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Anisotropy in the turbulent stress tensor, which forms the basis of invariant analysis, is conducted
using velocity time series measurements collected in the canopy sublayer (CSL) and the atmospheric
surface layer (ASL). The goal is to assess how thermal stratification and surface roughness conditions
simultaneously distort the scale-wise relaxation towards isotropic state from large to small scales
when referenced to homogeneous turbulence. To achieve this goal, conventional invariant analysis
is extended to allow scale-wise information about relaxation to isotropy in physical (instead of
Fourier) space to be incorporated. The proposed analysis show that the CSL is more isotropic than
its ASL counter part at large, intermediate, and small (or inertial) scales irrespective of the thermal
stratification. Moreover, the small (or inertial) scale anisotropy is more prevalent in the ASL when
compared to the CSL, a finding that cannot be fully explained by the intensity of the mean velocity
gradient acting on all scales. Implications to the validity of scale-wise Rotta and Lumley models for
return-to-isotropy as well as advantages to using barycentric instead of anisotropy invariant maps
for such scale-wise analysis are discussed.

I. INTRODUCTION16

The classical treatment of turbulence in the atmo-17

spheric surface layer (ASL) and the roughness sublayer18

(CSL) above canopies has primarily focused on distor-19

tions to the mean velocity profile caused by the presence20

of roughness elements and thermal stratification [1–9].21

Surface roughness effects and thermal stratification mod-22

ify the components of the Reynolds stress tensor as evi-23

denced by a large number of experiments and simulations24

[5, 10–19]. These modifications are expected to lead to25

differences in kinetic energy distribution among velocity26

components comprising the stress tensor. Such differ-27

ences in energy anisotropy has been previously used to28

explore the sensitivity of turbulent structures to surface29

boundary conditions such as roughness changes [20–25]30

or thermal stratification [26]. However, the route of how31

the anisotropy at large scales relaxes to quasi-isotropic32

state at small scales remains a subject of research [27–33

31]. The juxtaposition of these questions and studies to34

ASL and CSL turbulence using field measurements is the35

main motivation for the work here.36

Exchanges of turbulent kinetic energy among the three37

spatial components occur through interactions between38

fluctuating velocities and pressure. Starting from an39
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anisotropic stress tensor uiuj, these exchanges have been40

labeled as return-to-isotropy; when mean flow gradients41

are removed or suppressed, they describe the expected42

state that turbulence relaxes to. Here, ui are the turbu-43

lent or fluctuating velocity components along xi, where44

x1 (or x), x2 (or y), and x3 (or z) represent the longitu-45

dinal, lateral, and vertical directions, respectively, over-46

bar is time averaging and ui = 0. Much progress has47

been made by exploring connections between uiuj and48

the so-called invariant analysis [22, 30, 32–36]. Such con-49

nections resulted in nonlinear models for the slow part of50

the pressure-strain correlation and highlighted distinct51

routes along which turbulence relaxes to isotropic condi-52

tions [27, 33, 34]. These routes have been succinctly sum-53

marized in what is labeled as anisotropy invariant maps54

(AIM) proposed by Lumley [33, 34]. Invariant analysis is55

based on the anisotropic second-order normalized stress56

tensor related to uiuj by57

aij =
uiuj

2k
− 1

3
δij ; k =

umum

2
, (1)

where k is the mean turbulent kinetic energy and δij is58

the Kronecker delta. This tensor has three invariants59

I1 = aii = 0 here, I2 = aijaji, and I3 = aijajnani,60

where I2 and I3 can be linked to the three eigenvalues61

of aij (summarized later) and are independent of the62

reference system. Invariant maps feature I3 (abscissa)63

versus −I2(ordinate) along with bounds imposed by re-64

alizability constraints on uiuj (e.g. det[aij ] ≥ 0, where65
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det[.] is the determinant). The I2 represents the degree66

