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We conduct experiments to investigate the rotations of freely moving particles in a homo-

geneous isotropic turbulent flow. The particles are nearly neutrally buoyant and the particle

size exceeds the Kolmogorov scale so that they are too large to be considered passive tracers.

Particles of several different shapes are considered including those that break axisymmetry

and fore-aft symmetry. We find that regardless of shape the mean-square particle angular

velocity scales as deq
−4/3, where deq is the equivalent diameter of a volume-matched sphere.

This scaling behaviour is consistent with the notion that velocity differences across a length

deq in the flow are responsible for particle rotation. We also find that the probability density

functions (PDFs) of particle angular velocity collapse for particles of different shapes and

similar deq . The significance of these results is that the rotations of an inertial, non-spherical

particle are only functions of its volume and not its shape. The magnitude of particle an-

gular velocity appears log-normally distributed and individual cartesian components show

long tails. With increasing deq , the tails of the PDF become less pronounced, meaning that

extreme events of angular velocity become less common for larger particles.
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I. INTRODUCTION

Particles of different sizes and shapes are translated and rotated by the turbulent fluid motion

in many examples of environmental flows, such as aerosols in the atmosphere or microplastics and

plankton in the ocean. The particle motion matches that of the surrounding fluid for neutrally

buoyant spheres that are small enough so that the fluid velocity varies linearly across the particle

diameter. For particles that do not meet these constraints, additional considerations must be taken

into account to understand their dynamics (see reviews [1–4]). In particular, it is difficult to create

accurate models for particle motion where the size exceeds the Kolmogorov scale because the flow

around the particle can no longer be assumed to be in the Stokes regime.

For spheres whose diameters are only small departures from the tracer limit, there exist models

that can account for finite size effects (i.e., Faxén corrections [5–8] or modified Stokes numbers

[9]). However, our focus is on particles that are large enough to be outside even these limits while

remaining close to neutrally buoyant. The dynamics of such particles in turbulence are largely

unknown, but they are likely to be functions of particle size and shape. The role of particle shape

in determining a particle’s angular velocity is particularly intriguing because non-spherical particles

have multiple length scales which may allow particles to couple to turbulent motions in interesting

ways.

Examples of coupling between particle shape and turbulence include rotations of large fibres

in the slender body limit and rotations of small ellipsoids in the tracer limit, both of which have

displayed interesting connections to turbulence theory. Laboratory measurements and simulations

have shown that fibres in the slender body limit with lengths in the inertial subrange of turbulence

have mean-square tumbling rates that show power law scaling with fibre length [10, 11]. The

scaling exponents can be predicted from Kolmogorov’s similarity hypotheses of moments of velocity

increments across distances in the inertial subrange (henceforth K41 theory). In the tracer limit, the

rotational kinematics of ellipsoids have been found to reveal features of the Lagrangian dynamics of

the velocity gradient tensor [12–15]. Such ellipsoids follow fluid trajectories and rotate in response

to the fluid rotation (vorticity) as well as the fluid strain rate due to their non-spherical shape [16].

However, it has been found that strain-rate contributions to mean-square rotation rate are cancelled

by vorticity-strain correlations along Lagrangian trajectories leaving only vorticity contributions

to the mean-square rotation rate [17]. Thus, the mean-square particle angular velocity is almost

independent of the particle shape for ellipsoids in the tracer limit.

Previous laboratory work on the rotations of inertial spheres with diameter, d, much larger
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than the Kolmogorov scale, η, have shown that the magnitude of the particle angular velocity has

PDFs that are fitted well by a log-normal model [18, 19]. No clustering has been observed for

these neutrally buoyant, d ≫ η particles [20], but there is evidence that lift forces may couple the

rotational and translational motions [21]. Numerical simulations with access to the full velocity field

in the immediate vicinity of large neutrally buoyant spheres have shown that turbulent statistics

are modified locally for distances up to 2d around particles and that particles undergo some angular

slip relative to the surrounding fluid [22].

The influence of particle shape on the rotation of inertial particles has been the subject of

prior investigations by our research group [23–26]. These investigations have so far been unable

to detect meaningful changes in the mean-square particle angular velocity due to effects of shape,

but only axisymmetric shapes such as spheroids and cylinders have been tested and the effects of

measurement noise on the results have not been fully understood. Herein we test the robustness of

previous results by expanding the parameter space of particle shape to include conical particles and

cuboid particles, which break fore-aft symmetry and axisymmetry, respectively. We also re-analyse

data of cylindrical particles from Bordoloi and Variano [26] with a new method that is more robust

to noise. Our goals are to understand the effects of particle shape and size on the mean-square

particle angular velocity and the PDFs of particle angular velocity components.

