
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Secondary flow in turbulent ducts with increasing aspect
ratio

R. Vinuesa, P. Schlatter, and H. M. Nagib
Phys. Rev. Fluids 3, 054606 — Published 17 May 2018

DOI: 10.1103/PhysRevFluids.3.054606

http://dx.doi.org/10.1103/PhysRevFluids.3.054606


Secondary flow in turbulent ducts with increasing aspect ratio

Secondary flow in turbulent ducts with increasing aspect ratio
R. Vinuesa,1, a) P. Schlatter,1 and H. M. Nagib2
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Direct numerical simulations of turbulent duct flows with aspect ratios 1, 3, 5, 7, 10 and 14.4 at a centerplane
friction Reynolds number Reτ,c ' 180, and aspect ratios 1 and 3 at Reτ,c ' 360, were carried out with
the spectral-element code Nek5000. The aim of these simulations is to gain insight into the kinematics and
dynamics of Prandtl’s secondary flow of second kind, and its impact on the flow physics of wall-bounded
turbulence. The secondary flow is characterized in terms of the cross-plane component of the mean kinetic
energy, and its variation in the spanwise direction of the flow. Our results show that averaging times of
around 3,000 convective time units (based on duct half-height h) are required to reach a converged state of
the secondary flow, which extends up to a spanwise distance of around ' 5h measured from the side walls. We
also show that if the duct is not wide enough to accommodate the whole extent of the secondary flow, then its
structure is modified as reflected through a different spanwise distribution of energy. Another confirmation
of the extent of the secondary flow is the decay rate of kinetic energy of any remnant secondary motions for
zc/h > 5 (where zc is the spanwise distance from the corner) in aspect ratios 7, 10 and 14.4, which exhibits
a decreasing level of energy with increasing averaging time ta, and in its rapid rate of decay given by ∼ t−1

a .
This is the same rate of decay observed in a spanwise-periodic channel simulation, which suggests that at
the core, the kinetic energy of the secondary flow integrated over the cross-sectional area, 〈K〉yz, behaves
as a random variable with zero mean, with rate of decay consistent with central limit theorem. Long-time
averages of statistics in a region of rectangular ducts extending about the width of a well-designed channel
simulation (i.e., extending about ' 3h on each side of the centerplane) indicate that ducts or experimental
facilities with aspect ratios larger than 10 may, if properly designed, exhibit good agreement with results
obtained from spanwise-periodic channel computations.

I. INTRODUCTION

Turbulent duct flows of different aspect ratios AR (defined as the duct width Wd divided by its total height H) are
of great importance for a number of technological applications due to the complicated interactions of wall-bounded
turbulence with the corner. Such applications include complex flow in turbomachinery, heat exchangers, diffusers,
ducts used in refrigeration, etc., and the development of the secondary flow at the corner is a fundamental mechanism
present in several other applications such as in the junction between an airplane wing and the fuselage, or in open
channels and rivers. Moreover, the flow through a fully-developed turbulent duct is an interesting case from a
scientific point of view, since it allows to study the features of wall-bounded turbulence with mean three-dimensional
effects. Such effects include, on the one hand, the growth of boundary layers on the side walls, which – as shown
schematically in Figure 1 – reach a certain thickness in the spanwise direction depending on the duct aspect ratio and
Reynolds number. The side-wall boundary layers produce an acceleration of the flow core at the duct centerplane,
thus increasing the local skin friction. Another three-dimensional effect is the presence of four secondary vortices
located on the horizontal walls, and four more on the vertical ones. The vortices on the horizontal walls convect
near-wall fluid at the duct centerplane towards the outer region, and then recirculate the flow towards the side wall,
as illustrated in Figure 1. This results in a local decrease of the centerplane wall-shear stress, the value of which
depends on the respective contributions of side-wall boundary layers and secondary flow in terms of AR and Re, as
discussed by Vinuesa et al.1 Finally, the secondary vortices on the vertical walls convect fluid towards the corners
through the line tangent to the vortices on the horizontal walls. The secondary flow present in straight fully-developed
turbulent ducts was denoted by Prandtl2 as “secondary flow of second kind”. This type of secondary flow, which lies
in the y − z plane (where y and z are the vertical and spanwise directions respectively), normal to the streamwise

direction x, arises from the Reynolds-stress difference v2 − w2 and the Reynolds-stress component vw. Due to the
Reynolds-stress-induced nature of this kind of secondary flow, currently available Reynolds-Averaged Navier–Stokes
(RANS) models widely used in industry in general fail to predict its effect on the flow. As pointed out by Spalart,3

only RANS models with constitutive relations between the Reynolds stresses and the mean flow which do not assume
that both tensors are aligned (as in the traditional Boussinesq approximation) can predict the presence of this kind
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FIG. 1. Schematic view of the three-dimensional effects present in fully-developed turbulent duct flows. The blue regions
represent the side-wall boundary layers, and the dashed blue arrows show that they accelerate the flow in the duct centerplane.
Red and green arrows indicate the flow direction in the secondary vortices on the horizontal and vertical walls, respectively.

of secondary flow. It is important to note that the secondary flow of second kind is a mean flow feature, and even
though it only amounts to around 2 − 3% of the bulk velocity Ub,

4 and as already observed experimentally in the
1960s and 1970s by Hoagland,5 Gessner and Jones6 and Gessner,7 its impact on the flow may be very relevant.

A flow case that has received some attention from the computational point of view is the turbulent flow through
a square duct, with the first direct numerical simulations (DNSs) carried out in the early 1990s by Gavrilakis8 and
Huser and Biringen.4 The DNS by Gavrilakis8 was carried out at a friction Reynolds number Reτ = 150 (where

Reτ is defined in terms of the duct half-height h and the average friction velocity uτ =
√
τw/ρ, where τw is the

mean wall-shear stress averaged over the four walls, which is related to the streamwise pressure drop, and ρ is the
fluid density). One of the most interesting outcomes of the work by Gavrilakis8 is the observation that, although
the streamlines obtained from the mean streamfunction Ψ in the y − z plane show the two counter-rotating vortices
at the corner, the mean streamwise vorticity field Ωx exhibits two vorticity cells of opposite signs within each of
those vortices. The study by Huser and Biringen,4 at a higher Reτ = 300, shed some light on the mechanisms
responsible for the formation of the secondary flow: by analyzing the spanwise evolution of the Reynolds-stress tensor
shear components, they found that the secondary flow is produced by the interactions of bursting events from the
horizontal and vertical walls close to the corner, which basically lead to a redistribution of v2 fluctuations to the w2

component, responsible for the creation of the secondary vortices. The more recent DNS by Pinelli et al.9 at Reτ
values up to 300 showed that, as opposed to spanwise-periodic channels, the corner determines the location of the
first near-wall streak, and its type: a high-speed streak is found at an inner-scaled spanwise distance z+c ' 50 (where
we define the variable zc with its origin at the corner), followed by a low-speed streak, separated a spanwise length of
approximately λ+z /2 ' 50 (note that the spanwise distance between two streaks of the same type is λ+z ' 10010,11).
In the present study the superscript ‘+’ denotes inner scaling based on the friction velocity uτ (it will be specified
whether it is evaluated at the centerplane, or averaged over the four walls) and the viscous length `∗ = ν/uτ (where
ν is the fluid kinematic viscosity). Note that the value of z+c depends on the corner geometry, as recently shown by
Marin et al.,12 who reported z+c ' 38 in hexagonal ducts. The inner-scaled total width of the duct W+

d determines
the number of streaks that can be sustained. The DNS work by Uhlmann et al.13 at low-Re with Reτ up to around
175 was focused on the limiting state where the W+

d does not support the number of streaks required by the near-wall
turbulence cycle, i.e., what they called the “marginally turbulent state”. They observed this state at Reτ ' 77, which
has W+

d ' 154, condition which just allows to sustain two high-speed streaks on the corners, and a low-speed one at
the centerplane. This leads to a flow configuration in which short-term averages lead to a particular distribution of
the secondary flow, with a total of four counter-rotating vortices located, alternatively, on the horizontal or vertical
walls. Moreover, long-term averages reveal, also in the marginally turbulent state, the expected pattern with eight
vortices. These numerical findings were supported by the experimental study carried out by Owolabi et al.,14 who also
analyzed marignally-turbulent flow effects. Another interesting DNS of the flow through a square duct was performed
by Samanta et al.,15 who considered a configuration with three solid walls, and the fourth wall composed by a porous
bed. Their simulation was at Repτ ' 314 (based on the average friction velocity over the porous bed upτ ), and their
most interesting finding was the increase of secondary flow magnitude by a factor of four compared with a regular
square duct with four solid walls, a consequence of the increased wall-normal transport across the porous bed.