of anisotropy whereas I3 represents the nature (or topol-67

ogy) of the anisotropy. The AIM approach suggests that68

anisotropy in uiuj may be 1-component (prolate energy69

distribution), 2-component (oblate energy distribution),70

or in all 3-components of which the isotropic state (spher-71

ical energy distribution) is a limiting case. Depending72

on the sign of I3, progression from 1-component or 2-73

component to 3-component follows an axisymmetric ex-74

pansion or contraction on the AIM when the source of75

inhomogeneity (e.g. mean flow gradients) is removed un-76

til isotropy is achieved [34]. As earlier noted, the AIM77

domain bounds all realizable Reynolds stress invariants78

[22, 34, 37, 38] thereby making AIM an effective visual79

tool to track anisotropy at different heights in bound-80

ary layer turbulence. In fact, the AIM proved to be ef-81

fective at demonstrating that rough-wall turbulence ap-82

pears more isotropic than its smooth-wall counterpart83

for the same Reynolds numbers [21]. Experiments and84

simulations [25] also reported that the AIM signature85

for smooth wall turbulence appears well defined and ro-86

bust to variations in Reynolds number. The same ex-87

periments further showed that turbulent flows over 3-D88

k−type roughness appear more isotropic than flows over89

their 2-D k−type roughness counterpart throughout the90

boundary layer [25].91

An alternative to the AIM representation is the92

barycentric map (BAM), which offers a number of ad-93

vantages over AIM like non-distored visualization of94

anisotropy and weighting of the limiting states as dis-95

cussed elsewhere [32]. However, AIM and BAM rep-96

resentations are connected by transformations derived97

from the three eigenvalues of aij . Invariant analysis in98

aij assumes that anisotropy is inherently a large-scale99

feature and finer scales become isotropic and decoupled100

from their anisotropic large scales counterpart. How101

anisotropy in aij is destroyed as eddy sizes or scales be-102

come smaller remains a subject of inquiry, especially in103

vertically inhomogeneous flows characterizing the ASL104

and CSL of the atmosphere. The ASL and CSL expe-105

rience mechanical production of k through interactions106

between the turbulent shear stress and the mean veloc-107

ity profile. However, additional sources (or sinks) of k108

occur through surface heating (or cooling) and their as-109

sociated thermal stratification. Above and beyond these110

two processes, canopy roughness effects introduce addi-111

tional length scales (e.g. adjustment length and shear112

length scales) when describing flow statistics in the CSL113

[5, 39].114

Two early pioneering attempts to extend invariant115

analysis across scales have been conducted in Fourier do-116

main. One utilized numerical simulations of isotropic tur-117

bulence [28]. The other considered 3-component velocity118

time series collected in a pipe at multiple distances from119

the pipe-wall and at two bulk Reynolds numbers [23].120

The simulation study showed that small-scale anisotropy121

in Reynolds stresses persisted and was traced back to122

non-local triad interactions that appear not efficient at123

destroying an initial span-wise energy injection. The pipe124

flow experiments showed that at large scales, near-wall125

structures exhibit ’rod-like’ (or prolate) energy distribu-126

tion where as ’disk-like’ (or oblate) energy distribution127

characteristics were reported as the buffer region is ap-128

proached. Approximate isotropic states were reported129

as the pipe center is approached, where the mean ve-130

locity gradients approach zero (by virtue of symmetry).131

Another recent study [26] also extended aspects of in-132

variant analysis across scales in the Fourier domain to133

explore how thermal stratification modifies isotropic and134

anisotropic states above an urban canopy. This work135

showed that the relaxation rate towards local isotropy136

varies with thermal stratification. Specifically, unstable137

atmospheric stability appears to be closer to isotropic138

state than its near-neutral or stable counterpart at a139

given scale or wavenumber. A relation was suggested140

between the scale over which maximum isotropy is at-141

tained and an outer length scale derived from tempera-142

ture statistics [26].143

The work here uses invariant analysis across scales144

in the ASL and CSL to explore the simultaneous role145

of roughness contrast and thermal stratification on146

anisotropy relaxation towards quasi-isotropic conditions.147

How anisotropy in aij produced at large scales varies148

with thermal stratification in the ASL and CSL, and149

how such large-scale anisotropic state relaxes to quasi-150

isotropic conditions at progressively smaller scales frame151

the scope of the work. The novelties of the analysis pro-152

posed here over prior work [23, 26] are that: 1) velocity153

differences in physical space are used instead of spectral154

and co-spectral analysis, and 2) both AIM and BAM155

measures of anisotropy are employed and their outcome156

compared to conventional local isotropy analysis. Advan-157

tages to conducting the analysis in physical space instead158

of spectral space are discussed.159

With regards to the experimental design, the 3-160

component velocity time series have been simultaneously161

collected in the CSL above a tall forest and in the ASL162

above an adjacent desert-like shrubland. The runs span163

a wide range of atmospheric stability conditions as char-164

acterized by the atmospheric stability parameter. Dis-165

tances to the surface or zero-plane displacement (in the166

case of the forest) are similar for both setups and are cho-167

sen to be commensurate with the aforementioned experi-168

ment on the urban surface layer [26]. It is envisaged that169

the analysis reported here offers a new perspective on170

the relative sensitivity of turbulent structures to rough-171

ness modifications and thermal stratification, especially172

at the cross-over from large (or integral) scales to inertial173

scales.174
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II. METHOD OF ANALYSIS175

A. Definitions and Nomenclature176

Any three dimensional second rank tensor σij has177

three independent invariant quantities associated with178

it, which can be determined from the eigenvalues of σij .179

The eigenvalues (λ) are computed from the determinant180

det[σij − λδij ] = 0. Expanding the determinant of the181

matrix182





σ11 − λ σ12 σ13

σ21 σ22 − λ σ23

σ31 σ32 σ33 − λ





and setting it to zero yields the characteristic equation183

that defines the invariants and is given by [40]184

det[σij − λδij ] = −λ3 + I1λ
2 − I2λ+ I3 = 0, (2)

where

I1 = σkk = tr[σ] (3)

I2 =
1

2
(σiiσjj − σijσji) (4)

I3 = det[σij ], (5)

with tr[.] being the trace of σij . When σij = aij , sym-
metry insures that equation 2 has three real roots (the
eigenvalues) labeled as λ1, λ2, and λ3. The principal
stresses are defined as components of σij when the ba-
sis is changed so that the shear stress components be-
come zero and σij becomes a 3× 3 diagonal matrix
whose elements are σ1, σ2, and σ3. These principal
stresses are the three eigenvalues ordered by magnitude
using σ1 = max(λ1, λ2, λ3), σ3 = min(λ1, λ2, λ3), and
σ2 = I1 − σ1 − σ3. The σ1, σ2, and σ3 are independent
of the coordinate basis in which the components of σij

are originally derived, which is advantageous in ASL and
CSL field studies where large variations in wind direc-
tions are unavoidable. Applying the diagonal form of σij

to the definitions of the three invariants given by equa-
tion 2 yields the following simplified expressions

I1 = σ1 + σ2 + σ3 (6)

I2 = σ1σ2 + σ2σ3 + σ3σ1 (7)

I3 = σ1σ2σ3. (8)

These definitions directly apply to aij or any other185

second-rank tensor such as the strain rate [40, 41] and186

others relevant to vorticity and dissipation [20]. One ad-187

vantage to using aij here instead of uiuj for invariant188

analysis is that I1 = tr[aij] = a11+a22+a33 = 0 and only189

the second and third invariants are required.190

The BAM framework makes use of the fact that aij
can be expressed as a linear combination of three limit-
ing states (1-component, 2-component, or 3-component).
That is, aij can be decomposed into C1ca1c + C2ca2c +

C3ca3c, where C1c, C2c, and C3c are determined from the
eigenvalues using [32]

C1c = λ1 − λ2 (9)

C2c = 2 (λ2 − λ3) (10)

C3c = 3λ3 + 1, (11)

and a1c, a2c, and a3c are 3 x 3 diagonal matrices with di-
agonal elements [2/3,−1/3,−1/3] (1-component limiting
state), [1/6, 1/6,−1/3] (2-component limiting state), and
[0, 0, 0] (3-component limiting state). In the BAM repre-
sentation, C1c, C2c, and C3c determined from λ1, λ2, and
λ3 indicate how much each turbulent state is contributing
to a point situated in the map. The map itself can be
constructed within an equilateral triangle with vertices
being the three limiting states defined by coordinates
(x1c, y1c)=(1,0), (x2c, y2c)=(-1,0), and (x3c, y3c)=(0,1).
Once these limiting states are set, a normalization is ap-
plied so that C1c +C2c +C3c = 1 and the coordinates of
any point on the map (xBAM , yBAM ) can be determined
from

xBAM = C1cx1c + C2cx2c + C3cx3c (12)

yBAM = C1cy1c + C2cy2c + C3cy3c. (13)

