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Abstract

The settling of colloidal particles with short-ranged attractions is investigated via highly re-

solved immersed boundary simulations. At modest volume fractions, we show that inter-colloid

attractions lead to clustering that reduces the hinderance to settling imposed by fluid back flow.

For sufficient attraction strength, increasing the particle concentration grows the particle clusters,

which further increases the mean settling rate in a physical mode termed promoted settling. The

immersed boundary simulations are compared to recent experimental measurements of the settling

rate in nanoparticle dispersions for which particles are driven to aggregate by short-ranged deple-

tion attractions. The simulations are able to quantitatively reproduce the experimental results. We

show that a simple, empirical model for the settling rate of adhesive hard sphere dispersions can

be derived from a combination of the experimental and computational data as well as analytical

results valid in certain asymptotic limits of the concentration and attraction strength. This model

naturally extends the Richardson-Zaki formalism used to describe hindered settling of hard, re-

pulsive spheres. Experimental measurements of the collective diffusion coefficient in concentrated

solutions of globular proteins are used to illustrate inference of effective interaction parameters

for sticky, globular macromolecules using this new empirical model. Finally, application of the

simulation methods and empirical model to other colloidal systems are discussed.
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I. INTRODUCTION

Settling of dispersed colloidal particles is central to the processing and analysis of a wide

range of industrial and scientific materials. Centrifugation is used as both a processing and

analytical tool in laboratory and commercial settings[1], and gravity-driven particle motion

controls the shelf life of many consumer and food products[2]. In the context of environmen-

tal science, sedimentation of suspended particles plays a crucial role in the engineering of

pollution remediation strategies[3] as well as natural processes of erosion and deposition[4].

Additionally, there is a linear relationship between the sedimentation coefficient and the col-

lective diffusivity in colloidal dispersions. Thus, important industrial separation processes

such as ultrafiltration applied to purification of biologically derived macromolecules, whose

design requires accurate models of the collective diffusivity, depend on knowledge of the sed-

imentation coefficient in concentrated dispersions[5]. In a vast majority of these materials

and systems, the colloidal particles are attractive. However, most fundamental studies of

settling in colloidal dispersions concern hard or repulsive particles. In the present work, we

apply the immersed boundary method to study the settling rate in concentrated dispersions

of spherical colloids with short-ranged attractions.

The settling dynamics of concentrated colloidal dispersions are controlled by the hydro-

dynamic interactions induced as moving particles displace the surrounding fluid. The flows

generated by settling particles decay to leading order as the inverse of the distance from the

particle. The entrainment of other particles by these disturbance flows is a critical factor

in settling dispersions. The combined flow produced by all the settling particles appears to

diverge with the physical size (extent) of the dispersion because of the long-ranged nature of

these hydrodynamic interactions[6]. However, mass conservation at the system boundaries

produces a back-flow driven by a pressure gradient balancing the buoyant weight of the

particles. When the back-flow is combined with the induced flows, an intensive sedimenta-

tion rate, one that is independent of the system size, results. The interplay of entrainment

and back-flow is a subtle one that makes the sedimentation a sensitive function of the mi-

crostructure of the colloidal dispersion. In dispersions of attractive colloids, which tend to

form clusters, entrainment and back-flow act synergistically so that attractions always ac-

celerate the settling process. The reasons for this are straightforward: clusters in isolation

naturally sediment more quickly than individual particles, and the widened spaces between
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clustering particles lead to a weaker resistance due to the back-flow. Quantifying these ef-

fects represents a major challenge in quantitative colloid science. In the present work, we

consider a limit in which the Péclet number for the settling particles is vanishingly small.

In this limit, the rate of particle diffusion far exceeds the rate of sedimentation and the

microstructure of the colloidal dispersion is dictated by thermodynamic equilibrium.

Of the limited studies on the sedimentation of attractive suspensions, the most important

result, a dilute-limit approximation for the mean settling rate U of a suspension of spherical

particles, accurate to first order in the particle volume fraction φ, was derived by Batchelor

more than fifty years ago[7, 8]:

U

U0

= 1− 6.55φ+ 3.52 (1−B∗2) φ+O
(
φ2
)
, (1)

where U0 is the settling speed of a single isolated particle and B∗2 = B2/B
HS
2 , where B2

is the second virial coefficient of the particles and BHS
2 is the second virial coefficient of a

reference hard sphere dispersion. For dilute hard spheres, entrainment and back-flow com-

bine to reduce the relative settling rate of particles by an amount of 6.55φ. Attractive

interactions cause B∗2 to drop from unity (hard spheres) to negative values. This has the

effect of increasing the settling speed relative to hard spheres. For sufficiently strong attrac-

tions (B∗2 ≤ −0.861), Batchelor’s theory predicts that a dispersion can settle faster than an

isolated particle. Moncho-Jordá et al. used a series of stochastic rotation dynamics (SRD)

simulations to test Batchelor’s dilute limit prediction as well as to study sedimentation in

concentrated attractive dispersions. They observed that particles with attractive interac-

tions sediment more quickly than hard spheres at all volume fractions and that, within a

specific range of volume fractions, sufficiently strong attractions produce a settling rate that

is larger than even the isolated particle value. For dispersions that exhibited such promoted

settling, the sedimentation rate exhibited a non-monotonic dependence on particle volume

fraction. At low volume fractions, the rate increases above the single particle value. Beyond

a critical volume fraction, the settling rate decreased as expected of conventional hindered

settling. These simulations and the resulting data possess a number of physical and quanti-

tative issues, including: being performed at finite but small Péclet and Reynolds numbers,

being limited in the number of particles represented in the periodic simulation box, and hav-

ing made no systematic finite system size corrections to the measured sedimentation rates.