Available numerical simulations of turbulent flow through square ducts in the literature include the DNS by Zhu
et al.16 at Reτ = 300, the simulations by Raisei et al.17 at Reτ values up to 600, the work by Zhang et al.18 also at
Reτ up to 600, and the recent DNS by Pirozzoli et al.19 up to Reτ = 1, 000. The simulation by Krasnov et al.,20 at
a very high Reτ,c = 4, 253 (where Reτ,c is defined in terms of the centerplane friction velocity uτ,c), was averaged
for a very short averaging period, which might have lead to inaccurate results as mentioned in their own paper and
also analyzed in terms of convergence by Vinuesa et al.21 Some other numerical studies of square ducts have used
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large-eddy simulation (LES), such as the work by Madabhushi and Vanka22 at Reτ = 180 and the study by Breuer
and Rodi23 at Reτ = 150. Note that Breuer and Rodi23 also performed an LES at a higher Reynolds number of
56,690 (based on hydraulic diameter and bulk velocity), more than 10 times higher than their low-Re case, but they
found significant disagreement with experimental data. Another very high Reynolds number LES was performed by
Yao et al.,24 up to an Reτ value of 10,550, although their coarse mesh resolution (the number of grid points they
used for their Reτ = 10, 550 case is less than 1% of the total of grid points we consider in this study for a DNS at
Reτ = 360) suggests that there could be some inaccuracies in their results. The asymptotic conditions in turbulent
duct flows were recently discussed by Spalart et al.25 Also note that in most cases these simulations were performed
in short computational boxes, on the order of one-fourth the length considered in the present work.

Despite the relative wealth of data of turbulent flow through square ducts, the flow through a rectangular duct has
not received so much attention from a numerical point of view. This is in part due to the difficulties of using classic
spectral methods (based on Fourier–Chebyshev discretizations) to simulate the flow through four walls, especially with
a particular aspect ratio. The introduction of one additional parameter, AR, significantly increases the complexity of
the problem due to the changes in secondary flow with the flow geometry. Some numerical studies of the flow through
rectangular ducts include the AR = 3.33 duct flow at Reτ ' 300 simulated by Ohlsson et al.26 as part of their DNS of
a three-dimensional diffuser, and the LESs by Choi and Park27 with aspect ratios from 1 to 4 at Reτ = 150. Recent
DNSs of rectangular ducts at Reτ,c ' 180 and 330, with AR values from 1 to 10, have been reported by Vinuesa
et al.1,28 with emphasis on the characterization of the wall-shear stress dependence with aspect ratio. The focus of
the present study is the characterization of the secondary flow with increasing aspect ratio and Reynolds number,
including its magnitude, convergence, and its impact on the statistics of the flow through the duct.

The present article is organized as follows: the numerical setup of the simulations is described in §II; the topology
of the secondary flow and its magnitude are described, for the various cases under consideration, in §III and IV,
respectively; turbulence statistics and wall-shear stress distributions are reported in §V; and the main conclusions of
this work are summarized in §VI.

II. NUMERICAL SIMULATIONS

Turbulent duct flows with aspect ratios 1, 3, 5, 7, 10 and 14.4 at Reτ,c ' 180, and with AR = 1 and 3 at
Reτ,c ' 360, were simulated by means of DNS. Note that part of this database has been previously reported,1,28 and
that the AR = 14.4 case was designed to match the aspect ratio of one of the experiments in Ref.29 The simulations
were performed with the code Nek5000, developed by Fischer et al.30 and based on the spectral-element method
(SEM) originally proposed by Patera.31 In the SEM the computational domain is decomposed into elements, and
the solution is expressed in terms of Lagrange interpolants of order N within those elements. The location of the
nodes inside the elements follows the Guass–Lobatto–Legendre (GLL) distribution, whereas there is an isoparametric
mapping for the shape of the elements and there are no restrictions regarding the position of the elements in the
domain. This means that this method allows the flexibility to compute complex geometries, while still preserving the
characteristics of a high-order spectral method. In the present study we considered the PN − PN−2 formulation with
N = 11. Therefore, the velocity field was expressed in terms of Lagrange interpolants of order 11, and order 9 was
considered for the pressure field. The nonlinear terms are treated explicitly by third-order extrapolation (EXT3),
whereas the viscous terms are treated implicitly by a third-order backward differentiation scheme (BDF3). Nek5000 is
written in Fortran 77 and C, and parallelized with MPI. Besides the already mentioned duct cases,1,15,28 we have used
Nek5000 to simulate the turbulent flow through a straight pipe up to a moderately high friction Reynolds number
of Reτ = 1, 000.32 During the runs we computed a total of 71 statistical fields (where streamwise homogeneity was
exploited), which were then used to calculate complete turbulence budgets. A complete description of the toolbox
used to compute the turbulence statistics is given in Ref.33

With respect to the flow setup, periodicity is imposed in the streamwise direction x in all the cases, and no-slip
conditions are imposed at the walls along the vertical and spanwise directions. All the ducts have a streamwise
length of Lx = 25h, which is sufficiently long to simulate the most relevant turbulent structures in the flow,34,35

and the centerplane (at the plane z/h = 0) bulk Reynolds number Reb,c (formed in terms of the centerplane bulk
velocity Ub,c and the duct half-height h) was kept approximately constant with AR by adjusting Reb, as described by
Vinuesa et al.1 The simulation parameters from all the cases are summarized in Table I, including mesh resolution
details based on uτ,c, which fulfill all the standard requirements for a fully-resolved DNS. The spectral elements are
uniformly distributed in the homogeneous streamwise direction, and the range of ∆x+ values reported in Table I is
due to the GLL point distribution within elements. The averaging periods ta considered to obtain turbulence statistics
(after the initial transients) are also reported in convective time units h/Ub and in eddy-turnover times h/uτ,c. All
the simulations were initiated from a laminar solution,36 and transition to turbulence was triggered by means of
a localized volume force acting in y. Its parameters were designed to create strong, instationary streaks that lead
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FIG. 2. Instantaneous streamwise velocity field in the AR = 10, Reτ,c ' 180 case at 2,000 convective time units (normalized
with Ub and h) from the beginning of the simulation. Green and orange represent minimum and maximum velocities in the
field, respectively. Flow is from lower left to upper right, and walls have been made transparent for clarity.

TABLE I. Summary of simulation parameters from the various cases, corresponding to Reτ,c ' 180 (above) and Reτ,c ' 360
(below) the horizontal line. The terms in brackets are the minimum and maximum grid spacing in that direction, respectively.