As discussed elsewhere [32], an equilateral triangle191

shaped BAM does not introduce any visual bias of the192

limiting states as is the case for the AIM. Randomly dis-193

tributed points within BAM, when converted to AIM, re-194

sult in visual clustering near the isotropic or 3-component195

state primarily because of the nonlinearity in the trans-196

formation from BAM to AIM.197

B. Measures of Anisotropy198

A scalar measure of anisotropy in the AIM is the short-199

est or linear distance to the isotropic state. This distance200

was determined from I2 and I3 via [22, 33]201

F = 1 + 27I3 + 9I2. (14)

Isotropic turbulence is strictly attained when both I2 =202

I3 = 0 and F = 1, whereas F = 0 occurs along the203

linear boundary describing the 2-component state. The204

distance F was reported to be a function of distance from205

a solid boundary for various turbulent boundary layer206

flows [22–25]. At all distances from the boundary, F207

was smaller for turbulent flows over smooth wall when208

compared to all types of rough-wall cases [24, 25].209

In the BAM, the distance to the isotropic state is [32]210

Cani = −3λ3. (15)

This measure has not been extensively used before and is211

employed along with F for the data collected in the ASL212

and CSL.213
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C. Scale-wise analysis214

The scale-wise analysis of AIM and BAM uses the215

structure function approach (in physical or r− space) in-216

stead of Fourier space. The overall premise is similar to217

what was proposed earlier [28] except that structure func-218

tions ensure integrability and minimize other limitations219

discussed elsewhere for spectral and co-spectral versions220

[23]. The premise of the scale-wise AIM or BAM analysis221

is to replace uiuj by222

Dij(r) =
1

2
∆ui(r)∆uj(r), (16)

where ∆uk(r) = uk(x + r) − uk(x), and r is the sep-
aration distance along the longitudinal (or x1) direction
determined from time increments and Taylor’s frozen tur-
bulence hypothesis [42, 43] as conventional when inter-
preting time series in field experiments. Equation 16 has
a number of desirable limits. To illustrate, consider its
expansion given as

Dij(r) =
1

2

(

ui(x+ r)uj(x+ r) + ui(x)uj(x)
)

+

− 1

2

(

ui(x+ r)uj(x) + ui(x)uj(x + r)
)

. (17)

For planar homogeneous flows and at r/LI ≫ 1,Dij(r) ≈
ui(x)uj(x) (or Dij(r) ≈ ui(x+ r)uj(x+ r)), where LI is
the integral length scale of the flow (to be defined later).
Hence, Dij(r) recovers all the properties of the stress ten-
sor at large-scales. For r → 0, Dij(r) → 0 and ensures
no energy and stress contributions at very small scales.
The use of Dij(r) is rather convenient because expected
scaling laws for inertial subrange eddies are known. For
example, when i = 1 and j = 1, D11(r) becomes the
longitudinal velocity structure function, which measures
the integrated energy content at scale r. It is noted
here that rdD11(r)/dr ∝ k1E11(k1), where k1 is the one-
dimensional wavenumber along direction x1 and E11(k1)
is the longitudinal velocity energy spectrum. Likewise,
for r/LI ≫ 1, D11(r) → u1u1. Because structure func-
tions measure integrated energy content at a given scale
r, the singularity issues in Fourier domain noted else-
where [23] are by-passed. For locally isotropic turbulence
and for η/LI ≪ r/LI ≪ 1, Kolmogorov (or K41) scaling
is expected to hold in the ASL and yields the following
for the component-wise structure functions:

D11(r) = Co,1ǫ
2/3r2/3 (18)

D22(r) = Co,2ǫ
2/3r2/3 (19)

D33(r) = Co,3ǫ
2/3r2/3, (20)

where η = (ν3/ǫ)1/4 is the Kolmogorov microscale, ν is223

the fluid kinematic viscosity, Co,2 = Co,3 = (4/3)Co,1,224

Co,1 = 2, and ǫ is the mean dissipation rate of k. One225

undesirable outcome to using Dij(r) is its non-zero trace226

at any r. As was the case with aij and ui(x)uj(x), this227

outcome may be circumvented by evaluating228

Aij(r) =
Dij(r)

Dkk(r)
− 1

3
δij . (21)

The AIM and BAM as well as F (r) and Cani(r) can229

now be computed for the ASL and CSL velocity time230

series once the eigenvalues of Dij(r) or Aij(r) are deter-231

mined for each r > 0.232

D. Comparison with a reference model233

To compare the computed scale-wise variations of I2
and I3 in the CSL and ASL with a well-studied turbulent
state, the homogeneous turbulence (i.e. lacking any mean
flow gradients) is selected as a reference. Once the mean
flow gradients are removed for this reference state, the
decay rates of I2 and I3 are shown to reasonably follow
a quadratic model given by [27]

dI2
dτ

= −2(B1 − 2)I2 + 2B2I3 (22)

dI3
dτ

= −3(B1 − 2)I3 +
1

2
B2I

2
2 , (23)

where τ is a relaxation time scale, and B1 = 3.4 and
B2 = 3(B1 − 2) are constants determined by fitting this
model to a wide range of experiments. For B2 = 0, this
system recovers the Lumley model [33] (i.e. uncoupled
equations), and forB2 = 0 and I3 = 0, the classical Rotta
model is recovered. Hence, finite B2 and I3 offer a clear
indication that the linear Rotta model may not be ad-
equate to describe the trajectory towards isotropy. The
two ordinary differential equations can now be combined
to yield

dI2
dI3

=
−2(B1 − 2)I2 + 2B2I3

−3(B1 − 2)I3 +
1
2
B2I22

, (24)

which can be solved to yield −I2 as a function of I3 (i.e.234

the trajectory on the AIM) without requiring the deter-235

mination of time τ provided τ is sufficiently large to at-236

tain the isotropic state. The trajectories of this model (in237

AIM or BAM) are simply computed here to illustrate how238

homogeneous turbulence relaxes to the isotropic state239

once the mean flow gradients (that are prevalent in ASL240

and CSL) are suppressed. The initial conditions to equa-241

tion 24 are the measured I2 and I3 in the CSL or ASL242

as determined for r/LI >> 1.243

III. EXPERIMENTS244

A. Research site245

The experiments were conducted at the Yatir Forest246

in southern Israel, which is a planted evergreen pine for-247

est surrounded by a sparse desert like shrubland [44].248
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The trees were planted in the late 1960s and now cover249