Inspired by these simulations, Lattuada et al. conducted an experimental study designed
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to corroborate the simulation results[10]. They found a qualitative agreement between the

experiments and simulations. However, they observed that the SRD simulations systemati-

cally under-predict the settling rate of attractive suspensions measured experimentally and

also under-predict the range of volume fractions over which promoted settling is observed.

These studies are the first steps towards understanding the settling of concentrated solutions

of attractive particles, but much remains unexplored. For example, a predictive microstruc-

tural model for the settling rate would be very useful in applications involving attractive

colloidal dispersions.

In the present work we use immersed boundary simulations in the limits of zero Péclet and

Reynolds numbers to systematically investigate the effect of attraction strength and particle

volume fraction on the mean settling rate. We show that these simulations, which account

properly for finite system size effects reproduce experimental measurements quantitatively.

Furthermore, we develop an empirical model for the settling rate based on a measure of

microstructure in attractive dispersions that quantitatively matches experimental data and

our own simulation data at all the volume fractions studied.

II. SIMULATION METHODOLOGIES

We compute the settling rate of attractive colloidal dispersions using an immersed bound-

ary method referred to colloquially as the composite bead[11] or rigid multi-blob[12] ap-

proach. The details of the computational method are described elsewhere[11]. Here we give a

brief review. In this approach, the surface of each colloidal particle is approximated by a col-

lection of beads that interact hydrodynamically. Each bead generates a regularized Stokeslet

flow and is entrained by flows induced by other particles in a reciprocal fashion[13, 14]. In

our formulation, the Rotne-Prager-Yamakawa tensor[15] that linearly relates the force ex-

erted on one bead to the entrained velocity of another bead is used to represent these flows.

Additionally, the beads tessellating the surface of each particle are constrained to move as a

rigid body. A set of Lagrange multipliers, forces that ensure the constraints are satisfied, are

introduced and a system of linear equations is solved to determine the rigid body motions of

the colloidal particles and the Lagrange multipliers in response to any set of imposed external

forces. In the present work, the spectral Ewald method[16] is used to evaluate the product

of the Rotne-Prager-Yamakawa tensor for all the beads with an arbitrary set of forces acting
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on the beads. The linear equations governing the rigid body motions and the Lagrange mul-

tipliers are solved using the GMRES methodology with constraint preconditioning[17]. In

summary, this approach can be used to evaluate the transport properties of macromolecular

and colloidal solutions of arbitrarily shaped particles in O(N) time where N is the total

number of beads used to discretize the surface of all the colloids. Importantly, this model

correctly captures the effect of fluid back-flow on the sedimentation velocity. Due to fluid

incompressibility, the downward volume flux of sedimenting particles is exactly balanced by

an upward volume flux of fluid, termed back-flow. In the RPY model, the fluid incompress-

ibility is exactly enforced by setting the zero-wavevector component of the fluid velocity to

be zero. Mathematically, the fluid back-flow originates from the particle quadrupole, which

is implicit in our model through the rigid body constraint, which forces the fluid contained

within a composite bead particle to move as a rigid body, and therefore displace an equal

volume of fluid as it sediments.

For the spherical colloids studied here, the beads are made to sit on the vertices of an

icosphere formed by subdividing the faces of a Goldberg polyhedron (see Figure 1). We

have shown how such a discretization can be used to replicate the hydrodynamic interac-

tions among a pair of spherical particles in a previous publication[11]. Convergence of the

calculation with respect to the number of beads is slow for relative motion between par-

ticles because of the effects of hydrodynamic lubrication. However, convergence is fast for

collective modes of motion. Figure 1 also depicts the convergence of the sedimentation rate

of a cubic array of spherical colloids as a function of the number of beads tessellating the

surface. Zick and Homsy performed high accuracy calculations of lattice sedimentation and

published their results with three digits of accuracy[18]. We find that 2562 beads per colloid

is sufficient to exactly reproduce the published results, and therefore use the solution with

2562 as the reference state for the convergence study. With just 162 beads per colloid, the

classic results of Zick and Homsy are recovered to within 5% for the full range of volume

fractions studied. Therefore, in the present calculations we use 162 beads per colloid. This

level of discretization is chosen to accommodate a balance between the number of colloids

required to accurately model the microstructure of an attractive dispersion, the number of

realizations of that microstructure needed to compute statistically meaningful averages, and

the total computation time of the simulation. It is known that number density fluctuations

are large in attractive colloidal dispersions. Additionally, the magnitude of velocity fluc-
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FIG. 1. Relative error in the mean sedimentation rate of a periodic simple cubic lattice of spherical

particles computed using the icosphere approximation of the spherical surface compared to a high

resolution approximation (Nbead = 2562) as a function of the number of vertices of the polyhedron,

Nbead, at different volume fractions, φ. We find that Nbead = 2562 is sufficient to exactly reproduce

the published data of Zick and Homsy[18]. The polyhedra used in the calculations are shown above

the associated points. The black dashed line denotes 5% relative error.

tuations among sedimenting colloids can be of the same order of magnitude as the mean

sedimentation velocity[19]. Thus, 1000 colloids are modeled and averages of the settling

velocity are constructed from 1000 independent snapshots of the dispersion microstructure.

Throughout this work, fluctuations in the settling rate among different configurations are

used to quantify a standard error at the 95% confidence level.

