, ~v, and viscosity, µ, which
are used in the momentum balance:

∂ρ~v

∂t
+∇ · (ρ~v ⊗ ~v) = −∇p+∇ · (µ∇~v) + ρ~g − ~f, (3)

and the continuity equation:

∇ · ~v = 0. (4)

In the above equations t is time, p is pressure, g is gravity,
~f is any body force, like the surface tension force, and ⊗
is the dyadic product. To complete the VOF model, an
expression is needed to calculate the surface tension force
~fst, and the initial and boundary conditions need to be
chosen. The surface tension force is calculated using the
expression [23]:

~fst = σstκ∇α (5)

where σst is the surface tension coefficient, and κ is the
curvature of the interface.

The computational domain has two different kinds of
boundary conditions for each variable; on the bottom
there is the impact wall, and on the sides and top there
are boundary conditions which allow for the in and out
flow of gas. As boundary condition for α on the im-
pact wall the Generalized Navier Boundary Condition
(GNBC) is used [24, 25]. With this boundary condition
the dynamic contact angle is allowed to vary freely, but a
restoring line-tension force is applied at the contact line
whenever the dynamic angle deviates from the equilib-
rium contact angle. This restoring force is an additional
source term in the Navier-Stokes equations, and has the
following form:

~flt = −σst
h

cos θ0∇2Dα (6)

This force is applied on the liquid-gas interface in the first
grid cells next to the wall and balances the surface tension
force when the dynamic contact angle θ is equal to θ0. In
the above equation σst is the surface tension coefficient,
h = V/A, is the mesh height, with A the surface area of
the wall in a grid cell, and V its volume, and ∇2Dα is
the gradient of α on the wall. More information on the
derivation and validation of this boundary condition can
be found in Ref. [26]. On the wall the velocity obeys
the Navier-slip boundary condition with a slip length of
λN = 1nm. While the slip length for the gas phase should
be larger than this value, a value of one nanometer is
realistic for a contact line. For mass conservation, the
boundary condition for the pressure enforces both a zero
flux and a zero second derivative of the pressure normal
to the wall.

On the other sides of the simulation box the phase pa-
rameter, α, obeys a Dirichlet fixed-value boundary con-
dition for inflow and a zero-gradient Neumann boundary
condition for outflow. The Dirichlet fixed value is set to
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zero, which is equivalent to only allowing gas to flow in.
For each grid cell next to a side wall the local inflow ve-
locity is calculated from the wall-face normal component
of the velocity vector associated with the center of that
specific grid cell. The boundary condition for the outflow
velocity is a zero-gradient Neumann boundary condition.
The total pressure p0 on the side walls is kept constant
according to a simplified Bernoulli’s equation:

p0 = p+
1

2
ρ |~v|2 . (7)

In this boundary condition the gas is assumed inviscid,
and when the gas inflow velocity, ~v, changes, the pressure,
p, changes accordingly. The above equations are solved
using the VOF solver of the OpenFOAM Finite Volume
toolbox [27].

The accurate description of the velocity and pressure
fields upon impact requires that the deformation of the
droplet be captured as it falls. To allow the droplet to
equilibrate with the gas flow around it the droplet first
falls through a large simulation box of 1× 5mm at a rel-
atively low resolution of 320 × 1600 grid cells. Towards
the wall, the mesh is refined six times. Each refinement
divides a grid cell into four, giving a smallest grid size of
50nm. As initial condition for α, the droplet is assumed
to be a perfect sphere, with its center of mass located at
a height of 4.5mm above the surface. To reach faster con-
vergence of the gas velocity field, Stokes flow is assumed
both inside and outside the droplet as initial condition,
and stresses are matched on the interface [28]. The pres-
sure field does not need to be initialized and develops as
the simulation progresses. Once the droplet is sufficiently
close to the wall, the simulation results in the lower part
of the large simulation box are saved and re-initialized
within a small box of 1 × 0.5mm with a resolution of
320× 160 grid cells which again gets refined towards the
wall. The results presented in this work are from simu-
lations at two different refinement levels. To capture the
details at the contact line and to capture splashing it is
sufficient to refine the mesh eight times at the wall, for a
minimum grid size of about 12nm. From a computational
point of view, this is the smallest feasible mesh size that
we can adopt for this system to run the simulations long
enough to observe splashing. A second set of simulations
focuses only on very early times. Because they run for
a much shorter time it is possible to refine the mesh ten
times and obtain an even higher resolution of about 3nm.
Complete convergence at the contact line would require
a grid size below the slip length, which is approximately
1nm and is beyond the reach of our computational re-
sources. Nevertheless, at grid sizes of 3nm and 12nm the
necessary physics of splashing are already present, and
we expect the main observations of our simulations to be
qualitatively correct. The width of both boxes is chosen
to be large enough for the splash to occur within their
confines.

For the simulations of a full splash the impact velocity
is v0 = 10.0m s−1 and the fluids are ethanol, for the liquid

phase, and air, for the gas phase. This combination has
been used in experiments [2], and has the advantage of
showing an early splash, i.e. one that occurs shortly after
impact. In experiments, the pressure effect is observed
at moderately reduced gas pressures [2]. We therefore as-
sume the dynamic viscosity of the air to be constant [29],
but the density and the kinematic viscosity are allowed
to change as pressure is reduced [29]. The reduced am-
bient pressure used in the simulations was deliberately
chosen to be significantly lower than the experimentally
observed threshold pressure, to ensure that the simula-
tions were performed well into the suppressed splashing
regime.