an approximate area of 28 km2 [44]. The primary tree250

species of the forest is Pinus halepensis and the shrubland251

has scattered herbaceous annuals and perennials (mainly252

Sarcopoterium spinosum). The albedo of the forest is low253

(=12.5%) when compared to the shrubland (=33.7%). In254

the absence of latent heat fluxes (as is the case in the ex-255

tensive dry season), this albedo contrast leads to sensible256

heat fluxes up to 800 W m−2 during the day over the257

forest, which can be twice as high as those of the sur-258

rounding shrubland [45]. The higher roughness length259

of the forest also creates friction velocities (u∗) of up to260

0.8 m s−1, which are twice as high as those above the261

shrubland [45]. These sensible heat flux and friction ve-262

locity differences between the forest and shrubland do263

impact the generation of k. To illustrate, a stationary264

and planar-homogeneous flow at high Reynolds number265

in the absence of subsidence is considered. The k budget266

for such an idealized flow is267

∂k

∂t
= 0 = −u1u3

dU

dz
+ βogu3T ′ + PD + TT − ǫ, (25)

where t is time, and the five terms on the right-hand side
of equation 25 are mechanical production, buoyant pro-
duction (or destruction), pressure transport, turbulent
transport of k, and viscous dissipation of k, respectively,
βo is the thermal expansion coefficient for air (βo = 1/T ,
T is mean air temperature and T ′ is temperature fluc-
tuation), g is the gravitational acceleration, −u1u3 = u2

∗

is the turbulent kinematic shear stress near the surface,
u3T ′ is the kinematic sensible heat flux from (or to) the
surface, and U is the mean longitudinal velocity. The
ρaCpu3T ′ defines the sensible heat flux in energy units

(W m−2), with ρa and Cp being the mean air density and
the specific heat capacity of dry air at constant pressure,
respectively. When u3T ′ > 0, buoyancy is responsible
for the generation of k and the flow is classified as unsta-
ble. When u3T ′ < 0, the flow is classified as stable and
buoyancy acts to diminish the mechanical production of
k. The relative significance of the mechanical production
to the buoyancy generation (or destruction) in the TKE
budget may be expressed as [10, 13, 14]

−u1u3

dU

dz
+ βogu3T ′ =

u3
∗

κz

[

φm(ζ) +
κzβogu3T ′

u3
∗

]

=
u3
∗

κz
[φm(ζ)− ζ] , (26)

where268

κz

u∗

dU

dz
= φm(ζ), ζ =

z

L
, L = − u3

∗

κgβou3T ′
, (27)

and φm(ζ) is known as a stability correction function re-269

flecting the effects of thermal stratification on the mean270

velocity gradient (φm(0) = 1 recovers the von Karman-271

Prandtl log-law), κ ≈ 0.4 is the von Karman constant,272

and L is known as the Obukhov length [46] as described273

by the Monin and Obukhov similarity theory [1, 2, 7, 9].274

The physical interpretation of L is that it is the height at275

which mechanical production balances the buoyant pro-276

duction or destruction when φm(ζ) does not deviate ap-277

preciably from unity. For a neutrally stratified atmo-278

spheric flow, |L| → ∞ and |ζ| → 0. The sign of L reflects279

the direction of the heat flux, with negative values of280

L corresponding to upward heat fluxes (unstable atmo-281

spheric conditions) and positive values L corresponding282

to downward heat flux (stable atmosphere).283

B. Instruments and measurements284

High frequency measurements of the turbulent veloc-285

ity components were conducted concurrently in the CSL286

over the forest and the ASL of the surrounding shrubland287

desert ecosystem. The measurements in the ASL were288

conducted northwest of the forest above the shrubland289

with a mobile mast positioned at latitude 31.3757◦, longi-290

tude 35.0242◦, and 620 m above sea level. The mast was291

equipped with a R3-100 ultrasonic anemometer from Gill292

Instruments Ltd (Lymington, Hampshire, UK) sampling293

three orthogonal velocity components with a frequency294

of 20 Hz. The ultrasonic anemometer was mounted at295

a height of 9 m above ground surface. The measure-296

ments in the CSL were conducted above the forest canopy297

with a R3-50 ultrasonic anemometer from Gill Instru-298

ments with a measurement frequency of 20 Hz (latitude299

31.3453◦, longitude 35.0522◦, 660 m above sea level). The300

manufacturer states for both ultrasonic anemometers an301

accuracy < 1% for mean wind speeds below 32 m s−1.302

Wind tunnel and atmospheric comparison to a hot-film303

anemometers showed an accuracy of 2% for the mean304

wind speed, 9% for variances, and 23% for covariances305

[47]. The sonic anemometer was mounted 19 m above306

the ground surface on a meteorological tower. The mean307

height of the trees around the tower is 10 m placing the308

sonic anemometer some 9 m above the canopy top and309

commensurate to the setup of the urban roughness study310

previously discussed [26]. The anemometer sonic path-311

length is 0.15 m; hence, separation distances smaller than312

0.3 m are not used as they are influenced by instrument313

averaging. Data from the period 17 - 23 August 2015 is314

used here. During this period, the Yatir forest experi-315

enced a subtropical ridge, an area of general subsidence316

in the troposphere connected to the sinking branch of317

the Hadley-cell [48]. The horizontal air pressure gradi-318

ents were controlled by a heat-induced surface low, the319

Persian trough, to the east [49]. This led to station-320

ary weather conditions with a main wind direction from321

north-west and cloud free conditions with a radiation322

driven diurnal cycle of the boundary layer height dur-323

ing the campaign.324
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C. Post-processing325