The experiments of Lattuada et al. control inter-particle attraction by adding surfactant

micelles to solution in order to induce depletion[10]. Therefore, we model the interaction

potential, U(r) with a short-ranged attraction described by the Asakura-Oosawa depletion

potential[20] plus a hard core repulsion at inter-particle contact, r = 2a:

V (r) =

 ∞ r < 2a

−ε (a+δ)3

δ2 (1.5a+δ)

(
1− 3

4
r

a+δ
+ 1

16

(
r

a+δ

)3)
r ≥ 2a

, (2)

where ε is the strength of the attraction at contact and δ is the range of the attraction. The

Asakura-Oosawa potential was validated in these experiments through measurements of the

osmotic compressibility in the colloidal dispersion. The range of the depletion potential is

chosen to match the experiments: δ/a = 0.028. The depletion potential at contact, ε, is

6



varied and can be chosen so that simulated dispersions match the experimentally measured

second virial coefficient, B∗2 . Consistent with experiments, 5% dispersity in particle size is

introduced to suppress crystallization in the simulations.

The experimental value of the Péclet number is small, Pe = 4π∆ρga4/3kBT ≈ 10−3,

where ∆ρ is the density difference between the immersed colloids and the fluid, g is the

gravitational constant, and kB is Boltzmann’s constant, so the distribution of particle posi-

tions during settling is very close to the equilibrium distribution. Therefore, simple, freely

draining Brownian dynamics simulations of single beads are used to generate representative

configurations of the particles from which the mean settling rate can be computed. For each

combination of φ and ε (or B∗2), an initial hard sphere configuration of spherical colloids is

allowed to relax for 1000 bare diffusion times (6πηa3/kBT ). Then, snapshots of the particle

configuration are taken every 10 bare diffusion times until 1000 snapshots have been accumu-

lated. For each snapshot, a composite-bead representation of all the particles is constructed

from 162 bead icospheres having randomly assigned orientations. The mean settling rate for

each configuration is determined by applying a uniform force to each bead and computing

the mean of the resulting rigid body translational velocities of the colloids. The computed

mean velocity is sensitive to the periodic boundary conditions in the simulations, and the

infinite system size limit U∞ is found by

U∞ = U + 1.7601S(0)

(
ηs
η (φ)

) (
φ

N

)1/3

, (3)

which is the finite size correction given by Ladd et al.[21], where S(0) is the value of the

static structure factor at zero wavenumber, ηs is the solvent viscosity, and η (φ) is the

high-frequency viscosity, which we compute for each configuration. It should be noted that,

although we use the depletion potential to model the particle attractions, with this procedure

any sufficiently short-ranged potential will produce equivalent equilibrium structures[22].

The Noro-Frenkel rule of corresponding states suggests that samples of these equilibrium

structures can be drawn from a mapping onto the Baxter adhesive hard-sphere interaction

potential. In section III B we discuss this mapping explicitly. Therefore, the results presented

in this manuscript should be generic for any colloidal dispersion aggregating due to short-

ranged attractions.
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III. RESULTS AND DISCUSSION

A. Comparison of Simulations and Experiments

There is limited experimental data available for the mean settling rate of colloids as a

function of concentration for different well-characterized attraction strengths. Lattuada et al.

provide data at three different attraction strengths, characterized by the reduced second

virial coefficients: B∗2 = 1.0,−0.27,−1.08[10]. These values correspond to hard sphere

interactions (no attraction), a modest attraction (ε = 4.84 kBT ), and a strong attraction

(ε = 5.18 kBT ) that is near the boundary for liquid-liquid phase separation, respectively.

The experiments were performed with particle volume fractions, φ, as large as φ = 0.20. We

compute the mean settling rate for each of the experimental values of B∗2 for 0.01 ≤ φ ≤ 0.40.

Figure 2 shows our simulation results, the experimental data of Lattuada et al., and the

simulation data of Moncho-Jordá et al.. Our results are in quantitative agreement with

the experimental data for all values of B∗2 and φ for which a comparison is available. The

SRD simulation results of Moncho-Jordá et al. display only qualitative agreement with our

simulations and the experimental data, and predict a much sharper decay of U with φ than is

observed experimentally for the two attractive dispersions studied. The agreement between

experiments and our simulations affirms our claim that the proposed simulation methodology

is appropriate to perform a systematic study the sedimentation rate as a function of particle

volume fraction and attraction strength.

It is a challenge to assess the discrepancy between the SRD simulations and our own.

A number of factors may be at play. One central problem is a failure of Moncho-Jordá

et al. to account for finite system size effects in the calculation of the settling rate. As in

Equation (3), in periodic geometries transport properties like settling rate and diffusivity

are depressed by an amount proportional to aV −1/3 where V is the volume of the simulation

cell. For simulations with a fixed number of particles, increasing the volume fraction acts to

decrease V , which further depresses the computed values of transport properties. However,

to change volume fraction, Moncho-Jordá et al. fix the simulation volume and increase N .

So a systematic depression of the settling rate due to finite system size effects alone is

not enough to explain their data. A further issue that may explain the discrepancy with

their simulations is the finite Péclet number used in that study. The authors estimate
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FIG. 2. Normalized settling velocity as a function of particle volume fraction for B∗2 = −1.08 (red),

B∗2 = −0.27 (blue), and B∗2 = 1 (black) from the experimental data of Ref. [10] (stars with lines,

denoted LBP2016 in the legend) and computed in the present work (filled circles) and the SRD

simulations of Ref. [9] as interpolated in Ref. [10] (open squares, denoted MLP2010 in the legend).