AR Reb Reb,c Reτ Reτ,c # grid points ∆x+ ∆y+ ∆z+ taUb/h tauτ,c/h

1 2,500 2,796 165 178 27.4× 106 (1.98, 9.80) (0.09, 4.74) (0.09, 4.74) 7,158 510

3 2,581 2,786 164 179 61.7× 106 (1.99, 9.86) (0.09, 4.77) (0.09, 4.89) 5,664 393

5 2,592 2,781 164 177 95.9× 106 (1.97, 9.75) (0.09, 4.72) (0.09, 4.83) 6,455 441

7 2,605 2,772 164 177 130.3× 106 (1.97, 9.75) (0.09, 4.72) (0.09, 4.83) 9,308 632

10 2,580 2,700 162 174 185.1× 106 (1.93, 9.58) (0.09, 4.64) (0.09, 4.65) 5,795 391

14.4 2,665 2,761 166 177 257.1× 106 (1.97, 9.75) (0.09, 4.72) (0.09, 4.83) 3,062 203

1 5,693 6,258 342 356 122.4× 106 (1.99, 9.88) (0.15, 4.65) (0.15, 4.65) 3,616 226

3 5,817 6,274 338 363 326.5× 106 (2.03, 10.07) (0.15, 4.75) (0.15, 4.96) 3,232 202

to rapid turbulent breakdown.37 Figure 2 shows an instantaneous streamwise velocity field obtained from the duct
with AR = 10 at Reτ,c ' 180. Near-wall streaks can be easily identified in this figure, with the well-documented
spacing in the spanwise direction between two streaks of the same type (high- or low-speed) of λ+z ' 100.10,11 The
resolution is therefore appropriate to capture near-wall dynamics in the flow, and the use of a high-order method
allows an appropriate simulation of the turbulent velocity field. It is interesting to observe how near-wall streaks are
also formed on the side walls, with an approximate spacing of λ+y ' 100, and how at the corner the effect of the two
walls inhibits the formation of such structures. Instead, the flow field in Figure 2 shows how the bursting events from
horizontal and vertical walls interact at the corner. As mentioned in §I, these interactions were reported by Huser
and Biringen4 to result in a redistribution of energy from v2 to w2 in square ducts, which eventually leads to the
formation of the mean secondary flow.

III. TOPOLOGY OF THE SECONDARY FLOW

The evolution of the secondary flow topology with Reynolds number and aspect ratio is presented in Figure 3, where
the streamlines of the secondary mean flow Ψ are evaluated from the two-dimensional fields obtained after averaging
in the streamwise direction and in time, as well as over the four quadrants in the duct. Figure 3 (top) shows the
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streamlines from square ducts at Reτ,c ' 180 and Reτ,c ' 360, with the characteristic two-vortex pattern on each
corner and the tangent line between the vortices along the corner bisector. It can be observed that the secondary
vortices convect momentum from the duct centerplane towards the bisector, and that the two vortices are symmetric
with respect to their tangent line at a particular Reynolds number. This figure illustrates the findings by Pinelli et
al.9 in their numerical work on square ducts up to Reτ = 225: as Re increases the secondary vortices become more
elongated and their centers move away from the wall. An extension of this analysis to rectangular ducts is presented in
Figure 3 (middle), where the secondary flow streamlines from the AR = 3 cases at Reτ,c ' 180 and 360 are compared.
In this figure we show a total of 15 contours, with the same increments as in the square-duct cases (3.9 × 10−4), in
order to allow better comparison among the various ducts. Also in these wider ducts two counter-rotating vortices
are observed close to the corner, although the symmetry they exhibited in the square duct is lost: the vortex located
on the horizontal wall significantly expands in the spanwise direction, which leads to the fact that the tangent line
between the two vortices is not straight anymore, and does not follow the corner bisector. The spanwise development
of the vortex on the horizontal wall leads to an increase in its vertical size, with the consequent shrinking of the
vortex on the vertical wall, therefore the tangent line is a concave curve connecting the lower-left corner and the point
(zc/h ' 0.5, y/h ' 0). Regarding the vortex on the horizontal wall, the first contour extends to the corner up to the
same zc/h values as the square duct (0.18 and 0.1 for low and high-Re, respectively), which indicates that the corner
has an important influence in the formation of the secondary vortex. The development of this vortex in the spanwise
direction is similar for the two Reynolds numbers, and in both cases the last contour (with a value of 3.9 × 10−3)
extends up to zc/h values slightly above 2.5, i.e., the secondary flow is observed up to spanwise locations close to
the centerplane. The center of this vortex also moves farther from the wall with Re: in the low-Re case it is located
at (zc/h ' 0.80, yc/h ' 0.35), and in the higher Re this center is at (zc/h ' 1, yc/h ' 0.4), which supports the
notion of large-scale motions influencing the development of the secondary vortices. With respect to the vortex on the
vertical wall, vertical stretching is also observed with increasing Re, and in both cases the vortex becomes compressed
horizontally due to the discussed growth of the vortex on the horizontal wall. The first contour from the square duct
at Reτ,c ' 360 is shown for comparison, where the shrinking of this vortex is noticeable, although interestingly this
first contour is similarly close to the corner, reinforcing its high influence in the secondary flow. Despite the fact that
the higher-Re vortex is more elongated, its center is approximately at the same location as that of the low-Re case.

An assessment of the influence of the aspect ratio on the topology of the secondary vortices is presented in Figure
3 (bottom). Analysis of aspect ratios of 1, 3, 5 and 10, at Reτ,c ' 180, leads to some similar observations compared
with Figure 3 (middle), in particular the fact that the vortex on the vertical wall shrinks horizontally, and the tangent
line, also defined by a concave curve connecting the lower-left corner and the point (zc/h ' 0.5, y/h ' 0), is very
similar in all the aspect ratios. Regarding the horizontal wall, the first contour level is in good agreement close to the
corner in all the aspect ratios, and interestingly is almost identical in aspect ratios 3, 5 and 10 up to zc/h ' 1.75. The
similarities in this first contour persist for the AR = 5 and 10 cases up to zc/h ' 2.5, point after which the vortex
extends up to zc/h ' 3.7 in the aspect ratio 5 case, and up to zc/h ' 4.3 in the wider duct. This indicates that the
secondary flow develops a characteristic pattern in rectangular ducts, and although the features change close to the
centerplane as the aspect ratio becomes higher, the vortices exhibit similar features close to the corner. This claim is
further supported by the fact that the center of the secondary vortex on the horizontal wall is approximately at the
same location in all the aspect ratios larger than 1, i.e., at (zc/h ' 0.80, yc/h ' 0.35). The horizontal shrinking of
the vortex on the vertical wall can be observed in comparison with the square duct, although as already discussed in
Figure 3 (middle), the first contour level is similar in all the cases, even in the square duct, close to the corner. With
respect to the vertical extent, the vortex in the AR = 3 duct is slightly shorter, which could be associated with some
intermediate state of development of the secondary flow as AR increases, since the vortices from the wider ducts are
almost identical. It is also interesting to note that the center of this vortex is approximately at the same location in
all the cases: (zc/h ' 0.2, yc/h ' 0.5).

The evolution of the secondary flow with increasing Reynolds number, as well as with increasing aspect ratio,
indicates that the large-scale motions in the flow are strongly related to its origin and development, as observed by
Pinelli et al.9 in square ducts. The novelty of these results lies in the fact that larger scales arising from the wider
spanwise extent also affect significantly the shape of the secondary vortices, as well as their intensity.