The measured ui time series were first separated326

into non-overlapping 30-minute runs, and turbulent flow327

statistics were computed using the 30-minute averaging328

period per run. A threshold filter of 50 m s−1 for the329

horizontal wind components and 10 m s−1 for the verti-330

cal component was applied and spikes were removed by331

a five standard deviation threshold. Then gaps in the332

time series were linearly interpolated when the total gap333

length was less than 5% (otherwise the 30-minute run was334

discarded). The interpolated data set was rotated into335

the mean wind direction using a standard double rotation336

(u3 = u2 = 0 and U 6= 0) and the mean value was sub-337

tracted to obtain turbulent fluctuations. Further quality338

control was conducted using stationary tests and inte-339

gral turbulence characteristic tests described elsewhere340

[50], and only intervals with the best quality metrics were341

used [51]. For comparison purposes, only intervals where342

both sites had simultaneous high quality measurements343

were used. After such post-processing, 65 runs remained344

for investigating the anisotropy in the ASL and CSL.345

IV. RESULTS AND DISCUSSION346

To address the study objective, the results are pre-347

sented as follows: the aij components computed from348

equation 1 for the ASL and CSL and their dependence349

on ζ are first presented. Similarities between anisotropy350

in component-wise turbulent kinetic energy and integral351

scales along the x1, x2, x3 are also featured. Next, attain-352

ment of local isotropy at finer scales is explored by com-353

paring measuredD11(r), D22(r), and D33(r) with predic-354

tions from K41 scaling and corollary isotropic measures.355

The scale-wise development of the anisotropic stress ten-356

sor (Aij(r)) for the ASL and CSL, as determined from357

equation 21, is then discussed using AIM and BAM. Pre-358

dictions from equation 24 are displayed as reference to359

illustrate expected pathways by which Aij(r) approaches360

its isotropic state with decreasing r for homogeneous tur-361

bulence. Finally, the two scale-wise measures F (r) and362

Cani(r) are presented as a function of r for CSL and ASL363

flows across a wide range of ζ values. The focus here is364

on two types of scales: (i) the largest r for which local365

isotropy is attained, and (ii) the smallest r over which366

the return-to-isotropy begins to be efficient. These two367

scales are then contrasted for ASL and CSL flows and368

across ζ values thereby completing the sought objective.369

A. Conventional Analysis370

Unsurprisingly, the computed aij components exhibit371

large anisotropy for both ASL and CSL flows. In par-372

ticular, the streamwise a11 and the cross-streamwise a22373

attain positive values (i.e. more energy than isotropic374

predictions) as evidenced by Fig. 1a and 1b and nega-375

tive values for the vertical a33 (Fig. 1c) when compared376

to the expected Y = 0 designating isotropic state. The377

streamwise and cross-stream components show that the378

anisotropy for near neutral conditions in the CSL is be-379

tween the vertical and streamwise components. The sum380

of the two horizontal components (a11 + a22 = −a33),381

which accounts for much of the k, is expected to provide382

a robust measure of the anisotropy between the horizon-383

tal and vertical components. The mean values for a33384

differ between CSL and ASL at a 95% confidence level385

confirming a significantly larger anisotropy in the ASL386

when compared to its CSL counterpart. The analysis387

here also shows that a33, and a23 are not sensitive to388

variations in ζ for both ASL and CSL flows. The only389

component of aij that exhibits variation with ζ is a13 in390

the CSL, which has a slope significantly different from391

zero at a 95% confidence level. The a13 is small in the392

ASL by comparison to its CSL values. The scatter of393

most data points in Fig. 1 can be explained by the mea-394

surement accuracy, but in case of a11 and a22 the accu-395

racy alone cannot explain the variation and it is likely396

that non-stationary wind directions affect those com-397

ponents. Direct numerical simulations of homogeneous398

turbulent shear flows showed more isotropy for weaker399

shear [52], which agrees with experiments here where the400

CSL appears more isotropic and has weaker shear pa-401

rameter S∗ compared to its ASL counterpart for near-402

neutral conditions. Moreover, the simulation results [52]403

showed similar patterns among the components of aij as404

the atmospheric measurements reported in Figure 1 for a405

near-neutral ASL. The S∗ here varied from 35− 83 com-406

pared to their highest S∗ = 27, where S∗ = Sk2/ǫ with407

S = U/(z − d). Moreover, these simulations do not have408

a ’wall’ thereby suppressing any possible wall-blocking409

likely to be higher in the ASL than the CSL. As earlier410

noted, the u2
∗
is larger for the CSL when compared to411

the ASL due to the rougher forest cover. While u3u3/u
2
∗

412

increases with increasing −ζ, u1u1/u
2
∗
and u2u2/u

2
∗
vary413

with both −ζ and log (z/hBL), where hBL is the bound-414

ary layer height as discussed elsewhere [16, 17, 53–55]415

with higher values (and fraction of k) in the ASL when416

compared to the CSL. Separate field experiments suggest417

that hBL above the forest and the shrubland are compa-418

rable [56] (and by design, so are the z values in the CSL419

and ASL). These findings explain the lower measured420

k/u2
∗
in the CSL (Fig. 1f) when compared to its ASL421

counterpart given the larger u∗ over the forest. While422

u1u1/u
2
∗
, u2u2/u

2
∗
and u3u3/u

2
∗
follow expectations for423

near-neutral conditions from a mixing layer analogy [5]424

in the CSL, these flow statistics were higher than ex-425

pected for the ASL (not shown). A plausible explana-426

tion for higher than expected values in the ASL are some427

topographic variability upwind of the ASL measurement428

tower. However, the aforementioned topographic vari-429

ability did not affect the anisotropy appreciably given430

that canopy sublayer experiments (field and laboratory)431

collected at z/h=1 yield σu3(σu1 + σu2)
−1 = 0.30 (with432
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σui =
√
uiui) whereas surface layer experiments yield433

σu3(σu1 + σu2)
−1 = 0.25 to which ASL and CSL appear434

to be commensurate for near-neutral conditions (Fig. 1g).435

To contrast energy anisotropy with eddy size436

anisotropy along the x1, x2, and x3 directions, the effec-437

tive eddy sizes for the ui are determined from the integral438

time scale Iui and Taylor’s frozen turbulence hypothesis439

[42] using440

Lui = U · Iui = U ·
∫

∞

0

ρui(τ0)dτ0, (28)