The impact velocities for the simulations resolving the
early time scales are v0 = 2.5m s−1, v0 = 5.0m s−1, and
v0 = 10.0m s−1. The liquid viscosity is either the vis-
cosity of ethanol or ten times that of ethanol and the
surface tension is either the normal surface tension be-
tween air and ethanol or twenty times this surface ten-
sion, which is of the same order as the surface tension of
mercury in air. In order to keep memory requirements
within the constraints of our infrastructure, we consider
a two-dimensional axisymmetric droplet with a diame-
ter of 300µm (as opposed to the 3mm droplets used in
experiments [2]).

III. RESULTS

A. Overview

To provide a context for the next sections on the behav-
ior of the gas film under the droplet and lamella ejection,
in this section an overview is given of how the simulations
reproduce the pressure effect. Figure 1 shows a time se-
ries of the pressure effect for a droplet approaching the
surface at v0 = 10m s−1. The top half shows three im-
ages of droplet impact and liquid sheet ejection on a com-
pletely wetting surface at ambient pressure, p0 = 100kPa.
The first frame, figure 1a, shows the droplet right after
impact. As the droplet approaches the wall, gas pressure
builds up at the stagnation point to about p = 1200kPa.
This causes the droplet to deform, and a gas film in the
shape of a spherical dome to appear underneath it. As
the gas film becomes thinner, air gets squeezed out and
reaches velocities of up to |~v| = 150m s−1. When the
liquid eventually touches the wall, a small amount of air
is permanently trapped, forming the central air bubble
with a diameter of about d = 10µm [8, 10, 11]. This
bubble can be seen in figure 1f.

Right after impact a liquid sheet is ejected with a ve-
locity of approximately ve = 100m s−1. The liquid sheet
forms at both atmospheric, p = 100kPa, and reduced
pressure, p0 = 1kPa. However, at atmospheric pressure
the sheet gets lifted and breaks up into smaller droplets;
in contrast, at reduced pressure it stays close to the sur-
face and remains intact. Figure 1c shows the liquid sheet
as it breaks up into smaller droplets at atmospheric pres-
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Figure 1. Time series of the impact of a droplet on a dry surface. The top frames (a-c) show simulation results for atmospheric
pressure at different times. The bottom frames show (d) liquid sheet breakup at atmospheric pressure, (e) no breakup at
reduced pressure, and (f) the central air bubble.

sure. Figure 1d shows a magnified image of the liquid
sheet as it breaks up. The droplet that breaks off has a
diameter of d = 7µm. Figure 1e shows a snapshot taken
at the same time, but at a reduced pressure. One can see
that instead of breaking up, the liquid sheet stays in one
piece: splashing is suppressed by decreasing the ambient
pressure.
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Figure 2. Time series of the droplet interface showing the
evolution of the contact line at atmospheric pressure. Light
blue represents the liquid phase. The vertical axis shows the
distance normal to the surface and the horizontal axis shows
the distance parallel to the surface relative to the center of
the droplet. Both axes are in µm.

The reason simulations are useful to investigate the gas
film behavior and liquid sheet ejection is that they pro-
vide access to length and time scales that are not easily
observed in experiments. This feature is illustrated in
figure 2, which presents a magnified time series of the
liquid/gas interface at the contact line. A blue color cor-
responds to the liquid phase and white to the gas phase.
These snapshots are taken at atmospheric pressure, from
the moment just after impact until the point when the
edge of the droplet is about to leave the simulation box.
Drop impact is defined as the moment that a droplet
would have hit the surface continuing its trajectory in-
stead of spreading on a gas film. This occurs at t = 6.2µs.
Figure 2a shows the contact line just after impact and
right before a liquid sheet forms at t = 6.25µs. Once the
liquid sheet forms, which can be seen in figure 2b, it is
ejected right away. A feature revealed by experiments [8]
is contact line dewetting. At high speeds the interface in
front of the contact line becomes unstable and touches
down on the surface, causing gas bubble entrainment at
the contact line. This phenomenon can be appreciated
in figure 2c, which at r ≈ 168µm shows a gas bubble
that formed when the contact line became unstable, and
the liquid in front of the contact line touched down on
the surface. The first touch-down event is observed at
t = 7.33µs, and at t = 14.4µs the contact line stabilizes
again. Figure 2c and figure 2d are well within the unsta-
ble and stable contact-line regimes, respectively.

Resolving the ejection of this same lamella in an ex-
periment with a high-speed camera, would call for the
following specifications: considering a deacceleration of
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about −4.0× 107m s−2 right after ejection, to capture a
velocity difference of 8m s−1, 10% of the ejection velocity,
one would need to capture one frame every 0.2µs. This
corresponds to a frame rate of 5.000.000 frames per sec-
ond. To resolve a lamella thickness of 0.5µm with 10 pix-
els, a resolution of 0.05µm per pixel is needed. Methods
like Total Internal Reflection (TIR) [19], and interference
[15] can achieve very high spatial and temporal accuracy.
However, only a very small part of the droplet interface
can be studied, while simulations show the complete in-
terface, including the gas film and the lamella.

B. Gas film

This section looks in more detail at the gas film which
forms under the droplet upon impact. The evolution of
the gas film for various parameters is shown in figure 3.
The vertical axis shows the height away from the wall
and the horizontal axis the radial distance away from
the center. Both axes are in µm. The figures in the top
row show an impact velocity of 2.5m s−1 and the time
difference between successive lines is 1.0µm. The figures
in the bottom row show the gas film for an impact veloc-
ity of 10.0m s−1 with a time difference of 0.1µm between
successive lines. Figures (a) and (e) show the gas film for
ethanol at atmospheric ambient pressure, figures (b) and
(f) show the results for the high viscosity liquid (i.e. a
viscosity 10 times higher than the viscosity of ethanol),
figures (c) and (g) show the results for the liquid with
a high surface tension (i.e. a surface tension 20 times
higher than the surface tension of ethanol in air), and
figures (d) and (h) show the results for ethanol at re-
duced ambient pressure (i.e. an ambient pressure 1/100
of atmospheric pressure). Comparing the top and bot-
tom row shows that a higher impact velocity results in a
thinner gas film. The fluctuations of the interface close
to the wall in the bottom row are the result of the gas
film collapsing behind the edge of the spreading droplet.
Comparing figure (a) and (b), shows that for early times
a higher viscosity results in a thicker gas film. Both the
effect of velocity and viscosity are consistent with litera-
ture [19]. An increases surface tension also gives an in-
creased gas film thickness while a lower ambient pressure
has little effect on the thickness of the gas film.