IV. MAGNITUDE OF THE SECONDARY FLOW

After discussing the topology of the secondary flow in the various duct cases, in this section we quantify its magnitude
in terms of the cross-flow kinetic energy K = 1/2(V 2 + W 2) at various locations in the spanwise direction z. The
mean wall-normal and spanwise velocity components V and W are normalized with the bulk velocity Ub, and therefore
K is normalized with U2

b throughout the article. Figure 4 (top) shows the K distribution of the AR = 3 case at
Reτ,c ' 180, which exhibits high energy close to the corner on the horizontal wall, associated with the strength of the
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FIG. 3. Streamlines of secondary mean flow Ψ, where the coordinate zc is defined with its origin at the duct corner. (a) Square
ducts at Reτ,c ' 180 and Reτ,c ' 360; (b) AR = 3 ducts at Reτ,c ' 180, Reτ,c ' 360 and
shows the first contour (with value 3.9 × 10−4) from the square duct at Reτ,c ' 360 for comparison; (c) Reτ,c ' 180 ducts
with AR = 1, AR = 3, AR = 5 and AR = 10. A total of 10 contours are shown in the square duct
cases, whereas 15 are shown in the wider ducts, all of them with increments of 3.9× 10−4. The velocity and length scales are,
respectively, Ub and h.

secondary vortex in that region. Note that in this figure we exploited the flow symmetries to improve the statistics.
Although in Figure 3 it could be observed that the streamlines of the secondary flow extend beyond zc/h ' 2.5, Figure
4 (top) shows that the energy level of the secondary flow is low for zc/h > 1.5 approximately. Another region of
high K corresponds to the vertical motion parallel to the vertical wall, and the third region with high kinetic energy
is precisely the tangent line between the two corner vortices, directed towards the corner. Regarding the AR = 10
case at Reτ,c ' 180 shown in Figure 4 (bottom), similar regions of high K can be identified, i.e., parallel to the
horizontal and vertical walls, and along the tangent lines between the two corner vortices. Although Figure 3 shows
that the streamlines extend up to zc/h ' 4.3, according to the energy distribution from Figure 4 the magnitude of
the secondary flow decays significantly beyond zc/h ' 3. A difference in energy distribution between the AR = 3
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and 10 cases can be observed close to the corner, at y/h ' 0: whereas in the narrower duct a region of intermediate
energy can be observed up to zc/h ' 1.5, this area extends up to zc/h ' 2.5 in the wider case. This is related to
the discrepancy in streamlines from Figure 3 (bottom) beyond zc/h ' 1.75, and it can be explained by the fact that
the larger width allows further development of the secondary flow in the AR = 10 case, thus modifying its energy
distribution.

Due to the spanwise inhomogeneity of the duct, it is not possible to average the flow in the spanwise direction when
computing turbulence statistics, as it is done in spanwise-periodic channels.38–40 As a result, longer averaging times
are in principle required to obtain converged statistics in turbulent ducts than in turbulent channels. In the present
study we divide the rectangular ducts into smaller areas of width h and height 2h, which we denote by “windows”.
Consequently, the square duct would be divided into two windows, and the AR = 10 case into 20. The symmetry of
the flow with respect to the z/h = 0 plane is used to improve the statistics, which leads to a total of 10 windows in
the AR = 10 case. The division into windows is illustrated for the AR = 3 and 10 cases at Reτ,c ' 180 in Figure 4.
As a convention we will denote the window closest to the corner as #1, and increase the number up to the value of
the one closer to the core of the duct. For instance, in the aspect ratio 10 case the window from z/h = −10 to −9
would be #1, and the one from z/h = −1 to 0 would be #10. In order to determine the required averaging periods
to obtain converged secondary flow statistics, the evolution of K with ta is characterized for each of the windows.
Doing so, it will be possible to determine their respective rates of convergence and converged values. We will use the
symbol 〈·〉 to denote the spatial average of a certain quantity, whereas capital letters denote the mean in time.

The convergence of the secondary flow is evaluated, for the first window (as described in Figure 4), in Figure 5 for
all the aspect ratios at Reτ,c ' 180. In this figure we show the value of K averaged over the first window, i.e., 〈K〉yz1,
as a function of the averaging time taUb/h (expressed in convective time units), where also streamwise averaging, as
well as averaging over the two symmetric windows, were considered. All the aspect-ratio cases reach a fully-converged
state after approximately 3,000 convective time units, a fact that highlights the long averaging periods required for
the secondary flow to converge. The square duct shows the lowest level of energy once the converged state is reached:
〈K〉yz1 ' 3× 10−5, whereas aspect ratios 3 and 5 exhibit values of around 4.5× 10−5. The higher aspect ratios 7, 10
and 14.4 have a slightly lower 〈K〉yz1 value of 4× 10−5. These differences are explained by the spanwise development
of the secondary flow: the square duct does not allow the cross-flow to evolve and reach the form it would exhibit
in a sufficiently wider duct. With respect to aspect ratios 3 and 5, they show a pattern closer to the wider 7 and
10 cases, but constrained to a narrower space, which leads to higher concentration of energy close to the corner.
Analysis of 〈K〉yz1 in the two cases at Reτ,c ' 360 (not shown) reveals that around 3, 000 convective time units are
also required for the secondary flow to converge. Moreover, the 〈K〉yz1 values are almost identical when compared
with those at Reτ,c ' 180 for the two aspect ratios, as shown in Table II. Despite the topological differences observed
in the secondary flow with increasing Reynolds number, already discussed in Figure 3, it appears that the integrated
value of K is not significantly affected by Re, at least close to the corner. This observation, limited to a narrow
Reynolds-number range, also indicates that the secondary flow scales in outer units, i.e. with the bulk velocity Ub.
This conclusion is in agreement with the recent work by Pirozzoli et al.,19 who performed DNS of turbulent square
duct flow up to Reτ ' 1, 000. In this study, it is also shown that the secondary flow scales with Ub over their Re
range.

The previous analysis of the first window is extended in Figure 6 to windows 2 and 3, which excludes the square
ducts. The Reτ,c ' 180 cases presented in Figure 6 show that the second window exhibits in all the ducts a very similar
converged level of energy (after averaging for at least 3,000 time units) of 〈K〉yz2 ' 2×10−5, which suggests that beyond
a certain width the secondary flow, initiated at the corner, shares common features in all the ducts. Interestingly, the
third window from aspect ratios 5, 7, 10 and 14.4 show a very similar level of energy 〈K〉yz3 ' 5× 10−6, whereas the
energy corresponding to the AR = 3 case is lower: 2.5 × 10−6. This can be justified by the fact that in the AR = 3
case the third window corresponds to the one at the centerplane, and as observed in the topology of the secondary
flow from Figure 3, and the distribution of K from Figure 4, the secondary flow is already almost absent in the third
window. Nevertheless, the wider ducts allow further penetration of the secondary flow into their respective cores,
exhibiting again similar features in this development, illustrated in the levels of 〈K〉yz3. Regarding windows 2 and
3 at Reτ,c ' 360, they also exhibit converged secondary flow after averaging for around 3,000 convective time units
(not shown). As expected, the third window exhibits values much lower than the second one in the two cases, slightly
lower in the higher Re case: 2 × 10−6. On the other hand, although the second window exhibits similar levels of
energy with Re, a slight increment from 〈K〉yz2 ' 2 × 10−5 to 〈K〉yz2 ' 2.5 × 10−5 is found when Reτ,c increases.
This is interesting, since the AR = 3 duct did not exhibit significantly larger energy in the first window (only an
increase of around 4.4%), whereas in the second one the integrated K is around 25% higher. The streamfunction from
both cases, shown in Figure 3 (middle), shows how in the higher Re duct the streamlines appear to be slightly more
concentrated in the second window, which would explain the higher value of 〈K〉yz2 and the lower one of 〈K〉yz3.
Moreover, the center of the vortex on the horizontal wall is displaced towards zc/h ' 1 at Reτ,c ' 360, which is a
consequence of the larger contributions from the large-scale motions of the flow, and could also be related to to the
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higher level of energy in the second window. Nevertheless, we do not observe a significantly different mechanism in
the spanwise development of the secondary flow at this higher Re. The converged values of 〈K〉yz in windows #1, 2
and 3 for the various cases are summarized in Table II.

The energy level of the secondary flow at the core of the duct is characterized for the aspect ratios AR = 7, 10
and 14.4, all of them at Reτ,c ' 180, in Figure 7. For this analysis, we consider windows larger or equal than #6,
which implies that we consider two windows in the aspect ratio 7 case, and a total of 9 in the AR = 14.4 (since in
this case the 15th window would have a width of only 0.4h, we decided to exclude it from this figure). In addition
to these, we also show the results of a channel flow simulation (where spanwise periodicity was imposed), performed
with the Fourier–Chebyshev spectral code SIMSON,41 in a computational domain with same streamwise length as
the duct cases (Lx = 25h) and with a ratio between spanwise and wall-normal lengths Lz/Ly = 5. For the channel
results we considered a single window spanning the whole width of the periodic domain, although the same trend is
obtained by assuming windows of different sizes. This particular choice of windows to define the core of the duct
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TABLE II. Converged values of 〈K〉yz in windows #1, 2 and 3 for the various cases under consideration.