Error bars represent the standard error of the observed measurements.

that Pe ≈ 2.5 in their dynamic simulations, which means that deviations from equilibrium

distribution for the particle configuration are inevitable. The effect of Pe on the mean

settling rate of dispersions is also not well studied. However, for hard-spheres in the dilute

limit and at large Peclet numbers, Cichocki and Sadlej [23] have shown that a different

expression for the sedimentation rate is expected: U/U0 = 1− 3.87φ. The settling rate is a

sensitive function of the structure, and the settling process modeled dynamically by the SRD

simulations may have exhibited changes from the equilibrium structure and even structural

anisotropy promoted by the hydrodynamic interactions among the particles. In the present

study, the Peclet number is set asymptotically to zero and only the equilibrium structure is

used for the calculation of the transport properties.

B. Microstructural Characterization and Corresponding States

As is common for colloids with short-ranged attractions, Lattuada et al. characterized

the attraction strength in their dispersion using the Baxter temperature, τ . The Baxter

temperature is a parameter that arises in the adhesive hard sphere (AHS) model of attractive

particles, in which the inter-particle potential has vanishing width and infinite depth, but
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is characterized by a single parameter, τ , reflecting the propensity of particles to adhere to

one another[24]. This parameter is a measure of the effective strength of attraction in the

suspension, with smaller values corresponding to stronger attractions. B∗2 for the AHS model

can be related to the Baxtern temperature, τ , as B∗2,AHS = 1 − 1/ (4τ). In the approach

taken by Lattuada et al., τ is computed by matching the measured B∗2 to the analytical

expression for B∗2 of AHS model, so that:

τ =
1

4
(1−B∗2)−1 . (4)

Assigning a value to τ in this fashion provides a way of determining the dilute limit thermo-

dynamic and transport properties of dispersions with short-ranged attractions in a fashion

that is agnostic to the details of the interaction potential. However, values of τ computed

by (4) are valid only in the dilute limit. As the dispersion concentration increases, τ changes

even for fixed B∗2 , and as a result more detailed models are required to infer τ for dispersions

of arbitrary concentration.

In the original development of the AHS model, Baxter produced an analytical expression

for the Percus-Yevick (PY) approximation to the pair distribution function g(r) of sticky

particles[24, 25]. The AHS model results in an expression for g(r) that is completely pa-

rameterized by the particle size a, φ, and the effective “stickiness” parameter – the Baxter

temperature – τ . An analytical expression for the static structure factor, S(q), of an AHS

suspension can be directly computed from Baxter’s result[26]. Applying the Noro-Frenkel

rule of corresponding states, which states that the thermodynamic properties, including dis-

persion microstructure, of colloids with short-ranged attractions can all be mapped back

onto the adhesive hard-sphere model, the stickiness parameter, τ , for a concentrated dis-

persion of colloids with short-range attractions can be inferred from calculations of either

g(r) or S(q) (or any other state function) for that dispersion. For any of these functions,

the calculated values can be fit by analytical expressions from the adhesive hard sphere

model at the same particle concentration to determine a corresponding value for τ . In the

dilute limit, using the osmotic pressure as the state function will recover (4). For more

concentrated dispersions, S(q) (or g(r)) is required to determine the particular value of τ

that characterizes the thermodynamic state of the dispersion in the corresponding adhesive

hard-sphere model. For this reason, throughout this manuscript τ is an a priori unspecified

parameter which is inferred from simulation data.
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FIG. 3. (a) Static structure factor computed for the three attraction strengths reported in Figure

2, B∗2 = −1.08 (red), B∗2 = −0.27 (blue), and B∗2 = 1 (black), at φ = 0.08 (open circles) and

φ = 0.40 (dots). The lines are fits by the AHS solution to the Percus-Yevick approximation for

S(q). The τ values computed for the fit are 10.53, 0.16, and 0.11 for the black, blue, and red data

sets, respectively at φ = 0.08 and 6.53, 0.21, 0.12 for the respective data sets at φ = 0.40. (b)

Root-mean-squared error of the AHS Percus-Yevick solution to the simulation data colored by the

inferred τ value, with black corresponding to hard spheres.

Figure 3 shows the values of S(q) computed at the three attraction strengths from Figure 3

at φ = 0.08 and φ = 0.40, compared to the PY approximation for adhesive hard spheres using

a value of τ inferred by minimizing the root mean-squared error (RMSE) of the PY model

with respect to the computed data. Excellent agreement is observed between the model

and the data for the six examples shown. Similar agreement in of the PY model with the

fit structure factor is associated with other particle concentrations and attraction strengths.

Figure 3b shows the relative error in the computed static structure factor with respect to the

Percus-Yevick approximation at the best fit value of τ as a function of the colloid volume

fraction and the second virial coefficient for all the simulated dispersions. Errors smaller

than 1% are typical, indicating that the fitting procedure is adequate for characterizing

the suspension microstructure in terms of the generalized stickiness parameter. This fitting

procedure can be generalized to experimental data with sticky macromolecules of known

number density, n as discussed in section III D. In this way, measurements of S(q), allows

mapping onto the AHS model without a priori knowledge of either B∗2 . The pair τ and the
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FIG. 4. (a) Normalized settling velocity as a function of particle volume fraction for −1.48 ≤ B∗2 ≤

1.00 colored by the value of the stickiness parameter τ inferred from the static structure factor

(black is hard sphere data). (b) Relative difference between the settling rate of attractive and hard

sphere dispersions for each condition presented in panel (a). The dashed black line denotes the

Batchelor result in the limit φ→ 0: 0.89φ/τ .

volume fraction serve as unique descriptors of the attractive suspension microstructure and

as we will show, the value of this pair also fixes the mean settling rate.

C. Settling rate as a function of φ and τ

We performed simulations systematically varying B∗2 between −1.48 and 1.00 and φ from

0.01 to 0.50 for a dispersion of spherical colloids interacting via a depletion potential with

δ/a = 0.028. Each set of parameters is characterized by the τ value inferred from S(q).