A more quantitative representation of the gas film
height can be seen in figure 4. This figure shows the
height of the gas film at the edge of the droplet in nm at
the moment of lamella formation as a function of impact
velocity. The observations made above for an impact ve-
locity of 2.5m s−1 concerning the effect of viscosity, sur-
face tension, and pressure on the thickness of the gas
film are shown to also hold for higher impact velocities.
Moreover, an higher impact velocity can be seen to re-
duce the thickness of the gas film irrespective of the liquid
properties of the droplet or the ambient gas pressure. In
addition to the various data points, figure 4 also shows a
prediction by Mandre and Brenner [11] for the thickness

of the gas film as function of impact velocity. They pro-

pose a scaling of zf = 60r0St4/3, where St = µg/(ρlv0r0)
is the Stokes number, r0 is the radius of the droplet, ρl
is the liquid density, and µg is the gas viscosity. While
the prefactor is different, possibly due to differences in
geometry and the fact that the theory was developed for
inviscid flow, the scaling is consistent with theory.

One aspect of the figure that needs to be examined
more closely is that fact that, especially at higher im-
pact velocities, the thickness of the gas film under the
droplet upon impact becomes very thin. Considering
that at room temperature and atmospheric pressure the
mean free path is around λ ≈ 70nm [30], this suggests
that the continuity assumption is not valid and raises the
question how a breakdown of the continuity assumption
would affect the simulation results. Mandre and Brenner
[11] show that at larger impact velocities the continuum
assumption breaks down and they predict that this leads
to earlier rupture of the gas film. The effect of the break-
down of continuity can be modeled by increasing the slip
length on the wall [20]. Figure 5 shows the minimum
thickness of the gas film as function of time comparing
slip lengths of 1nm and 100nm. Both simulations are of
an ethanol droplet falling through air at reduced ambi-
ent pressure. The simulation results are only show till
right before collapse of the gas film. The code supports
only one slip length and as mentioned in the theory &
methods section the slip length of λ = 1nm was chosen
because it is a good value for the contact line. The slip
length of λ = 100nm was chosen because the slip length
is inversely proportional to pressure [20] and the ambient
pressure was reduced hundred fold. It can be appreciated
that the increased slip length does result in a slightly ear-
lier collapse of the gas film, consistent with literature [11].
In addition, it has been reported that at atmospheric am-
bient pressure, the maximum contact line velocity is not
greatly affected by the presence of a slip boundary condi-
tion for the gas phase [20]. This suggests that although
the gas film is expected to collapse sooner when the con-
tinuum assumption breaks down, there should be a gas
film present at the edge of the spreading droplet.

As mentioned in the introduction, apart from the gas
film forming under the droplet upon impact there is also
a gas film under the liquid sheet. To be able to analyze
the thickness of this gas film, figure 6 shows a time series
of the contour of the droplet at atmospheric pressure with
the vertical axis plotted on a logarithmic scale. Since the
vertical axis cannot go to zero, it is cut off at 10−3µm,
and the center of the drop corresponds to the vertical
axis. Figure 6a shows the droplet right after impact with
the central air dome clearly visible. Initially the bubble
is slightly under 1µm high, and about 30µm wide. The
vertical lines or peaks under the droplet are small air
bubbles which were trapped on impact. The next figure
shows the droplet right after a liquid sheet is ejected and
the third frame shows the droplet in the unstable con-
tact line regime. The vertical lines behind the contact
line are small air bubbles which were entrained by the
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Figure 3. Gas film profiles of different droplets approaching the wall. The vertical axis shows the height above the wall and
the horizontal axis the radial distance away from the center. Both axes are in µm. The figures in the top row ((a), (b), (c) and
(d)) show an impact velocity of 2.5m s−1 and the time difference between successive lines is 1.0µm. The figures in the bottom
row ((e), (f), (g) and (h)) show an impact velocity of 10.0m s−1 with a time difference of 0.1µm. Figures (a) and (e) show the
results for ethanol at atmospheric ambient pressure, figures (b) and (f) show the results for the high viscosity liquid (i.e. a
viscosity 10 times higher than the viscosity of ethanol), figures (c) and (g) show the results for the liquid with a high surface
tension (i.e. a surface tension 20 times higher than the surface tension of ethanol in air), and figures (d) and (h) show the
results for ethanol at reduced ambient pressure (i.e. an ambient pressure 1/100 of atmospheric pressure).
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Figure 4. Height of the gas film under the drop at the moment
of lamella formation for various velocities, viscosities, and sur-
face tensions. The line shows the theoretical predictions by
Mandre and Brenner [11].

moving contact line. Also, it can be observed how the
contact line of the central air bubble is moving toward
the center. The gas layer under the liquid sheet is on the
order of several microns thick. The last figure, figure 6d,
shows the droplet with a stable contact line. There are
no longer droplets being trapped right behind the con-
tact line. Instead, there is just one cavity present at the
contact line with a height of a little under 1µm. The gas
film right after the cavity has a thickness of about 0.1µm,
and increases again to several microns towards the rim
of the liquid sheet.