AR Reτ,c 〈K〉yz1 〈K〉yz2 〈K〉yz3
1 178 3.0× 10−5 — —

3 179 4.5× 10−5 2.0× 10−5 2.5× 10−6

5 177 4.5× 10−5 2.0× 10−5 5.0× 10−6

7 177 4.0× 10−5 2.0× 10−5 5.0× 10−6

10 174 4.0× 10−5 2.0× 10−5 5.0× 10−6

14.4 177 4.0× 10−5 2.0× 10−5 5.0× 10−6

1 356 3.1× 10−5 — —

3 363 4.7× 10−5 2.5× 10−5 2.0× 10−6
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FIG. 7. Kinetic energy of the secondary flow averaged over windows larger or equal than #6, as a function of averaging time, for
AR = 7, 10 and 14.4 at Reτ,c ' 180. The same quantity is shown averaged over the cross-sectional area in a spanwise-periodic
channel, together with the observed rate of decay 〈K〉yz ∼ t−1

a .

was motivated by Figures 3 (bottom) and 4 (bottom), which show that the secondary flow is significantly attenuated
beyond window #5. The value of 〈K〉yz decays as the averaging time increases in all the windows and in the channel,
and both flows exhibit the same rate of decay 〈K〉yz ∼ t−1

a ; note that this rate of decay has already been observed
in the literature.28 This suggests that, at the core, K is in fact a random variable with zero mean. Thus, increasing
the averaging time (or the number of statistical samples) produces a decreasing trend. Also note that the rate of

convergence of V and W is ∼ t
−1/2
a , which is consistent with the central limit theorem, and is a result independent

of the aspect ratio. It is also interesting to observe that all the windows from the various aspect-ratio cases exhibit
similar K values after averaging for comparable time intervals. Figure 7 shows that the long-time average of the
cross-flow in a spanwise-periodic channel and in the core of a sufficiently wide duct are similar.

The fourth and fifth windows are analyzed for aspect ratios 5, 7, 10 and 14.4, all of them at Reτ,c ' 180, in
Figure 8. It is interesting to note that although the levels of energy from the various cases do not decay at the rate
〈K〉yz ∼ t−1

a , it is not clear whether the data would converge to a nonzero value or not. In any case, the behavior in
this region is different from the one observed at the core, where the rate of decay is consistent with the one exhibited
by a spanwise-periodic channel, and therefore it can be stated that in windows #4 and #5 the flow does not behave
as it does in the channel. The fourth window exhibits the same trend in AR = 7, 10 and 14.4, with higher energy level
than the corresponding window in the AR = 5 duct. Although in general the rate of decay from the fifth window is
steeper in all the cases than that of the fourth one, also in this case AR = 5 is the one below all the other ducts. This
is in agreement with the discussion from Figure 6, where the third window in the AR = 3 duct exhibited significantly
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lower levels of energy, due to the fact that the secondary flow was not allowed to further expand in the spanwise
direction due to the limited width. These results suggest that, although the magnitude of the secondary flow in the
region 4 < z/h < 5 is smaller than the one observed closer to the corner, the behavior in this section of the duct is
not the same as the one observed in spanwise-periodic channels.

After assessing the levels of energy associated with the secondary flow at localized regions in the duct, we evaluate
the spanwise variation of the kinetic energy averaged over the wall-normal direction 〈K〉y. Figure 9 shows this
quantity for all the ducts at Reτ,c ' 180, and here we also consider the variable zc with its origin at the corner. In
Figure 9 (left) we focus on the region close to the corner, which as highlighted above shows a stronger secondary flow
that becomes gradually attenuated as the core of the duct is approached. The two local maxima and the minimum
identified in the region close to the corner can be connected with the topology of the secondary flow shown in Figure
3, and the K distribution from Figure 4: the first maximum in 〈K〉y, located at zc/h ' 0.06, is associated with the
region of high energy due to the vertical motion, parallel to the side wall, from the first secondary vortex. Note that
the location of this peak is invariant with aspect ratio, and its magnitude depends on the constraining effect of the
aspect ratio as will be discussed below. The second maximum, which is located at zc/h ' 0.4 in all the cases except
the square duct (where it is slightly closer to the corner, at zc/h ' 0.3), is associated with the region of high K
arising from the horizontal motion, parallel to the wall, of the second vortex. With respect to the local minimum,
which again exhibits an invariant position with AR equal to zc/h ' 0.18, approximately corresponds to the center of
the vortex on the vertical wall, where the energy level is lower. This is also noticeable in the K distributions from
Figure 4, where it is evident that this local minimum is located between the region of high K associated with the
vertical and the horizontal motions. Note that although all the aspect ratios show a similar structure, with two local
maxima and one local minimum in between, their actual values are strongly influenced by the constraining effect of
the aspect ratio. Thus, AR determines the structure of the secondary flow, where for instance it is clear that the
square duct exhibits a higher concentration of energy close to the corner and has a steeper decay of kinetic energy as
the centerplane is approached. This is also consistent with Figure 5, where we show that the integrated value of K
over that first window is lower in the square duct, and provides additional support to the claim that the duct develops
similar features in all the aspect ratios if the width is large enough. The significantly larger maximum of 〈K〉y close
to the corner in the square duct (between 30% and 44% larger than the other cases) is also remarkable. It is also
interesting to observe that the aspect-ratio 7 and 10 cases exhibit a similar peak value of 〈K〉y close to the corner,
whereas AR = 3 and 5 show intermediate values, highlighting the developing nature of the secondary flow with AR.
The widest duct exhibits slightly lower values in the first maximum, and also in the minimum, than the other cases.
The ducts with aspect ratio 3 and 5 also show larger values in the second maximum than the cases with AR = 7, 10
and 14.4. This can be explained by the fact that the secondary flow extends up to zc/h ' 5, and if the duct is not
wide enough to accommodate the whole extent of the secondary flow, then its structure is modified by means of a
different spanwise distribution of energy. Further insight on these distributions can be gained by analyzing the values
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TABLE III. Total kinetic energy of the secondary flow for the various cases under consideration.

AR Reτ,c Ktotal

1 178 6.0× 10−5

3 179 13.1× 10−5

5 177 13.8× 10−5

7 177 13.3× 10−5

10 174 13.4× 10−5

14.4 177 13.4× 10−5

1 356 6.2× 10−5

3 363 15.1× 10−5

reported in Table III, where the total kinetic energy of the secondary flow Ktotal, defined as:

Ktotal =

∫ y/h=1

y/h=−1

∫ z/h=AR

z/h=−AR

K d(y/h)d(z/h), (1)

is reported for all the duct cases. Focusing now on Reτ,c ' 180, the square duct shows the lowest total energy level,
more than a factor of 2 below the AR = 3 case. This is not surprising, since the already mentioned constraining
effect of the duct width does not allow the spanwise development of the secondary flow. Moreover, there are small
differences among the cases with AR ≥ 3, where the AR = 3 duct is slightly below the others (manifested in the
〈K〉y curve, which is slightly below the other cases for zc/h > 1.5) and the AR = 5 slightly above (mostly noticeable
in the larger peak of 〈K〉y at zc/h ' 0.4). Beyond this aspect ratio, all the cases exhibit a very similar total energy
of Ktotal ' 13.4 × 10−5, which again supports the statement that for wide enough ducts the secondary flow reaches
a limited and defined spanwise development. The fact that the total energy of the secondary flow appears to be
constant beyond a certain aspect ratio could explain the small decay observed in the three relative extrema of 〈K〉y
with increasing aspect ratio. Moreover, the notion that the secondary flow is stronger close to the corner and becomes
gradually attenuated as the core of the duct is approached is also observed in Figure 9 (right), where 〈K〉y is shown
as a function of zc for the aspect ratio 7, 10 and 14.4 cases, in the region 0 ≤ zc/h ≤ 10. Here it also becomes clear
that the corner effects are relevant up to the fifth window, and beyond this point they basically become zero when
long averaging times are considered.