where ρui(τ0) is the ui velocity component autocorrela-441

tion function and τ0 is the time lag. Here, Lu3 is pre-442

sumed to be the most restrictive scale given that u3 is443

the flow variable most impacted by the presence of a444

boundary (porous in the CSL and solid in the ASL). The445

calculations show that Lu3/z is on the order of unity446

for the CSL but higher in the ASL for near-neutral con-447

ditions(Fig. 2a). As expected, Lu3/Lu1 (Fig. 2b) and448

Lu3/Lu2 (Fig. 2c) are well below unity for both ASL and449

CSL flows and do not vary appreciably with ζ. Roughly,450

Lu1 is about a factor of 10 larger than Lu3 (shown as451

dashed line) in agreement with prior CSL [57] and ASL452

[58] experiments. Interestingly, the shape of the normal-453

ized energy distribution ellipsoid observed in Fig. 1 is454

qualitatively similar to the effective eddy sizes but they455

are not identical. Because Lu3 is the most restrictive456

eddy size and partly captures some effects of ζ on elonga-457

tion or compression of eddy sizes (Fig. 2a), the scale-wise458

analysis is to be reported as r/Lu3 (instead of r/z) for459

each run. It is also worth noting that r/Lu3 may be in-460

terpreted as normalized time-scale separation given that461

Taylor’s hypothesis equally impacts the numerator and462

denominator. While Taylor’s hypothesis is not expected463

to be suitable near roughness elements [59] in the CSL,464

its distortions become less severe beyond z/h > 2, the465

case for the CSL here.466

The ensemble-averaged (over ζ) normalized467

D11/2u1u1, D22/2u2u2, and D33/2u3u3 approaches468

unity at large rL−1
u3 consistent with expectations from469

stationarity arguments (Fig. 3). However, stationarity470

appears to be attained at smaller rL−1
u3 for the CSL471

when compared to its ASL counterpart. The fact472

that D11/2u1u1 exhibits an approximate logarithmic473

region at scales larger than inertial but smaller than474

scales where dD11(r)/dr ≈ 0 is not surprising for the475

ASL and is consistent with prior theoretical analysis476

explaining the −1 power-law in the longitudinal ve-477

locity spectrum at large-scales as well as laboratory478

studies, field experiments, and Large Eddy Simulations479

[55, 60–68]. Such logarithmic transition between inertial480

and dD11(r)/dr ≈ 0 is much more restricted in scale481

separation within the CSL.482

At about r/Lu3 = 1/2, all velocity component struc-483

ture functions follow the r2/3 K41 scaling consistent484

with other ASL experiments [69, 70]. However, second-485

order structure function scaling-laws are only a necessary486

but not sufficient condition to the attainment of local487

isotropy. The component-wise velocity structure function488

ratios against r/Lu3 demonstrate that anisotropy exists489

at fine scales even for r/Lu3 = 1/2 and for both - ASL490

and CSL flows (Fig. 4). However, for r/Lu3 < 0.1, predic-491

tions from local isotropy agree with measurements. The492

calculations were repeated for D11/D33 and D22/D33 to493

correct for finite squared turbulent intensity effects us-494

ing the linear model of Wyngaard and Clifford (1977)495

[43, 71]. The results do not deviate appreciably from di-496

rect application of Taylor’s frozen turbulence hypothesis497

assuming small turbulent intensity (figure not shown). It498

is precisely the nature of this anisotropy that we seek to499

address using the invariance measures across scales.500

B. Invariant Analysis501

The return-to-isotropy trajectories are shown in BAM502

for all ensemble members (Fig 5a and 5b). The starting503

and end points of the scale-wise trajectories are consis-504

tent with the conventional analysis previously discussed:505

large scales are further away from the isotropic (or 3D)506

limit for the ASL when compared to the CSL. The ζ vari-507

ations also show no significant influence on the starting508

position of the points within the BAM (Fig. 5a and 5b).509

The relaxation trajectories towards isotropic (or 3D)510

state with decreasing scale r appears to be shorter for511

the CSL when compared to the ASL. Trajectories, by512

and large, show a return-to-isotropy by a contraction in513

the proximity of the 2D-3D limit for near-neutral and514

unstable ζ. However, the trajectory for stable condi-515

tions is closer to the center of the BAM (Fig. 5c and516

5d). In all cases, meandering of trajectories in the BAM517

with decreasing scale deviate from predictions based on518

zero-mean shear or homogeneous turbulence. These de-519

viations partly reflect contributions from dU/dz that is520

active on all scales. In the AIM, the trajectories show521

rough similarities in curvature to the model for homo-522

geneous turbulence (Eq. 24) at the same starting posi-523

tion. This agreement is mainly due to the compressed524

trajectory representation of AIM near the isotropic limit525

corner as discussed elsewhere [32]. The deviation be-526

tween modeled and measured trajectories is quantified527

as the shortest distance in the BAM for a given r by528

d(dI2/dI3, ~nBAM ) with ~nBAM = (xBAM , yBAM ) given529

by Eq. 12 and dI2/dI3 by Eq. 24. The ensemble av-530

erage of the deviation is decreasing towards the large531

scales, because we initialized the model with the mea-532

surements at the starting point of the trajectory, and533

at small scales where both converge to isotropic state534

(Fig. 5e and 5f). In between the return-to-isotropy of the535

Rotta model shows significant deviations from the mea-536

surements, which cannot be explained by the measure-537

ment errors. The measurement errors were computed em-538

pirically by generating 2500 realizations of the anisotropy539

tensor aij from the accuracy of the covariance assuming540

a normal distribution. Each aij was then diagonalized to541

gain a distribution of the eigenvalues and subsequently542
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FIG. 1. The measured components of the anisotropy tensor aij are shown as a function of the absolute value of the stability
parameter |ζ| = |(z − d)/L| (a, b, c, e). Measurements of the ASL (desert) are red and of the CSL (forest) are blue. Circles
show stable conditions, diamonds are used for near neutral stratification conditions and crosses for unstable conditions. The
a33 shown in panel c) are significantly larger in the CSL compared to the ASL at a confidence level of 95%. The black dashed
line shows the expected value for isotropic turbulence and the solid blue line in panel e) shows a linear regression of a33 for
the CSL. The lower right panel (f) shows turbulent kinetic energy k normalized with u∗ and the lower left panel (g) shows
σu3(σu1+σu2)

−1 together with the expectation for near neutral conditions as dashed lines [5]. Note the larger σu3(σu1+σu2)
−1

for the CSL when compared to the ASL.
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FIG. 2. Normalized length scale Lu3z
−1 (a) and the length scale ratios Lu3L

−1

u1 (b) and Lu3L
−1

u2 (c) are shown as a function
of the absolute value of the stability parameter |ζ| = |(z − d)/L|. Measurements of the ASL (desert) are red and of the CSL
(forest) are blue. Unstable stratification is shown as crosses, near neutral as diamonds and stable as circles. The dashed line
in panels (b) and (c) shows Lu3L

−1

u1 = 0.1 reported from other experiments [57, 58].
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FIG. 3. Ensemble averaged of normalized structure function 1

2
D11u1u1

−1 (left column), 1

2
D22u2u2

−1 (middle column) and
1

2
D33u3u3

−1 (right column) are shown for the ASL (top, red) and CSL (bottom, blue). The black dotted line is y = 1 and

the black dashed line shows the slope r2/3 for Kolmogorov scaling (Eq. 18). The error bars show the standard deviation of the
ensemble.