Shown in Figure 4a is the mean settling rate as a function of volume fraction and inferred

Baxter temperature normalized by the single particle value, U/U0, where the color of the

symbols corresponds to the inferred value of τ , with the results for hard spheres are depicted

in black.

At a fixed concentration, as τ increases, the settling velocity decreases and approaches the

hard sphere limit, τ →∞. Furthermore, although the shape of U/U0 is strongly dependent

on τ at low φ, at sufficiently large φ, the settling velocity exhibits a qualitative similarity for

all τ . With increasing concentration, the influence of the stickiness parameter on the settling

rate is diminished. In this regime, particles fill space rather homogeneously, regardless of τ ,
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and the sedimentation rate decays to zero much as with hard spheres. Attractions between

particles still increase the sedimentation rate slightly by introducing small heterogeneities

in the microstructure that are indicated by an increase in the value of S(q) as q → 0. These

void spaces allow back-flow to occur with less resistance, thus slightly increasing the settling

rate.

The simulation data show a transition in the shape of the settling curves as both τ and

φ are increased. For hard spheres, U/U0 is monotonically decreasing and concave up for all

φ. At modest attractions, U/U0 is still monotonically decreasing, but is initially concave

down until an inflection point around φ = 0.2. An inflection point is also observed for strong

attractions, τ . 0.2, but U/U0 is no longer monotonic. The settling rate increases until

φ ≈ 0.10, where it exhibits a maximum rate of promoted settling. Then, the settling rate

decays much as for hard spheres.

The ratio of the sedimentation rate of attractive particle dispersions to a hard sphere

dispersion at the same concentration is shown in Figure 4b as a function of φ/τ . φ/τ is the

natural parameter that appearing in Batchelor’s dilute limit result, when substituting the

second virial coefficient with the AHS model[8]. Batchelor’s model describes the ratio well

for for φ/τ . 0.5. For φ/τ & 0.5, the data is no longer a function of φ/τ alone and exhibits

a sharp downturn with increasing φ/τ .

To develop an empirical model for sedimentation in attractive dispersions at arbitrary

volume fractions, we start with the Richardson-Zaki correlation[27], which is a common

model for settling in suspensions,

U

U0

= (1− φ)4.65 . (5)

This expression is widely used in engineering applications even though it is known to deviate

from Batchelor’s prediction in the limit of small φ. The value of the exponent in the RZ

expression varies depending on the source, due to variation in the Reynolds and Péclet

numbers in different applications, but the form (1−φ)m is widely used, where m is typically

O(4− 6). For Brownian hard-spheres, a value of m = 5.40 is often used. The correct low φ

behavior can be obtained without losing accuracy at large φ by modifying the Richardson-

Zaki expression to force agreement with Batchelor in the dilute limit,[7]

U

U0

=
(1− φ)m

1 + (6.55−m)φ
. (6)
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FIG. 5. Settling rates for colloidal hard-spheres. The lines represent different expressions of

a Richardson-Zaki like form including (6) with m = 4.27. This particular expression fits the

settling rates at high concentrations at least as well as the other expressions, but does a better job

accounting for variations in the settling rate at low concentrations. The data points are drawn from

the literature: squares[29], triangles[30], upside down triangles[31], diamonds[32], solid circles[33],

open circles[34].

The value of m could be determined by fitting Equation (6) to the hard sphere data from our

simulations. With this procedure, the value is found to be 3.77. Cichocki et al. computed the

φ2 contribution to U/U0 from the three-particle contribution, determinining that U/U0 =

1 − 6.55φ + 21.92φ2 [28]. Using this result, m can be determined by matching the φ2

term in Equation (6) to the result of Cichocki et al. to get m = 4.27. In this way, the

model parameters are fully specified by known analytical results and no data fitting is

required. Equation 6 with the m = 4.27 is plotted as the solid black line in Figure 6d,

and the relative error with respect to the simulated data is smaller than 0.1% for all the

volume fractions studied. The inferred and best fit power law exponents are less than the

values commonly used in the Richardson-Zaki correlation, but Figure 5 shows that our

model quantitatively describes hard sphere colloidal sedimentation data at least as well as

the two other Richardson-Zaki like correlations used in the literature: U/U0 = (1 − φ)4.65

and U/U0 = (1 − φ)5.40. However, (6) has the added bonus of recovering the dilute limit

predictions of Batchelor precisely.

Inspired by this approach, we notice that further modifying (5) with a denominator

1 + (6.55 − m)φ − 0.89φ/τ would also recover Batchelor’s predictions in the dilute limit
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for attractive dispersions. Because the settling rate bears such qualitative similarity with

hard spheres at high concentrations, we proceed with the ansatz that the net effect of inter-

particle attractions can then be accounted for by simply replacing Batchelor’s: −0.89φ/τ

with a more general term −0.89f(φ, τ). This function, f(φ, τ) must be bounded from above

to avoid singularities. It also must scale as φ/τ in the dilute limit and must approach zero

in the hard sphere limit. In principle this function serves to interpolate between hard sphere

settling rate and the settling rate of aggregated dispersions. The empirical expression we

propose for the settling rate is,

U

U0

=
(1− φ)4.27

1 + 2.28φ− 0.89 f (φ, τ)
, (7)

where a form for f (φ, τ) remains to be specified.