To put the above numbers in perspective they need to
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Figure 5. The minimum thickness of the gas film as function
of time comparing two simulations: one simulation with a
slip length of λ = 1nm, and one simulation with a slip length
of λ = 100nm. Both simulations are performed at reduced
ambient pressure. The inset shows a magnified view of the
droplets approaching the wall.

be compared to the mean free path of air. At room tem-
perature and atmospheric pressure the mean free path is
around λ ≈ 70nm [30]. The typical thickness of the gas
layer is several microns, so the continuity approximation
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Figure 6. Time series of the droplet interface with the vertical
axis plotted on a logarithmic scale. The axis are in µm and
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should be valid for these simulations. Since the mean free
path scales with the kinematic viscosity, at the reduced
pressure the mean free path is about λ ≈ 7µm, which is
about the same height as the typical thickness of the gas
layer. This means that at reduced pressure the validity
of the continuum approximation is pushed to its limits,
and that the simulations may slightly overestimate the
longevity of the gas film under the liquid sheet at reduced
pressure. Additionally, at reduced ambient pressure the
maximum velocity of the contact line is expected to in-
crease [20]. If the liquid sheet is not ejected fast enough,
this might affect the simulation results.

Having addressed the issue of continuum assumption
breakdown, an important consequence of the existence of
a thin gas film under the droplet can now be discussed.
Due to the the semi-logarithmic scaling of figure 6 the
contact line is difficult to see, but in figure 7 a magnified
time series of the contact line and corresponding stream-
lines is shown at atmospheric pressure. Figure 8 shows
the contact line and corresponding vorticity contour plot,
ω = ∇× ~v, at the same magnification. While in the last
two frames of both figures a normal low-speed contact
line can be observed, the first two frames show a strongly
curved interface, which continues under the droplet. To
gain more insight into the behavior of the curved inter-
face at the contact line, we now focus on the streamlines
in figure 7. It can be appreciated that in the first two
frames, for a length of about 0.1µm along the wall, a
fluid parcel starting at the interface will closely approach
the wall when tracing its streamline. This behavior is
reminiscent of the interface rolling over the surface at a
high speed, like a caterpillar track. The lower two frames
show a traditional sliding contact line and the area where
a fluid parcel would end up at the wall is much smaller.
Looking at the vorticity contours in figure 8, a very strong
negative vorticity can be observed at the wall in the top
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Figure 7. Time series of the droplet interface, velocity mag-
nitude, and streamlines, showing the evolution of the contact
line at atmospheric pressure. This time series is magnified
15 times compared to figure 2. The velocity magnitude is
in m s−1, and the axes are in µm. The small arrows on the
streamlines indicate the direction of the flow.
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Figure 8. Time series of the droplet interface and vorticity,
ω, showing the evolution of the contact line at atmospheric
pressure. This time series is magnified 15 times compared to
figure 2. The axes are in µm and the contours in s−1.
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two frames. This suggest that in this area fluid parcels
have a strong tendency to rotate clockwise as they move
along their streamlines, again suggesting the presence of
a rolling motion. The presence of a rolling contact-line
regime seems to be crucial to splashing. Coarsening the
resolution just enough so that the gas film at the edge
of the drop and the rolling contact line do not get re-
solved, prevents a droplet from splashing on impact. It
has been brought to our attention that the rolling contact
line regime recently also has been observed in another
publication [31].

C. Lamella

Just like the previous section looked into the effect of
various material properties on the formation of a gas film
under the droplet, this section looks at the effect of these
same parameters on lamella formation. Figure 9 shows
various time series of droplets with impact velocities of
2.5m s−1 (top row) and 10.0m s−1 (bottom row). Figures
(a) and (e) show ethanol droplets at atmospheric ambi-
ent pressure, figures (b) and (f) show the droplets with
a high viscosity of 10 times the viscosity of ethanol, fig-
ures (c) and (g) show the droplets with a high surface
tension of a fluid with 20 times the surface tension of
ethanol in air, and figures (d) and (h) show the evolution
of ethanol droplets at an ambient pressure reduced 100
times compared to atmospheric pressure. The droplets
are shown till the moment of lamella formation. It can
be seen that an higher impact velocity results in a thin-
ner lamella which forms earlier. In addition, it can be
observed that both increased viscosity and surface ten-
sion results in thicker lamella which are ejected later.
Pressure on the other hand does not have an effect on
the moment of lamella ejection.

In figure 10 the simulation data is shown in a more
quantitative form. Figure 10 (a) shows the height of the
lamella, ze, at the moment of ejection as a function of the
time since impact, t, on a log-log plot. The data is shown
for a droplet of ethanol in both atmospheric and reduced
ambient pressure, a high viscosity droplet, and a high sur-
face tension droplet. The impact velocities are 2.5m s−1,
5.0m s−1, and 10.0m s−1. A higher impact velocity re-
sults in an earlier ejection time. An earlier ejection time,
in turn, results in a thinner lamella. Increasing the sur-
face tension and viscosity delays the moment of lamella
ejection, resulting in a thicker lamella. In figure 10 (b)
the lamella ejection velocity as function of ejection time
can be seen. For all the different liquid properties a later
ejection time gives a lower ejection velocity. In addition,
when the data is non-dimensionalized with the impact
velocity, v0, and droplet diameter, D, the data collapses
to a single line with an exponent of ve/v0 ∝ t−1/2. For
especially the last point a deviation from this scaling can
be observed. The reason for this can be seen in figure 9
(c). At the impact velocity of 2.5m s−1 the increased sur-
face tension slows down ejection time by so much that the

lamella size can not be considered much smaller than the
droplet size anymore, ze 6� D, which results in different
dynamics for lamella formation.