a distribution of ~nBAM . From this the measurement er-543

ror is estimated as the standard deviation of the distance544

between the mean of ~nBAM (which is equal to measure-545

ments) and each ensemble member.546

An ensemble average of all runs shows at which rL−1
u3547

the return to isotropy commences and terminates using548

both F and Ciso (Fig. 6). While the F (or AIM) mea-549

sure suggests near-isotropic conditions at small scales,550

the Ciso (or BAM) measure suggests small but sustained551

anisotropy at those same small scales. As earlier noted,552

the AIM compresses the trajectories (and distance) near553

isotropic states, whereas BAM does not. Consistent with554

the previous structure function analysis, a near local555

isotropy at small scales rL−1
u3 < 0.5 is attained where556

as anisotropy exists at larger scales. The ASL is shown557

to be more anisotropic at large scales (rL−1
u3 > 100) when558

compared to the CSL. Both anisotropy measures reveal559

three separated regimes: scale independent anisotropy at560

large scales where F and Ciso are constantly low but ap-561

proximately independent of scale (anisotropy is large),562

a return-to-isotropy regime in which the flow begins to563

relax towards isotropy as smaller scales are approached,564

and a third regime where scale independent near-isotropy565

at small scales is attained (anisotropy is weak). The up-566
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FIG. 4. Local isotropy attained by the ratios D11D
−1

33
(left column) and D22D

−1

33
(right column) for the ASL (top row, red) and

CSL (bottom row, blue). The three lines show one example interval for stable (solid), neutral (dashed) and unstable (dotted)
conditions. The black dashed line shows the expected ratio for locally isotropic turbulence based on K41.

per and lower scales bounding this intermediate regime567

are hereafter designated as rani and riso, respectively.568

They were determined from the scale r where Cani has569

reached 90% of maximum isotropy (approaching from570

large r) in case of riso and from the scale r where Cani was571

within 10% of its lowest value (approaching from small r)572

in case of rani. In the ASL, the return-to-isotropy is ini-573

tiated at larger scales (raniL
−1
u3 > 70) when compared to574

the CSL (raniL
−1
u3 > 25) and covers a wider scale range.575

The scales at which local isotropy is roughly attained576

(risoL
−1
u3 = 0.5) are comparable for the ASL and CSL.577

The experiments above urban canopies suggested that578

rani varies with an outer length scale associated with the579

peak in the air temperature spectrum [26]. A similar580

analysis was conducted using the integral length scale of581

the air temperature time series LuT and the outcome is582

featured in Fig. 7. When analyzing all the individual583

runs, rani is smaller for stable than for unstable con-584

ditions for the CSL but not the ASL (Fig. 7a). Also,585

rani has a weak dependency on LuT for the ASL but586

not for the CSL (Fig. 7a). In contrast, riso is less sensi-587

tive to variations in LuT (Fig. 7b), especially in the ASL588

(riso ≈ z/2). Normalizing rani and riso with Lu3 removes589

any LuT dependency in the ASL (Fig. 7c and d) and the590

correlation coefficient of LuT and rani decreases from 0.43591

to 0.02 and in case of riso from 0.40 to −0.12 (in the CSL592

all correlation coefficients are smaller than 0.14). That593

is, much of the dependency of rani on LuT in the ASL594

can be attributed to variations in Lu3 with −ζ. Further-595

more, ensemble averages of rani are significantly differ-596

ent for CSL and ASL and remain significantly different597

if normalized with Lu3. The ensemble average of riso is598

also significantly different when comparing CSL and ASL599

flows, but this difference is collapsed if riso is normalized600

Lu3. These results are robust even when other meth-601

ods for determining rani and riso (e.g. fitting a tangent602

hyperbolic function) are employed (not shown). In com-603

parison to experiments above urban canopies [26], values604

of LuT cover similar ranges in the ASL and CSL. The605

range rani covers more than a decade if ASL and CSL606
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FIG. 5. The top row shows the trajectories of all 30 minute runs for the ASL (a) and the CSL (b) together with starting points
color coded according to their stability class (black is unstable, dark grey is near neutral and light grey is stable). The middle
row shows return-to-isotropy trajectories in the BAM for three sample cases with unstable, neutral and stable stratification
of the ASL (c) and CSL (d) together with model trajectories (Eq. 24). The insets show the same three trajectories in the
AIM representation. The bottom row shows the mean distance between modeled and measured trajectories in BAM, with the
standard deviation as error bars, for the ASL (e) and CSL (f) together with the part of these deviation, which can be explained
by the measurement errors (black).

results are treated separately (and when excluding the607

data point with rani = 5 for the CSL), which is larger608

range than observed above urban canopies. It may be609

surmised that the return-to-isotropy depends more on610

roughness properties and less on surface heating or cool-611

ing for the same L.612

The persistence of anisotropy at small scales has been613

extensively studied and linked to the finite mean velocity614

gradient [72, 73]. The so-called integral structure func-615

tion of order n, defined as616

[

∆uk(r)3 + αcr
dU

dz
∆uk(r)2

]n/3

, (29)

has been shown to recover measured structure functions617

in laboratory settings and simulations [72, 73] at small618

scales, where αc is a similarity constant. The prevalence619

of dU/dz acting on all scales suggests that anisotropy pro-620

duced by the mean velocity gradient can persist through-621

out the inertial subrange via finite co-spectra [74, 75].622

This argument was recently suggested to explain persis-623

tent anisotropy in the urban surface layer [26]. In terms624
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FIG. 6. Anisotropy measures F (left column, Eq. 14) and Cani (right column, Eq. 15) are shown for ASL (top row, red) and
CSL (bottom rom, blue) as ensemble average with standard deviation across all ζ to highlight the role of surface roughness.
The black dashed lines show three regimes defined by reaching 90% of maximum isotropy or 10% of anisotropy.

of a lower boundary condition on the flow, this mean ve-625

locity gradient is linked to the shear stress and thermal626

stratification by627

dU

dz
= φm(ζ)

u∗

κz
. (30)