This hypothesized model can be tested by solving (7) for f (φ, τ), and computing this

quantity from known settling rates. Figure 6 shows the values of f(φ, τ), as a function of φ/τ

with the settling rates given by our simulation data and the experimental data of Lattuada

et al.. All the data in Figure 6 falls along a single master curve. For small values of φ/τ ,

f(φ, τ) is linear in φ/τ with a slope of 1. This is required in order to recover Batchelor’s

predictions in the dilute limit. At large φ/τ , the f(φ, τ) saturates. Note, the maximal value

of φ/τ explored in this work is about 4, (φ = 0.4, τ ≈ 0.1). For τ < 0.1, adhesive hard

spheres phase separate, and we have sought to stay within the single phase region for all the

present calculations. The function f(φ, τ) can be described by a sigmoidal function of φ/τ .

There are many possible choices for this function, but a compact and convenient one is

f (φ, τ) =
φ/τ

[1 + n (φ/τ)p]
1/p
, (8)

where p is a fitting parameter that is varied along with n to minimize the sum of squared

errors between the model prediction for U and the data. The optimal values computed by

a nonlinear least squares fit to the entire data set are n = 0.43 and p = 1.85.

The model accurately describes the settling rate across the wide range of φ and τ studied.

The relative error of the model with respect to the data is plotted in Figure 6b. The relative

error is smaller than 20% for all the cases studied. The model does tend to slightly over-

predict the settling rate at modest τ and is the least accurate for the stronger attractions

studied. This can be understood by recognizing that for the strongly attractive particles, τ ≈

0.1, which is very close to the theoretical critical Baxter temperature, τ = 0.098. For modest
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FIG. 6. (a) Inter-particle interaction contribution to the hindered/promoted settling function given

in Equation (7) with m = 4.27 as a function of the normalized volume fraction for a range of τ

computed from sedimentation data in the present work (circles) and the experimental data of Ref.

[10] (open squares, denoted LBP2016 in the legend). Hard sphere data, for which f = 0, has been

omitted. The red line is given by Equation (8). The color of each data point corresponds to the

τ value determined by fitting S(q) to the AHS model. (b) Relative error in the computed model

velocity Umodel given by Equation (7) compared to the observed velocity U as a function of volume

fraction. (c) Observed probability distribution for the relative error in the model prediction. (d)

Settling rates predicted by the model (7) for τ = [0.106, 0.125, 0.136, 0.165, 0.219, 0.322, 0.484,∞]

(lines) compared to the simulation results (Figure 4), with the same coloring as in panel (a). Hard

sphere data, for which τ =∞, is shown in black.

τ , the physical picture is that particles aggregate into transient clusters, which distribute

homogeneously in the dispersion. However, in the neighborhood of the boundary for liquid-

liquid phase separation, the system exhibits large particle number density fluctuations. This

produces large fluctuations in the mean settling rate that are quantified by the standard

error in Figure 4. In spite of this physical limitation, the results of the empirical model

appear to provide good predictions of the settling rate even in this region of phase space.
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D. Inferring macromolecular interactions through application of the settling

model

One potential application of the proposed model is for inference of the interactions be-

tween suspended colloids through mapping onto the AHS model. An important use case is

the characterization of attractive interactions between macromolecular species such as pro-

teins in concentrated solutions and under varying solution conditions. Such characterization

is needed for the purification, dewatering, and storage of biologics in pharmaceutical appli-

cations. Utilizing a hydrodynamic and thermodynamic model for rigid spherical colloids to

describe macromolecules which are neither spherical nor rigid has a long tradition in macro-

molecular sciences stemming primarily from application of the Stokes-Einstein relation to

estimate the hydrodynamic radius. In the context of proteins, transport properties in these

solutions are commonly investigated using dynamic light scattering. In light scattering ex-

periments the correlation of the scattering intensity with time, t, is used to compute the

so-called intermediate scattering function, F (q, t), which depends on a scattering wave vec-

tor q. For short correlation times, the value of this function is a direct measurement of the

static structure factor, S(q) = F (q, 0), and its rate of change can be used to compute a wave

vector dependent diffusivity, D(q) = −q−2(d/dt) log(F (q, t)/F (q, 0)) as t → 0. As q → 0,

D(q) is just the collective diffusivity DC , and is related to the sedimentation coefficient,

U/U0, of the macromolecule by the simple relation:

DC =
D0

S(0)

U

U0

. (9)

Here, D0 is the diffusion coefficient of the macromolecule at infinite dilution. Therefore,

dynamic light scattering measurements for small scattering wave vectors can be used to

simultaneously measure the collective diffusivity and S(0), which is linearly proportional to

the isothermal compressibility of the macromolecular component of the solution.

For dilute solutions of macromolecules, measurements of these two quantities is part of

the standard suite of macromolecular characterizations. In the dilute limit, S(0) = 1 + kSvc

and DC = D0(1 + (kS − kH)vc). Here, c is the molar concentration of macromolecules in

solution and v is the molar volume of the macromolecule. The dimensionless coefficient kS is

purely thermodynamic in origin and linearly proportional to the second virial coefficient. The

dimensionless coefficient kH describes the linear variations in the sedimentation coefficient

17



0 0.02 0.04 0.06 0.08 0.1

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.02 0.04 0.06 0.08 0.1

0.5

1

1.5

2

2.5

[NaAc]

[NaCl]

250
375
920
1470

50
92 171 4720

(a) (b)

FIG. 7. Sedimentation coefficient (a) and static structure factor (b) measured in Ref. [35] for

concentrated solutions of lysozyme. Circles correspond to fixed buffer strength and varying added

salt. Add concentrations are reported in units of mM. Squares correspond to no added salt but

varying buffer strength. The solid and dashed lines are the best fits of the AHS models to the data

for circles and squares, respectively. The experimental data is presented as in Ref. [35], but with

the concentration, c, recast as the volume fraction on multiplication by the inferred molar volume.

of the macromolecular solution. For the sticky sphere dispersions described in the previous

sections, v = 4πa3NA/3, with NA Avogadro’s number, kS = −8 + 2/τ , kH = 6.55− 0.89/τ .