Simulations can also also provide insight on how the ve-
locity of the lamella evolves after ejection as it gets lifted
up and becomes a liquid sheet. Two simulations were
continued after lamella formation. In both simulations
the droplet has an impact velocity of v0 = 10m s−1, but
one simulation is at atmospheric ambient gas pressure
and one is at reduced ambient gas pressure. The results
are shown in figure 11. The left axis shows the radial liq-
uid sheet velocity while the right axis shows the vertical
liquid sheet velocity. The velocity curves for the simula-
tion at atmospheric ambient pressure end when the liquid
sheet breaks up. In this graph, t = 0 is the moment of
liquid sheet ejection, te, which is defined as the moment
a local maximum can first be detected in the width of
the droplet close to the wall. This local maximum is the
beginning of a lamella. It can be appreciated that both
the initial vertical and horizontal ejection velocities are
very similar between the normal and reduced pressure
cases. This is expected because lamella ejection occurs
very shortly after impact, and impact dynamics are typ-
ically described by the Reynolds number and the Weber
number [6], neither of which depend on the properties of
the ambient gas. Only at later times do the velocities
start to differ resulting in the liquid sheet at atmospheric
ambient pressure being lifted higher than the liquid sheet
at reduced ambient pressure, resulting in its breakup.

IV. DISCUSSION

While in this section various splashing and droplet de-
position models are discussed, the reproduction of the
pressure effect in our simulations in itself leads to im-
portant conclusions. To reduce the number of variables,
both the liquid and gas phases are assumed to be in-
compressible; this indicates that a shock wave cannot be
solely responsible for liquid sheet formation [8]. Also,
vortex formation in the gas phase upon impact is not
necessary for splashing [32]. Although the vortices are
not resolved in our simulations, the effect of pressure is
still captured. Lastly, the break up of the liquid sheet
is thought to be caused by either a Plateau-Rayleigh in-
stability, or a Rayleigh-Taylor instability [33]. Although
a Plateau-Rayleigh instability can play a role in three-
dimensional splashing, since in these two-dimensional
simulations breakup is still observed, it can be concluded
that such an instability is not a necessary condition to
observe splashing.

To illustrate the need to perform a detailed compari-
son between the various existing models for splashing, in
figure 12 the ejection velocity, ve, is plotted as function
of impact velocity, v0. The correct prediction of the ejec-
tion velocity is important, because it an essential part of
predicting splashing behavior [17]. The impact velocity
is chosen here as the independent variable instead of time
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Figure 9. Lamella profiles of different droplets approaching the wall. The vertical axis shows the height above the wall and the
horizontal axis the radial distance away from the center. Both axes are in µm. The figures in the top row ((a), (b), (c) and
(d)) show an impact velocity of 2.5m s−1 and the time difference between successive lines is 2.0µm. The figures in the bottom
row ((e), (f), (g) and (h)) show an impact velocity of 10.0m s−1 with a time difference of 0.4µm. Figures (a) and (e) show the
results for ethanol at atmospheric ambient pressure, figures (b) and (f) show the results for the high viscosity liquid (i.e. 10
times higher than the viscosity of ethanol), figures (c) and (g) show the results for the liquid with a high surface tension (i.e.
20 times higher than the surface tension of ethanol in air), and figures (d) and (h) show the results for ethanol at reduced
ambient pressure (i.e. 1/100 of atmospheric ambient pressure).

because different models have different definitions for the
time of impact, which becomes relevant when ejection
time occurs very shortly after impact. As was seen in
figure 10, it can be observed that reducing the ambient
pressure does not have much effect on lamella formation.
However, both an increased viscosity and an increased
surface tension significantly reduce the ejection velocity.
In addition to the simulation data, the graph shows the-
oretical curves corresponding to predictions for ethanol
drops in air. The formulas are shown in the different sec-
tions below. To plot the theoretical curves of Mandre and
Brenner [11] and Riboux and Gordillo [17], the prefactors
that are provided with their respective theories are used.
Since, Mongruel et al. [18] do not provide a prefactor, a
prefactor of 0.275 was chosen to match the data. To be
able to clearly observe the differences in scaling of the
liquid sheet ejection velocity as function of the impact
velocity, velocities are not non-dimensionalized.

It can be seen in this graph that different theories all
predict a similar scaling relation for the lamella ejection
velocity as function of the impact velocity. This makes it
difficult to distinguish between these different theories in
both experiments and simulations, and in the following
sections a more fundamental look is taken at the assump-
tions that underlie each theory.

To begin with, the relevant non-dimensional numbers
of the system are given here:

St =
µg

ρlv0r0
, We =

ρlv
2
0r0
σ

,

Re =
ρlv0r0
µl

, and Oh =

√
We

Re
,

where St is the inverse Stokes number, Re is the Reynolds
number, We is the Weber number, and Oh is the Ohne-
sorge number. These numbers have the values: St =
1.3× 10−5, We = 528, Re = 986, and Oh = 2.33× 10−2,
which where calculated using the following parameters:
v0 = 10m s−1, ρl = 789kg m−3, µl = 1.20 × 10−3Pa s,
ρg = 0.01kg m−3 at p0 = 1kPa, ρg = 1.00kg m−3 at
p0 = 100kPa, µg = 1.48 × 10−5Pa s, σ = 0.02239J m−2,
and r0 = 150µm. These numbers suggest that in our sim-
ulations impact is dominated by the inertia of the fluid.