The effect of Reynolds number on the 〈K〉y distributions is assessed in Figure 10, where the AR = 1 and 3 cases
are compared at Reτ,c ' 180 and 360. We first consider the spanwise coordinate zc in outer scaling (Figure 10 (left)),
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which shows that at Reτ,c ' 360 the first maximum in 〈K〉y, associated with the energetic vertical motion along
the vertical wall, is located closer to the side wall than at Reτ,c ' 180, i.e., at zc/h ' 0.04 instead of 0.06. This
is explained by the fact that that as shown in Figure 3, the secondary vortices on the vertical wall become more
elongated vertically and are slightly more constrained in the region close to the side wall. Moreover, the value of
the peak increases with Re, which is connected with larger vertical velocities, a consequence of the compression of
the vortex towards the side wall. Regarding the local minimum, it is interesting to observe that at Reτ,c ' 360 the
square duct exhibits a plateau at around zc/h ' 0.22, whereas the AR = 3 duct shows a minimum at zc/h ' 0.13;
let us recall that in the lower Re case the minimum lies in between, at zc/h ' 0.18. This minimum is connected with
the center of the vortex located at the vertical wall, and the fact that at Reτ,c ' 180 the two aspect ratios show a
similar 〈K〉y around it, whereas at Reτ,c ' 360 not only the minima are located in different places but also the slopes
of 〈K〉y are different before and after the mentioned minimum, suggests that different mechanisms associated with
the larger scales produce a different secondary-flow development. Regarding the second maximum, its location in the
square duct at Reτ,c ' 360 is approximately the same as in the two lower Re cases, i.e., zc/h ' 0.4. The value of
this peak is 25% lower than that of the square duct at Reτ,c ' 180. This can be explained by the fact that, as shown
in Table III, the total energy of the secondary flow is approximately the same in the two square ducts, and since the
first peak is significantly larger at Reτ,c ' 360, the second one must necessarily diminish. From a topological point
of view, the fact that the secondary vortex on the horizontal wall is significantly more elongated at higher Re (as
observed in Figure 3), indicates that the high-speed region on the wall is spread over a wider distance in z, therefore
leading to the plateau observed in 〈K〉y for this case. With respect to AR = 3, the second maximum is significantly
farther from the corner, at zc/h ' 0.8, and although the peak value is slightly below that of the AR = 3 case at
Reτ,c ' 180, the higher Re case exhibits larger values of 〈K〉y over a wider spanwise distance. This is connected to the
larger Ktotal value reported in Table III, and justified by the topology of the horizontal secondary vortex, as observed
in Figure 3: the development of this vortex compared with the lower Reynolds number shows that the streamlines
are closer together towards the horizontal wall, which leads to higher acceleration of the flow in the zc direction,
and consequently to higher K over a longer spanwise distance. Further insight on the Reynolds-number effects can
be gained by analyzing the 〈K〉y curves with the zc coordinate scaled in wall units, as shown in Figure 10 (right):
interestingly, the first maxima are now at a very similar distance to the corner in inner units, i.e., at z+c ' 12 and 15
for the low and high-Re cases, respectively. This highlights the strong connections of the vertical secondary motion
with near-wall turbulent events. The local minimum (connected with the center of the vortex on the vertical wall)
from the low-Re cases appeared to be located at a distance from the corner right between the one from the AR = 3
and AR = 1 cases at high Re, when scaled in outer units. Nevertheless, inner scaling reveals that the two low-Re
cases show this minimum at z+c ' 30, the square duct at high Re at z+c ' 80, and the AR = 3 case at z+c ' 46.
This behavior suggests that the contributions from both small and large-scale motions are extremely relevant in the
development of the secondary vortices (both with Re and AR), as also observed by Pinelli et al.9 Finally, inner scaling
also reveals an interesting trend of the second maximum: the two Reτ,c ' 180 cases show it at z+c ' 70, and whereas
the square duct at higher Re showed it at the same outer-scaled location, in inner scaling this maximum is observed
at z+c ' 130; the wider ducts show this peak at an even larger distance from the corner of z+c ' 280. To conclude, and
despite the similarities in the development of the secondary flow as the ducts become wider and Reynolds number is
increased, the complex multi-scale nature of these vortices leads to interesting differences observed in the particular
cases, especially as both the Reynolds number and the aspect ratio are increased.

Besides the secondary flow, another interesting three-dimensional effect present in rectangular ducts is the growth
and development of side-wall boundary layers. In the present work, we evaluated the side-wall boundary-layer thickness
at the y = 0 plane, and in order to avoid ambiguous definitions of δ, we considered the 99% boundary-layer thickness
δ99,z, defined as the z position where U = 0.99Uc (where Uc is the centerline velocity, i.e., Uc = U(y/h = z/h = 0)).
The values of δ99,z are summarized for the various cases in Table IV, where scalings with the duct half-width Wd/2
and half-height h are considered. The first interesting conclusion is the fact that, in the two square ducts, the side-
wall boundary layers extend up to almost the core of the duct, with a value of δ99,z ' 0.84h. If the aspect ratio is
increased to 3 or 5, the side-wall boundary layer spans approximately the same percentage of the spanwise extent,
around 70%, and the respective thicknesses increase from around 2.11h to 3.48h in these two cases. Moreover, for
wider ducts the ratio between the side-wall boundary-layer thickness and the duct width progressively reduces from
around 67% in AR = 7 to 38% in AR = 14.4, whereas the thickness remains approximately constant and equal to
δ99,z ' 5h in the three cases. It is interesting to note that this evolution shares several common features with the
〈K〉y distributions presented in Figure 9, such as the different behavior of the square duct, where the insufficient
width does not allow a complete development of the side-wall boundary layer. The AR = 3 and 5 cases, which showed
an intermediate distribution in Figure 9 with a developing, but slightly constrained secondary flow, also exhibit an
intermediate behavior here. Thus, these cases show developing boundary layers spanning a significant portion of the
duct width. Moreover, higher aspect ratios lead to a maximum side-wall boundary-layer thickness of around 5h,
which is precisely the spanwise distance from the corner up to which the secondary flow exhibited noticeable energy
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TABLE IV. Summary of 99% side-wall boundary-layer thicknesses δ99,z for the various cases under consideration.

AR Reτ,c δ99,z/ (Wd/2) δ99,z/h

1 178 0.84 0.84

3 179 0.70 2.11

5 177 0.70 3.48

7 177 0.67 4.71

10 174 0.50 4.99

14.4 177 0.38 5.48

1 356 0.85 0.85

3 363 0.78 2.34

as shown in Figure 9 (right). This is a remarkable conclusion, which indicates that there may be connections between
the two three-dimensional effects present in turbulent rectangular ducts. With respect to Reynolds-number effects,
they are only noticeable, although still low, in the AR = 3 at Reτ,c ' 360 case which exhibits 8% increase in δ99,z
with respect to the Reτ,c ' 180 one. This is probably connected with the higher Ktotal value reported in Table III for
the AR = 3 case, whereas in the square duct the total energy of the secondary flow remained approximately invariant
with Reynolds number.