From the slope of DC and S(0), the quantities: vkS and vkH , can be computed. If the sticky

sphere model is deemed applicable, then the molar volume and the stickiness parameter are

computed instead. The advantage of this latter approach is that v and τ can be used to

locate the macromolecular solution on the AHS phase diagram.

Beyond the dilute limit, more sophisticated models are needed. The AHS model for

S(0) is known analytically from the Percus-Yevick closure approximation applied to the

Ornstein-Zernicke equation for the direct correlation function:

S(0) =

(
(1− φ)2

1 + 2φ− λ (φ, τ) φ (1− φ)

)2

, (10)

where,

λ (φ, τ) = 6

(
τ

φ
+

1

1− φ

)
− (11)[

36

(
τ

φ
+

1

1− φ

)2

− 12
1 + 0.5φ

φ (1− φ)2

]1/2
.
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From the present work, equation (7) models the sedimentation coefficient, U/U0 = DCS(0)/D0.

To relate experimental data to the two models, the colloidal volume fraction must be defined

in terms of the molar concentration c as φ = vc. Then, the experimental system has the

properties of the sticky sphere solution at concentration c and parameterized by a molar

volume v and stickiness parameter τ , just as in the dilute limit. We envision three different

modes of inference with these models:

• repeated measurements of S(0) and DC at a particular concentration, c and in a

particular solution condition (temperature, ionic strength, pH), denoted p, are used

to determine the values of τ(c,p) and v(c,p) for a corresponding AHS dispersion.

• measurements of S(0) and DC are made at different macromolecular concentrations

and a particular solution condition, and a nonlinear least squares fit assuming a con-

stant molar volume but concentration dependent stickiness parameter is used to find

the set of parameters: v(p), τ(c,p).

• S(0) and DC are measured as function of the solution conditions at a particular macro-

molecule concentrations, and a nonlinear least squares fit of the data to the model is

used to determine the parameters, v(p) and τ(p) descriptive of the data across the

entire range of concentrations.

Choice of inference scheme depends on the particular macromolecule under study, one could

proceed from one scheme to the next should the assumptions of concentration independent

molar volume and stickiness prove sound.

Muschol and Rosenberger used light scattering experiments to measure S(0) and DC of

concentrated lysozyme solutions at high ionic strengths for which long-range electrostatic

repulsions are screened and the macromolecules behave much like sticky spheres[36]. Because

we neither designed nor performed the experiments, we choose the third inference problem

which determines the molar volume and stickiness parameter as a function of the solution

conditions alone. Lysozyme is a globular protein with an ellipsoidal shape having major and

minor semi-axes of a = 2.75 nm and b = c = 1.65 nm, and typical molecular weight of 14

kDa[37]. Based on the dimensions of the effective ellipsoid, a molar volume associated with

the molecule: v = 4πabcNA/3 = 18.9 M−1 is anticipated. The lysozyme is suspended in a

sodium acetate buffer whose concentration is varied between 50 and 1470 mM. Additionally,
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[NaAc] = 50 mM

[NaCl] τ v

92 mM 0.59 19.8 M−1

171 mM 0.22 23.6 M−1

472 mM 0.16 21.3 M−1

[NaCl] = 0 mM

[NaAc] τ v

250 mM 2.7 22.3 M−1

375 mM 1.8 20.1 M−1

920 mM 0.29 23.7 M−1

1470 mM 0.24 24.4 M−1

TABLE I. Stickiness parameter and molar volume inferred from nonlinear least squares fit of AHS

model to experimental measurements of S(0) and U/U0 in lysozyme solutions[35].

for a 50 mM NaAc buffer, NaCl is added to the solution at concentrations up to 472 mM.

For each solution condition, S(0)−1 and U/U0 were reported for lysozyme concentrations up

to 70 mg/mL. On the basis of the estimated molar volume, the maximum concentration is

equivalent to a volume fraction of approximately 10%.

Figure 7 depicts these measurements as well as fits of the AHS model under each solution

condition. The models do a remarkable job of capturing the experimental data across a range

of volume fractions. In particular, equation (7), appears to describe the settling behavior of

the proteins very well in conditions for which the dilute limit expressions of Batchelor would

fail. Table I reports the molar volume and the stickiness parameters inferred from fits to

the experimental data. For 50 mM buffer, the molar volume averages 21.6 M−1, while the

stickiness parameter decreases with added salt. Increasing the ionic strength of the solution

decreases the Debye layer thickness associated with electrostatic repulsions that stabilize the

proteins against aggregation. On decreasing the Debye layer thickness, the macromolecular

solutions appear more sticky. With no added salt, but higher buffer concentration, the molar

volume of the lysozyme is larger and averages 22.6 M−1. With increasing added buffer, the

proteins also appear to grow stickier.
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The two lysozyme solutions with [NaCl] = 92 mM and [NaAc] = 250 mM have ionic

strengths that differ by less that 5%. The same is true of the ([NaCl], [NaAc]) pairs (171, 375)

mM and (472, 920) mM. Consequently, the electrostatic interactions between the proteins

are similar screened in each of these cases. However, the stickiness parameters and molar

volumes inferred from the AHS hard sphere models show no correspondence. This same lack

of correspondence is evident in the S(0) and U/U0 data itself. It is known that there are

specific ion effects in concentrated electrolyte solutions that sensitively affect the interactions

between charged colloids such as proteins[38]. These specific effects alter the structure factor

and transport properties of the lysozyme solutions in ways that are difficult to predict with

classical DLVO theory[39]. However, inference of the molar volume and stickiness parameter

from fitting the AHS model to DLS data is sufficient to characterize solution in a way that

yields an accurate description of thermodynamic properties (isothermal compressibility) and

transport properties (sedimentation coefficient).