A. Dewetting

In this section the dewetting model by Riboux and
Gordillo [17] is further investigated. A key assumptions
of this model is that the liquid moves fast enough that
the formation of a gas film under a liquid sheet is caused
by the liquid dewetting the surface. However, this is not
consistent with the results of the simulations. As shown
in the results, instead of dewetting a rolling contact line
is observed. While the gas film under the droplet can
collapse, the edge of the droplet never touches the sur-
face. Consistent with literature [34], the existence of the
gas film seems essential for splashing. Liquid sheet for-
mation is suppressed when the gas film is not resolved
in our simulations. In addition, while this needs to be
investigated further, the simulations with different slip
lengths hint at the possibility that at reduced ambient
pressure the slip length can become so large that the for-
mation of the gas film is suppressed [20]. This is also
observed in experiments [8].
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Figure 10. Various lamella properties as a function of their
ejection time. In all three plots the results are shown for an
ethanol droplet in a gas at atmospheric ambient pressure (
), and ethanol drop in a gas at reduced ambient pressure ( ),
a droplet with a high surface tension in a gas at atmospheric
ambient pressure ( ), and a droplet with a high viscosity (

). (a) Lamella height, ze, as a function of ejection time, te.
The three data points per symbol correspond to impact ve-
locities of 2.5m s−1, 5.0m s−1, and 10.0m s−1 with 10.0m s−1

resulting in the smallest ejection time. (b) Lamella ejection
velocity, ve, as function of ejection time, te. The impact ve-
locity can be non-dimensionalized using the impact velocity,
v0, and droplet diameter, D. The result of which can be seen
in figure (c). The data follows a scaling of ve/v0 ∝ t−1/2.
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ejected from the droplet as function of time. te is defined as
the moment of sheet ejection.

Since droplet deposition is dominated by inertia and
not by contact line dissipation [35], independent of the
argument of how a gas film forms under the liquid sheet,
one can investigate the model’s predictions for lamella
formation and liquid sheet breakup. The theory states
that a lamella will be ejected when the acceleration of a
material point in the lamella is larger than the accelera-
tion of the spreading radius of the drop. This acceleration
is determined by a balance between inertial, viscous, and
capillary forces, leading to an ejection time prediction:

c1Re−1t
−1/2
e,R + Re−2Oh−2 = c2t

3/2
e,R (8)

Here te,R is the sheet ejection time, non-dimensionalized
with the impact velocity, v0, and the droplet radius, r0,
and c1 and c are two constants with the values c1 =

√
3/2

and c = 1.1. Using the ejection time, the ejection velocity
can be calculated with the equation:

ve,R =

√
3

2
t
−1/2
e,R . (9)

The above equation is used to calculate the lamella ejec-
tion velocity in figure 12. As was mentioned above, al-
though the scaling of the ejection velocity as function of
the impact velocity is consistent with our data, the pro-
vided fitting parameters do not fit our data well. This
could be explained by the fact that the experiments that
were used to fit their model did not have access to the
time and length scales that these simulations can cap-
ture. Since the velocity of a lamella changes rapidly af-
ter ejection, this can lead to a significant error. However,
even after fitting the model to our simulation data for
an ethanol droplet, we find that it correctly predicts the
effect of surface tension, but not the effect of viscosity.

After lamella formation the dewetting model predicts
that a drop will splash or not based on whether a lift force
is able to lift up the liquid sheet into the air, causing the
drop to splash, or whether it re-wets the surface. This re-
sults in the definition of a parameter β = vht,z/vtc, where
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10 times the viscosity of ethanol in air, and “High surface
tension” refers to simulations of a fluid with 20 times the
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0 ), Riboux

and Gordillo [17] (ve ∝ v1.30 in current regime), and Mongruel
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0 ). The error bars in this figure are smaller

than the symbols.

vht,z is the vertical velocity of the liquid sheet when it
has risen to a characteristic height of ht, and vtc is the
Taylor-Culick velocity. In this work two different meth-
ods to calculate β are used; based on material properties
and impact conditions, Riboux and Gordillo [17] provide
a theoretical prediction for the value of vht,z. When this
theoretical value is used, β is called βR and it is calcu-
lated using the equation:

βR =

(
Klµg(ve,Rv0) +Kuρg(ve,Rv0)2(htr0)

2σ

)1/2

(10)

with:

Kl = − 6

tan2 (α)

[
ln (16

lg
htr0

)− ln (1 + 16
lg
htr0

)

]
, (11)

and:

Ku = 0.3. (12)

In the above equation α = 20/180 π◦, and lg = 1.2λ,
the slip length of the gas. λ = λ0(patm/p0) with λ0 =
65nm the mean free path of air at room temperature and
atmospheric pressure, patm = 100kPa. However, vht,z

can also be directly determined from the simulation data,
in which case β is called βS and is calculated from our
simulations using:

βS =
vht,zv0√

2σ/(ρlhtr0)
(13)

where vht,z is the vertical velocity of the liquid sheet when
it has risen a characteristic height of:

ht =

√
12

π
t
3/2
e,R (14)

For p0 = 1kPa this is the vertical velocity at t = 0.17,
and for p0 = 100kPa at t = 0.26. In Table I the theoret-

Table I. Comparison of simulation results with predictions
of the model by Riboux and Gordillo [17] for two different
ambient pressures. The table shows the ejection velocities,
and the splashing criterion of the liquid sheet. ve, and βS
are simulation results. ve,R, and βR are the predictions by
Riboux and Gordillo