V. TURBULENCE STATISTICS AND WALL-SHEAR STRESS DISTRIBUTIONS

In this section we analyze turbulence statistics from the various duct cases, and compare them with those exhibited
by spanwise-periodic channel flows. Note that the results from §IV show that the kinetic energy of the secondary
flow K is very small for zc > 5h, therefore it is interesting to compare the centerplane statistics of the widest ducts,
i.e., those with AR = 7, 10 and 14.4, with the ones of the periodic channels, where no secondary flow is present. In
Figure 11 (top) we show the inner-scaled mean flow and the Reynolds-stress tensor components from the three duct
cases mentioned above, and compare these profiles with the channel flow data reported in Ref.42 at Reτ = 180. The
agreement of mean flow, fluctuations and Reynolds-shear stress is excellent among ducts and also with the channel,
and the maximum deviations, observed in the inner peak of the streamwise velocity fluctuations, are around 1%, which
is the order of statistical accuracy of the data presented in this study. Moreover, in Figure 11 (bottom) the turbulent
kinetic energy (TKE) budgets from AR = 10 and 14.4 at z/h ' 0 are compared with the ones from the channel.42
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FIG. 11. (a) Inner-scaled mean flow and (b) Reynolds-stress tensor components at the centerplane of various ducts with
Reτ,c ' 180, compared with DNS of channel flow at Reτ = 180.42 TKE budget of ducts at Reτ,c ' 180 with (c) AR = 10 and
(d) AR = 14.4, compared with same reference channel flow data.42 TKE budget terms: Production, Dissipation,

Turbulent transport, Viscous diffusion and Velocity-pressure-gradient correlation.

These profiles also reveal an excellent agreement between the two ducts and the channel (note that the AR = 7 case,
not shown, is also in very good agreement with the channel). The time- and streamwise-averaged statistics at the
core of duct with AR > 7 are essentially the same as those obtained from a spanwise-periodic channel. Nevertheless,
since the core region, unaffected by secondary-flow effects, would be quite narrow in an AR = 7 configuration, an
aspect ratio of at least 10 would be recommended in an experiment aiming at reproducing spanwise-periodic channels
conditions at the centerplane. The effect of side walls on the wall-shear stress in rectangular ducts up to aspect ratios
of 10 and 50 was studied experimentally by Knight and Patel43 and by Rhodes and Knight,44 respectively. In these
studies the ratio of τw (wall-shear stress averaged over the perimeter) and the wall-shear stress obtained from the
streamwise pressure gradient was determined. As discussed by Monty,45 this ratio would be one in the idealized case
of infinite aspect ratio. After analyzing both sets of experiments, Rhodes and Knight44 concluded that a minimum
aspect ratio of 10 is required to minimize the impact of the side walls on the skin friction, a conclusion which is in
good agreement with the results presented here.

In Figure 12 we show wall-shear stress distributions from the various duct cases, including mean wall-shear stress,
as well as streamwise and spanwsie root-mean-square (rms) profiles, all of them as a function of the inner-scaled
spanwise coordinate z+c (where uτ,c was used for the scaling). We will first focus on the aspect-ratio effects studied
in Figure 12 at Reτ,c ' 180, and in particular on the mean wall-shear stress distributions. The square-duct case
exhibits a maximum at z+c ' 50, followed by a local minimum separated a spanwise distance of λ+z /2 ' 50, which
forms a high/low speed streak pair.10,11 Beyond this point, and approximately at z+c ' 180, another local maximum is
observed, which is located at the duct centerplane. In the square-duct case, the inner-scaled half-width is W+

d /2 ' 180,
which means that one half of the inner-scaled spanwise extent of the duct allows to allocate just three streaks (keeping
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in mind the distance of ' 50+ between the corner and the first one). At higher aspect ratios the location of the first
maximum is approximately constant and equal to z+c ' 50, which implies that the geometry (in this case the corner)
determines the location of the first streak, and also the fact that it is a high-speed streak. Moreover, the value of this
first maximum decreases with AR, from around τw/τw,c ' 1 in the first duct, to around 0.8 in aspect ratios beyond 7.
All the aspect-ratio cases exhibit a local minimum at a distance of around λ+z /2 ' 50 from the maximum, forming the
high/low speed streak pair, but beyond this point there is not a defined third streak in the cases with AR ≥ 3. Pinelli
et al.9 observed a similar behavior at progressively higher Re, which also leads to larger inner-scaled duct widths,
and the idea is that larger values of W+

d allow to allocate higher number of streaks. This produces a behavior closer
to that exhibited by spanwise-periodic channels at the core of the duct. This is also consistent with the recent work
by Spalart et al.,25 who showed that for asymptotic Re the wall-shear stress distribution in turbulent ducts would
tend towards a uniform value (except close to the corners). In their study, they used matching arguments of the inner
and outer regions, leading to a logarithmic overlap layer in the mean velocity profile. Whereas the higher maximum
observed in the square case is explained by the constraining effect of the width, for AR ≥ 7 the behavior close to
the corner remains unchanged. Beyond the high/low speed streak pair, the wall-shear stress curves rise towards the
centerplane value, and interestingly the cases with AR ≥ 7 exhibit a region of approximately constant τw/τw,c ' 1
beyond zc/h ' 5, which as discussed in §IV is the region where the secondary flow becomes significantly attenuated.

Another interesting quantity analyzed in Figure 12 for all the cases at Reτ,c ' 180 is the rms of the wall-shear stress,
both in the streamwise and the spanwise directions, which shows the influence of the large-scale motions on the outer
region with the the structures near the wall.46 As in the mean wall-shear stress, the behavior observed in the square
duct differs slightly from that of the wider ones, also due to the limited spanwise width. All the cases show an inflection
in τw,x,rms and τw,z,rms, at the same location where the the mean wall shear has the first maximum, i.e., z+c ' 50.
This is connected with the interactions between the outer-layer structures and the near wall, and it is also important
to note that a second (more subtle, especially in the case of the spanwise-fluctuating shear stress) inflection point is
observed at z+c ' 100. This is the spanwise position where the low-speed streak is located. Towards the centerplane,
the square duct reaches values slightly different from those of the spanwise-periodic channel42 at Reτ = 180, although
the cases with AR ≥ 3 essentially converge towards the channel flow values at z/h ' 0. Thus, and as it is the
case in channel flows, the streamwise-fluctuating wall-shear stress is higher than the spanwise component, due to the
elongated nature of the large-scale motions in the outer flow, which essentially modulate the near-wall fluctuations.
As in the case of the mean wall-shear stress, the widest ducts with AR ≥ 7 exhibit a plateau in the two fluctuating
components beyond zc/h ' 5, reaching the same values as those in the spanwise-periodic channel.

Reynolds-number effects on the wall-shear stress distributions are also assessed in Figure 12, where the spanwise
evolutions of the mean and fluctuating stresses are shown for the AR = 1 and 3 cases at Reτ,c ' 180 and 360.
The latter are compared with the values from the spanwise-periodic channel by Lenaers et al.47 The higher Re cases
also exhibit a maximum at z+c ' 50 and a local minimum at z+c ' 100, which as discussed above constitutes a
high/low speed streak pair, and the position of the high-speed streak is determined by the corner. The square duct
at Reτ,c ' 360 shows another relative maximum at z+c ' 180, similarly to the lower-Re case, and beyond this point it
smoothly converges towards the centerplane value. Note that in this case the inner-scaled half-width is W+

d /2 ' 360,
which in principle would allow to allocate around 7 streaks. Although the position of the three first ones is essentially
determined by the geometry, the remaining four towards the core of the duct start to exhibit features characteristic of
the channel flow, in the sense that there is not a preferential location for the streaks, and as also pointed out in Ref.9

this leads to the progressively more uniform wall-shear stress trend. In the case of the AR = 3 duct at Reτ,c ' 180,
the wider W+

d /2 ' 540 leads to at least 10 streaks, and only the first high/low speed streak pair is determined by
the corner. Beyond this point, the curve evolves towards the centerplane value, without clearly exhibiting the second
maximum at z+c ' 180. Similarly, the higher Re case with aspect ratio of 3 also shows the first streak pair, but
beyond this point there is not a clear signature of the geometry on this curve. Regarding the fluctuating components,
the higher Reynolds number cases also show inflection points at z+c ' 50 and 100, locations at which the high and low
speed streaks are located, and interestingly at Reτ,c ' 360 the two ducts converge towards the fluctuating wall-shear
stress values reported by Lenaers et al.47 for spanwise-periodic channel flows. It is interesting to note that in the
streamwise-fluctuating wall-shear stress the effect of Reynolds number is moderate in the square duct, and subtle
in the AR = 3 case. In fact, in the aspect ratio 3 duct the τw,x,rms curve at Reτ,c ' 360 is only above the one
at 180 when zc exhibits the inner-scaled half-width of the lower Reynolds number duct W+