For near-neutral conditions (i.e. φm(0) = 1) and at a628

fixed z, increasing u∗ increases dU/dz.629

In the case of the CSL, u∗ and dU/dz are expected630

to be higher than their ASL counterpart if κz is similar.631

However, the invariant analysis here suggests that ASL632

is more anisotropic at fine scales r < riso. Hence, shear633

intensity (or dU/dz) alone cannot be the main cause.634

The alternative explanation stems from the fact that635

σu3/(σu1 + σu2) is larger for the CSL when compared636

to its ASL counterpart for similar ζ values. While both637

ASL and CSL turbulence appear to be isotropic in the638

plane paralleling the ground surface, the CSL energy el-639

lipsoid appears to be closer to a 3D when compared to640

its ASL counterpart. This initial energy configuration641

state at large scales in the ASL requires that the return-642

to-isotropy transfer more energy to the vertical direction643

when compared to the CSL.644

V. BROADER IMPACTS645

The results presented here are pertinent to subgrid-646

scale turbulence closure schemes in Large Eddy Simula-647

tions. Most models use subgrid-scale stress parametriza-648

tion based on isotropic eddy-diffusivity schemes (e.g.649

PALM [76–78]). Turbulence closure methods accounting650
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FIG. 7. The starting scales of the return-to-isotropy rani (a) and raniL
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isotropy is reached are plotted against the temperature length scale LuT . Circles indicate stable, diamonds near neutral and
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surface.

for subgrid-scale anisotropy based on explicit algebraic651

Reynolds stress models, which utilize the mean strain652

and rotation rate have been developed and successfully653

tested [79, 80]. Our results show that near-isotropy can654

be attained for fine scales (< 5 m) in CSL and ASL flows,655

but coarser grid resolutions require anisotropic subgrid656

modeling. Further, the results here can be utilized to657

improve or formulate new wall-blocking models, for ex-658

ample in the description of the mean velocity profile [81],659

as the data set spans atmospheric flows from weak block-660

age (CSL) to strong blockage (ASL) and covers a wide661

range of velocity variances. The aforementioned exam-662

ples above implicitly or explicitly assume Rotta’s en-663

ergy redistribution hypothesis, which is popular in higher664

order-closure schemes [82] used in climate and weather665

forecasting models (e.g. WRF). The analysis here hints666

to a need for exploring approaches beyond a linear Rotta667

scheme. Another path for improvement is to find a nor-668

malization collapsing rani between CSL and ASL, which669

then could be utilized in modelling an efficiency of the670

return-to-isotropy.671

VI. CONCLUSIONS672

Scalewise invariant analysis showed that the return-673

to-isotropy is initiated at larger scales and covers a wider674

range of scales in the ASL when compared to the CSL.675

This statement holds when scales (or separation dis-676

tances) are normalized by the integral length of the ver-677

tical velocity. The two normalized scales at which the678

return-to-isotropy becomes active and near-isotropy is679

attained are insensitive to atmospheric thermal strati-680

fication (again when the scales are normalized by the681

integral length scale of the vertical velocity). However,682

the precise trajectory in the BAM towards isotropy at683

finer scales is modified by thermal stratification and mean684

velocity gradient, and does not follow expectation from685

homogeneous turbulence. The analysis also reveals that686

larger scales appear less anisotropic in the CSL when687

compared to their ASL counterpart. Both CSL and ASL688

appear near-planar isotropic at large scales. However,689

the reduced overall anisotropy in the CSL mainly orig-690

inates from σu3/(σu1 + σu2) being larger for CSL when691

compared to its ASL counterpart. Hence, CSL turbu-692

lence commences its relaxation to isotropy in BAM with693

reduced scales from a point closer to the 3D state and694

along the 2-D/3-D interface. Because of the significance695
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of the third invariant (in both ASL and CSL), the classi-696

cal Rotta return-to-isotropy approach must be amended.697

The work here also shows that the return-to-isotropy de-698

pends more on surface roughness properties and less on699

surface heating. From a broader perspective, the work700

here extends prior laboratory (pipe and wind-tunnel)701

studies by demonstrating that rougher surfaces (i.e. a702

forest) tend to make turbulence more isotropic than their703

smooth wall or small roughness (i.e. shrubland) counter-704

parts.705
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bulent kinetic energy and temperature variance in the749

atmospheric surface layer,” J. Atmos. Sci. 28, 190–201750

(1971).751

[11] H. A. Panofsky and J. A. Dutton, Atmospheric turbu-752

lence: models and methods for engineering applications,753

Tech. Rep. (Wiley, 1984).754

[12] B. A. Kader and A. M. Yaglom, “Mean fields and fluctu-755

ation moments in unstably stratified turbulent boundary756

layers,” J. Fluid Mech. 212, 637–662 (1990).757

[13] J. R. Garratt et al., The atmospheric boundary layer,758

Cambridge atmospheric and space science series, Vol. 416759

(Cambridge University Press, Cambridge).760

[14] J. C. Kaimal and J. J. Finnigan, Atmospheric bound-761

ary layer flows: their structure and measurement (Ox-762

ford University Press, 1994).763

[15] J. J. Finnigan, R. H. Shaw, and E. G. Patton, “Tur-764

bulence structure above a vegetation canopy,” J. Fluid765

Mech. 637, 387–424 (2009).766

[16] T. Banerjee and G. G. Katul, “Logarithmic scaling in767

the longitudinal velocity variance explained by a spectral768

budget,” Phys. Fluids 25, 125106 (2013).769

[17] T. Banerjee, G. G. Katul, S. T. Salesky, and770

M. Chamecki, “Revisiting the formulations for the lon-771

gitudinal velocity variance in the unstable atmospheric772

surface layer,” Q. J. R. Meteorol. Soc. 141, 1699–1711773

(2015).774

[18] T. Banerjee, D. Li, J.-Y. Juang, and G. G. Katul, “A775

spectral budget model for the longitudinal turbulent ve-776

locity in the stable atmospheric surface layer,” J. Atmos.777

Sci. 73, 145–166 (2016).778

[19] E. G. Patton, P. P. Sullivan, R. H. Shaw, J. J. Finnigan,779

and J. C. Weil, “Atmospheric stability influences on cou-780

pled boundary layer and canopy turbulence,” J. Atmos.781

Sci. 73, 1621–1647 (2016).782

[20] R. A. Antonia, J Kim, and L. W. B. Browne, “Some783

characteristics of small-scale turbulence in a turbulent784

duct flow,” J. Fluid Mech. 233, 369–388 (1991).785

[21] H. S. Shafi and R. A. Antonia, “Anisotropy of the786

Reynolds stresses in a turbulent boundary layer on a787

rough wall,” Exp. Fluids 18, 213–215 (1995).788

[22] K. S. Choi and J. L. Lumley, “The return to isotropy789

of homogeneous turbulence,” J. Fluid Mech. 436, 59–84790

(2000).791
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