P0[kPa] ve,R ve βR βS
1 4.87 7.05 0.075 0.523

100 4.87 7.65 0.649 0.557

ical predictions of Riboux and Gordillo [17] are shown.
The theoretically predicted values for β are βR = 0.075
and βR = 0.649 for calculations at p0 = 1kPa and p0 =
100kPa, respectively. However, the values calculated
from the simulations are βS = 0.523 and βS = 0.557.
Comparing βS and βR, shows that theory predicts about
an order of magnitude difference between the normal and
reduced pressure cases. However, the values calculated
from the simulations show similar values of β for both
normal and reduced pressures. This suggests that when
using the definition in equation 13, β is not able to predict
splashing for these simulations. However, the vertical ve-
locity components, shown in figure 11, do suggest that a
lift force could be responsible for the breakup of a liq-
uid sheet. Consistent with equations 8 and 9 the lamella
ejection time and velocity are independent of pressure.
Only at later times, when a lift force could have started
to act on the liquid sheet, do the velocities start to differ,
supporting the lift force hypothesis. In addition, the ex-
istence of a lift force would explain why, although there
is a strong vertical component to the liquid sheet velocity
in figure 11, the liquid sheet does not rise as high as is
typically seen in experiments. The droplet size used in
these simulations is much smaller than a typical droplet
used in experiments resulting in a smaller liquid sheet
and thus smaller lift force.

While the dewetting theory is able to correctly predict
splashing for a large number of experiments [17, 36], the
theory’s predictions do not match well with the simula-
tions presented in this work. This includes the dewetting
assumption for the formation of the gas film, the model
for lamella formation, and the splashing criterion. A
possible explanation for the mismatch between the sim-
ulations and theory is that the experiments that were
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used to benchmark the fitting parameters in the theory
could not have measured liquid sheet velocities at the
early times observed in our simulations. Another mayor
difference with comparisons where the dewetting theory
gives good predictions for lamella formation and splash-
ing is that the typical droplet size in these experiments
is on the order of mm while the droplets in this work
are significantly smaller. Visser et al. [37] also find that
the dewetting model does not correctly predict splashing
for their micro-droplets and attribute this to violating
the assumption that the air film thickness under the liq-
uid sheet exceeds the mean free path length of the gas
molecules. However, as shown above, in this work at at-
mospheric pressure the gas film under the liquid sheet
is thicker than the mean free path of the gas molecules,
which leaves open the question whether there are other
size effects at play.

B. Skating

This section focuses on the stating droplet theory of
Mandre and Brenner [11]. As shown in section III B, the
simulation data are consistent with the basic assumption
of the skating model that the droplet moves on top of a
very thin gas film upon impact. While this gas film can
collapse with time, when a liquid sheet forms the edge
of the droplet never touches the surface. The thin gas
film has also been observed in recent experiments, both
directly [38] and indirectly [34]. In addition, the simu-
lation results are consistent with the proposed scaling of
the non-dimensional gas film height:

zf = 60St4/3 (15)

where St = µg/(ρlv0r0) is the Stokes number, r0 is the
radius of the droplet, ρl is the liquid density, and µg
is the gas viscosity. However, because the theory was
developed for inviscid flow, it does not account for the
effect of viscosity and surface tension. Also consistent
with the theory the gas film scaling does not depend on
gas pressure. However, when in the simulations the slip
length on the wall is increased the gas film drains faster.
Since the slip length depends on the ambient gas pressure
[20], it would be interesting to perform a follow-up study
with a wider range of slip lengths to study the effect of
the breakdown of continuity on the gas film at low gas
pressure.

The presence of the gas film and the introduction of
a rolling contact line also provides a possible explana-
tion for the recent experimental finding that splashing
is independent of the wetting properties of the surface
[39]. When the contact line is in the rolling regime its
contact angle is always 180 degrees, and thus it should
behave in exactly the same manner on wetting and non-
wetting surfaces. Therefore, in this regime, liquid-sheet
formation is predicted to be independent of the wetting
properties of the surface.

The non-dimensional lamella ejection velocity can be
calculated with the following equation:

ve,M = 0.34St−1/3 (16)

where the liquid sheet ejection velocity, ve,M , is non-
dimensionalized with the impact velocity, v0. As was
shown in figure 12, the predicted scaling of the ejection
velocity as function of the impact velocity is consistent
with the simulation results. However, the prefactor does
not match, possibly due to geometry differences. Also,
just as was the case for the scaling of the gas film height,
the effects of viscosity and surface tension are not cap-
tured in this model.

In addition to scaling relations for the gas film and
the lamella ejection velocity, Mandre and Brenner [11]
propose the hypothesis that splashing is caused by liquid
deflecting on the surface. If this were the case, one would
expect different ejection velocity directions for a droplet
impacting at atmospheric ambient pressure and at re-
duced ambient pressure. It can be observed in figure 11
that this is not consistent with the simulation data, and
that thus our results suggest that deflection on the sur-
face is not valid splashing mechanism.

C. Lamella formation

In this last section the model for lamella formation
developed by Mongruel et al. [18] is discussed. As was
shown in figure 12, the proposed scaling for the ejection
velocity:

ve,N ∝
√

Re (17)

matches the simulation data well. In addition, this model
predicts correctly that the ejection velocities for high vis-
cosity droplets are about

√
10 times lower than the ejec-

tion velocities for the normal ethanol droplets. However,
this model does not include surface tension and thus does
not capture its effect.

One of the predictions of the model is that at early
times viscosity is dominant over inertia in the develop-
ment of the lamella. To further explore the effects of both
inertia and viscosity, but also surface tension, in figure 13
we examine the early stages of lamella formation. Fig-
ure 13a shows the interface of a droplet depositing on the
surface with a velocity of v0 = 2.5m s−1 and a viscosity
of ten times that of ethanol. Between every snapshot of
the interface is a time difference of ∆t = 2µs. Right after
impact, a radial velocity maximum (yellow dots) can be
observed on the interface; when we track the time evo-
lution of this maximum, eventually a lamella forms at
the location of the velocity maximum. After the lamella
forms, when the radial position of the interface is plotted
(r, as function of the height, z), a neck or cusp appears
that reflects a minimum of the interface (red dots), and
the lamella, which represents a maximum of the interface
(blue dots).
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Figure 13. a) Interface evolution of droplet impact at 2.5m s−1

with a liquid viscosity 10 times that of ethanol. A maximum
in the horizontal velocity ( ) can be observed on the interface
early after impact and can be traced to the time of lamella
formation. At the moment of lamella formation there is a
bifurcation for points following the cusp ( ) and the lamella
( ). b) The radial position plotted as function of time for the

same data points as in figure (a). The t1/2 scaling suggests
that the flow is dominated by inertia. c) The vertical position
of the velocity maximum, lamella and cusp as function of time.