d /2 ' 540. Below this
point the two curves are very similar. On the other hand, the τw,z,rms curves from the two Reτ,c ' 360 cases are
above the ones of the 180 ducts throughout the whole spanwise direction. This is consistent with the fact that the
increase of τw,x,rms in channel flows is significantly below the increase in τw,z,rms when increasing Reτ from 180 to
360 (8.33% compared with 20%). A trend similar to the one from channel flows was reported in Ref.32 for pipe flows
and in Ref.48 for zero-pressure-gradient turbulent boundary layers in this Reynolds-number range, although in those
cases the trends of τw,x,rms and τw,z,rms started to level off beyond Reτ ' 1, 000, a Reynolds number at which the
streamwise component is around 40% higher than the spanwise one.



Secondary flow in turbulent ducts with increasing aspect ratio 17

100 101 102 103
0

0.2

0.4

0.6

0.8

1

1.2

τ w
/
τ w

,c

z+
c

(a)

100 101 102 103
0

0.2

0.4

0.6

0.8

1

1.2

τ w
/
τ w

,c

z+
c

(b)

100 101 102 103
0

0.1

0.2

0.3

0.4

0.5

τ w
,x
,r
m
s

z+
c

(c)

100 101 102 103
0

0.1

0.2

0.3

0.4

0.5

τ w
,x
,r
m
s

z+
c

(d)

100 101 102 103
0

0.05

0.1

0.15

0.2

0.25

0.3

τ w
,z
,r
m
s

z+
c

(e)

100 101 102 103
0

0.05

0.1

0.15

0.2

0.25

0.3

τ w
,z
,r
m
s

z+
c

(f)

FIG. 12. Spanwise distributions of (a,b) wall-shear stress normalized with centerplane value, (c,d) streamwise and (e,f) spanwise
fluctuating wall-shear stress. The variable z+c is defined with its origin at the corner, and is formed with uτ,c. The cases shown
in the left panels correspond to: AR = 1, AR = 3, AR = 5, AR = 7, AR = 10 and
AR = 14.4, all of them at Reτ,c ' 180, and the vertical indicates the position where zc = 5h. The cases shown in the
right panels are: AR = 1 and AR = 3 at Reτ,c ' 180, AR = 1 and AR = 3 at Reτ,c ' 360. In all
the panels, the horizontal represents corresponding channel flow values at the same Reτ .42,47

VI. SUMMARY AND CONCLUSIONS

Direct numerical simulations of turbulent duct flows with aspect ratios 1, 3, 5, 7, 10 and 14.4 at a friction Reynolds
number Reτ,c ' 180, and aspect ratios 1 and 3 at Reτ,c ' 360, were carried out with the spectral-element code
Nek5000. The aim of these simulations was to gain insight into the characteristics of Prandtl’s secondary flow of
second kind, its evolution with aspect ratio and Reynolds number, and its impact on the flow physics of wall-bounded
turbulence. The computational setup was adequate to capture the smallest turbulent structures, as well as the
complicated phenomena arising at the duct corners. Although the corners inhibit the formation of typical wall-
turbulence streaks, the interaction of bursting mechanisms from horizontal and vertical walls lead to the formation of
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the secondary flow through redistribution of turbulent kinetic energy from the v2 component to the w2.
The secondary flow in the various ducts is first characterized from a topological point of view by means of the

streamfunction of the mean cross-flow. We find that, for the square duct, increasing Reynolds number leads to a
secondary flow pattern stretched towards the duct core, with the vortex centers moving away from the walls. This,
as was also observed by Pinelli et al.,9 highlights the multi-scale character of the secondary flow of Prandtl’s second
kind. For Reτ,c ' 180, increasing the aspect ratio leads to the progressively spanwise development of the vortex on
the horizontal wall, which extends up to zc/h ' 4 in the widest ducts with aspect ratios larger or equal to 7. For these
wider ducts, the position of the center of this secondary vortex remains approximately constant with aspect ratio.
Concurrently, the vortex on the vertical wall becomes significantly compressed horizontally due to the substantial
development of the vortex along the horizontal wall, and its center also remains approximately at the same position
with increasing AR. Regarding Re effects in the AR = 3 case, although the vortex on the vertical wall becomes more
elongated at higher Re, its center does not significantly change location. The vortex along the horizontal wall becomes
more stretched towards the corner, its center moves farther away from the wall, and it produces more acceleration of
the flow moving parallel to the horizontal wall.

The magnitude of the secondary flow is quantified in terms of the cross-plane mean kinetic energyK = 1/2(V 2+W 2),
and its variation in the spanwise direction is assessed in the various cases. Our results show that averaging times of
at least 3,000 convective time units are required to reach a converged state of the secondary flow, which extends up
to zc/h ' 5 in wide-enough ducts; i.e., AR > 5 . We also show that if the duct is not wide enough to accommodate
the whole extent of the secondary flow, then its structure is modified resulting in a different spanwise distribution of
energy. Our results also indicate that long-time averages of statistics in a region of sufficient width around the vertical
centerplane of rectangular ducts with aspect ratios larger than 10 are in close agreement with the ones obtained in
spanwise-periodic channels. Thus, aspect ratios of at least 10 are required in experimental facilities to obtain such
conditions in the core of the duct. The facility used by Zanoun et al.49 benefited in its design from the many earlier
studies concluding that an aspect ratio of 12 was sufficient to emulate a canonical channel flow. Larger values have
been suggested by some more recent experimental studies, such as those by Vinuesa et al.,29 and in much earlier
references not generally cited in recent literature but discussed in Ref.28 In the study of Vinuesa et al.,29 certain
aspects such as the tripping, uncertainties in the position of the Pitot tube, and the Reynolds-number range, may
have contributed to the larger aspect ratios recommended to ensure two-dimensionality of the core flow. Furthermore
from the current results, with the approach of dividing the flow into windows of width h we reach a number of
interesting conclusions: first, all the rectangular ducts exhibit similar levels of averaged energy close to the corner
(window #1), 〈K〉yz1 ' 4.5 × 10−5 and 4 × 10−5 for aspect ratios 3 and 5, and 7, 10 and 14.4 respectively; and the
square duct shows a lower level ' 3× 10−5, and its secondary flow differs from the one observed in the wider ducts.
In addition, the second window shows the same level of energy in all aspect ratios from 3 to 14.4, 〈K〉yz2 ' 2× 10−5,
which is roughly four times larger than the energy found in the third window for the widest cases (7, 10 and 14.4).
Interestingly, all the windows beyond #5 exhibit a decaying level of energy, and the rate of decay is approximately
〈K〉yz ∼ t−1

a . This is the same rate of decay observed in a spanwise-periodic simulation, which suggests that beyond
zc/h ' 5, 〈K〉yz behaves as a random variable with zero mean, with rate of decay consistent with central limit
theorem. With respect to windows #4 and #5, the levels of energy from the various cases do not decay at the rate
〈K〉yz ∼ t−1

a . It can be stated that the flow in this region does not behave as it does in spanwise-periodic channels.
In closing, based on all the above results we conclude that since long-time averages of statistics in the core region

of rectangular ducts, spanning about the width of a well-designed channel simulation (i.e., extending about ' 3h on
each side of the centerplane), are similar to results from computations of the canonical channel flow, one may utilize
ducts or experimental facilities with aspect ratios larger than 10 to compare their time-averaged information with
results obtained from spanwise-periodic channel simulations.
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