IV. CONCLUSION

We present coarse-grained simulations of the sedimentation of sticky particle suspensions

that are shown to be in quantitative agreement with published experimental data. We sys-

tematically studied the effect of inter-particle attraction strength and volume fraction on the

mean sedimentation rate of the suspensions, observing a smooth transition with increasing

attraction strength from hard sphere sedimentation to non-monotonic promoted settling due

to particle aggregation. We developed a simple model for the sedimentation rate by mod-

ifying a Richardson-Zaki-like expression to match Batchelor’s dilute limit prediction and

including a function that extrapolates between hard sphere-like and aggregated states. The

model quantitatively describes the simulation data up to the percolation phase boundary,

and an example application of this model to the study of collective protein diffusion is illus-

trated. The mapping of sticky particle suspensions onto an effective AHS model is generic,

and can be used to infer sedimentation and diffusion behavior across a range concentrations

from light scattering measurements made at only a few concentrations, even in suspensions

where the particles are not uniform or spherical, provided the attractions are sufficiently

short-ranged and the particle aspect ratio is not too large.
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[9] A Moncho-Jordá, AA Louis, and JT Padding, “Effects of interparticle attractions on colloidal

sedimentation,” Physical Review Letters 104, 068301 (2010).

[10] Enrico Lattuada, Stefano Buzzaccaro, and Roberto Piazza,“Colloidal swarms can settle faster

than isolated particles: Enhanced sedimentation near phase separation,” Physical Review

Letters 116, 038301 (2016).

[11] James W. Swan and Gang Wang,“Rapid calculation of hydrodynamic and transport properties

in concentrated solutions of colloidal particles and macromolecules,” Physics of Fluids 28,

22

http://dx.doi.org/ 10.1063/1.4939581
http://dx.doi.org/ 10.1063/1.4939581


011902 (2016).

[12] F Balboa Usabiaga, Bakytzhan Kallemov, Blaise Delmotte, Amneet Pal Singh Bhalla, Boyce E

Griffith, Aleksandar Donev, et al., “Hydrodynamics of suspensions of passive and active rigid

particles: a rigid multiblob approach,” Communications in Applied Mathematics and Compu-

tational Science 11, 217–296 (2016).

[13] Andrew M Fiore, Florencio Balboa Usabiaga, Aleksandar Donev, and James W Swan, “Rapid

sampling of stochastic displacements in brownian dynamics simulations,” The Journal of

Chemical Physics 146, 124116 (2017).

[14] Andrew M Fiore and James W Swan,“Rapid sampling of stochastic displacements in brownian

dynamics simulations with stresslet constraints,” The Journal of chemical physics 148, 044114

(2018).

[15] Jens Rotne and Stephen Prager, “Variational treatment of hydrodynamic interaction in poly-

mers,” The Journal of Chemical Physics 50, 4831–4837 (1969).

[16] Dag Lindbo and Anna-Karin Tornberg,“Spectrally accurate fast summation for periodic stokes

potentials,” Journal of Computational Physics 229, 8994–9010 (2010).

[17] Carsten Keller, Nicholas IM Gould, and Andrew J Wathen, “Constraint preconditioning for

indefinite linear systems,” SIAM Journal on Matrix Analysis and Applications 21, 1300–1317

(2000).

[18] AA Zick and GM Homsy, “Stokes flow through periodic arrays of spheres,” Journal of fluid

mechanics 115, 13–26 (1982).

[19] PN Segre, Eric Herbolzheimer, and PM Chaikin, “Long-range correlations in sedimentation,”

Physical Review Letters 79, 2574 (1997).

[20] Sho Asakura and Fumio Oosawa, “On interaction between two bodies immersed in a solution

of macromolecules,” The Journal of Chemical Physics 22, 1255–1256 (1954).

[21] Anthony JC Ladd, Hu Gang, JX Zhu, and DA Weitz, “Temporal and spatial dependence of

hydrodynamic correlations: Simulation and experiment,” Physical Review E 52, 6550 (1995).

[22] Massimo G Noro and Daan Frenkel, “Extended corresponding-states behavior for particles

with variable range attractions,” The Journal of Chemical Physics 113, 2941–2944 (2000).

[23] Bogdan Cichocki and Krzysztof Sadlej, “Steady-state particle distribution of a dilute sedi-

menting suspension,” EPL (Europhysics Letters) 72, 936 (2005).

23

http://dx.doi.org/ 10.1063/1.4939581
http://dx.doi.org/ 10.1063/1.4939581
http://dx.doi.org/ http://dx.doi.org/10.1063/1.1670977


[24] RJ Baxter, “Percus–yevick equation for hard spheres with surface adhesion,” The Journal of

Chemical Physics 49, 2770–2774 (1968).

[25] Jerome K Percus and George J Yevick, “Analysis of classical statistical mechanics by means

of collective coordinates,” Physical Review 110, 1 (1958).

[26] C Regnaut and JC Ravey,“Erratum: Application of the adhesive sphere model to the structure

of colloidal suspensions [j. chem. phys. 91, 1211 (1989)],” The Journal of Chemical Physics 92,

3250–3250 (1990).

[27] JF Richardson and WN Zaki, “The sedimentation of a suspension of uniform spheres under

conditions of viscous flow,” Chemical Engineering Science 3, 65–73 (1954).
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