Figure 13b shows the radial position of these points as
a function of time. The scaling with r ∝ t1/2 is a theoret-
ical prediction based on geometrical arguments and indi-
cates that the radial positions of the velocity maximum
and lamella are dominated by inertia. This is consistent
with the literature [18]. Figure 13c shows the vertical
positions of the data points as a function of time.

Figure 14 further explores the evolution of the velocity
maximum (i.e. the yellow dots in figure 13) for vari-
ous simulations. In figure 14a the results are shown for
droplets with a viscosity ten times that of ethanol at
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Figure 14. a) Non-dimensional vertical position of the velocity
maximum as function of non-dimensional time for 2.5m s−1 (

), 5.0m s−1 ( ), and 10.0m s−1 ( ). The surface tension is
that of ethanol and the viscosity is 10 times that of ethanol.
The scaling suggests that at early times, lamella formation is
dominated by viscosity. b) Non-dimensional vertical position
of the velocity maximum as function of non-dimensional time
for 2.5m s−1 ( ), 5.0m s−1 ( ), and 10.0m s−1 ( ). The
viscosity is the viscosity of ethanol and the surface tension is
20 times that of ethanol. The scaling suggests that at late
times, the scaling for these droplets is dominated by surface
tension.

three different impact velocities. Non-dimensionalizing
both the vertical position and time with the kinematic
viscosity, ν, and impact velocity, v0, leads to a collapse
of the data at early times. This confirms that at early
times lamella formation is dominated by viscosity, as
is predicted by Mongruel et al. [18]. Figure 14b shows
the results of a droplet with a surface tension of twenty
times that of ethanol impacting at three different veloc-
ities. This time the axis is scaled using surface tension,
σ, liquid density, ρ, impact velocity, v0, and diameter
D. Again this leads to collapse of the data, suggesting
that, for these droplets, late-stage lamella formation is
dominated by surface tension. The height of the lamella
scales as: zσ ∝

√
σv0/(ρD2)t3/2. The fact that the same

scaling of the lamella height before ejection as function
of time can be observed for different material proper-
ties in figure 12, and for different velocities in figure 13
and figure 14, suggests that a universal mechanism exists
that causes the lamella to be created for splashing and
depositing droplets. Capturing these different regimes
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could become a prerequisite for emerging splashing the-
ories, as opposed to a focus on low-viscosity splashes
[11, 17].

V. CONCLUSIONS

In summary, high-resolution numerical simulations of
splashing ethanol droplets appear to describe the so-
called “pressure effect” with considerable fidelity. The
formation of the experimentally observed central air bub-
ble, air bubble entrainment at the contact line, liquid
sheet formation, and the scaling of the height of the gas
film under the droplet with impact velocity are all repro-
duced.

The results of the simulations are compared with the
dewetting theory of Riboux and Gordillo [17], the skat-
ing droplet theory of Mandre and Brenner [11], and the
lamella formation theory of Mongruel et al. [18]. Analyz-
ing the gas film present under the droplet upon impact no
dewetting is observed. Instead, the simulations confirm
that there is a thin gas film present under the droplet
upon impact. While this gas film is unstable and may
collapse, is is always present at the edge of the spread-
ing droplet. This is caused by the contact line moving
in a rolling fashion, continuously extending the gas film
behind it. The presence of the gas film seems critical for
splashing since under-resolving the gas film results in the
suppression of splashing. In addition, the results of the
simulation are consistent with the scaling of the gas film
height as function of impact velocity proposed by Mandre
and Brenner [11]. However, the model does not incorpo-
rate the effect of liquid viscosity or surface tension. An
area for future research is to study the non-continuum
effects in the gas film by investigating the effect of vari-
ous slip lengths on drainage and collapse of the gas film
[20].

While the lamella formation theory does not incorpo-
rate surface tension, it does predict the correct scaling
of the lamella ejection velocity as function of the im-

pact velocity for both ethanol and a high viscosity liq-
uid. Further analysis of the start of the lamella formation
right after impact confirms the existence of an early-time
viscosity-dominated regime. Also, a new length scale can
be defined for the height of the lamella before ejection to
incorporate the effect of surface tension in the lamella
formation model.

Concerning the breakup of the liquid sheet after ejec-
tion our results are not consistent with the hypothe-
sis that splashing is caused by liquid reflecting on the
surface after impact, as proposed in the skating droplet
model. However, while the splashing parameter β from
the dewetting theory is not found to have predictive value
for our simulations, the results do support the hypothesis
that a lifting force acting on the liquid sheet determines
whether it will break up or not.

Overall, the different models all provide elements of
what is observed in the simulations. The skating droplet
model correctly predicts the existence and scaling of a gas
film under the droplet and the effect of pressure on the
gas film can possibly be captured by using a slip length
to model the breakdown of the continuum assumption.
The lamella formation theory is able to correctly predict
the scaling of the lamella ejection velocity as function
of the impact velocity for various liquids, and lastly, the
dewetting theory’s hypothesis of a lift force acting on the
liquid sheet after ejection is consistent with our results.
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