The remainder of this paper is organised as follows. Section II describes the experimental setup

and the methodology we use to compute particle angular velocity and quantify measurement noise.

In section III we examine the shape and the moments of the particle angular velocity PDFs. We

also compare our results to other studies to understand how particle size and shape influences

rotational dynamics. We close with a summary of the main conclusions in section IV.

II. METHODS

A. Laboratory experiments

We perform measurements of inertial particles advecting in the turbulent water tank shown

schematically in Fig. 1 and described in detail in Ref. [27]. The tank is 80 cm × 80 cm × 360 cm

in the x, y, and z directions, respectively. Flow is generated by two randomly-actuated synthetic jet

arrays that face each other in which individual jets are driven stochastically to maximise turbulence

intensity while minimising the mean flow [28]. Two screens are installed at z = ±37.5 cm to

separate inertial particles in the central region of the tank from the jets. Stereoscopic particle
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FIG. 1. Top view schematic of the turbulence tank and measurement system. All dimensions are in (m).

image velocimetry (SPIV) is used to make measurements in the mid-plane of the tank (z = 0).

This involves two Imager PRO-X cameras (1600 × 1200 pixels) that are fitted with 105 mm Nikkor

lenses mounted on tilt-shift (Scheimpflug) adapters and arranged stereoscopically looking into the

tank from the side wall. The viewing angle is 35◦ to the x-axis and water-filled prisms are installed

on the side wall to minimise distortion. The resulting images have a field of view of 8.24 cm × 3.79

cm in the x× y directions. The flow is seeded with 10 µm silver-coated hollow glass spheres to act

as tracers and illumination is provided in forward-scatter mode by a frequency-doubled Nd:YAG

laser (Big Sky/Quantel). DaVis v7.2 (LaVision) is used to process the images and compute velocity

vectors.

TABLE I. Parameters of the turbulent flow in the tank.

Quantity Value Units

Turbulence velocity scale, uT =
[

(〈ux
2〉+ 〈uy

2〉+ 〈uz
2〉)/3

]1/2
2.03× 10−2 ms−1

Mean dissipation rate, 〈ǫ〉 5.3× 10−5 m2s−3

Taylor length scale, λf 12.6× 10−3 m

Integral length scale, L 80.0× 10−3 m

Kolmogorov length scale, η = (ν3/〈ǫ〉)1/4 0.36× 10−3 m

Kolmogorov time scale, τη = (ν/〈ǫ〉)1/2 0.14 s

Turbulence Reynolds number, Reλ = uTλf/ν 261 -
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The background turbulence is characterised from measurements of the flow without inertial

particles present in the tank. For these measurements, velocity field data are collected at 0.5 Hz and

the time delay between the successive images of a SPIV image pair is set to 7 ms. Velocity vectors

are calculated via a multi-pass SPIV algorithm where the final pass uses direct correlation with

32×32 pixels subwindows with 50% overlap and a Gaussian weighting function. The turbulence

parameters from 560 independent velocity snapshots of the flow are summarised in Table I. The

mean dissipation rate, 〈ǫ〉, is calculated by the average of the compensated longitudinal second-

order velocity structure function over the inertial subrange with a Kolmogorov constant C2 = 2.0.

The Taylor length scale is computed by fitting an osculating parabola to the first three points (not

including the point at zero lag) of the longitudinal autocorrelation function. Further details on

calculation methods and tank performance are provided in Ref. [27].

Inertial particles of three different shapes (cubes, cuboids, and cones) with similar volumes were

manufactured for this study using the particle manufacturing process developed in Ref. [29]. The

procedure involves mixing 0.4% agarose polymer by mass and 0.2% commercial glitter by mass with

deionised water at 100◦C, which forms a hydrogel upon cooling that is index-of-refraction matched

with water and has a density that is a few percent above that of water. To get the desired shapes,

the liquid mixture is poured into baking trays to the desired height while accounting for evaporative

losses during cooling. Particles are stamped out from the hydrogel sheet using custom-made square

and rectangular tubes to make cube-shaped and cuboid-shaped particles, respectively. Cone-shaped

particles are manufactured by pouring the mixture into a silicone mould that is custom-made from

a 3D-printed positive mould. Table II gives the dimensions of the particles manufactured for this

study and the dimensions of the cylinders from Ref. [26].

Separate experiments are performed for each particle shape. In each experiment, particles are

added to the tank’s central region at a volume fraction of less than 0.5%. Data collection proceeds

in loops, where within each loop velocity data is taken at 14 Hz until the onboard camera memory is

full (approximately 12 s) at which point the data is transferred to the computer hard drive. For each

shape, approximately 1000 such loops are collected and, on average, approximately one particle

wanders through the light sheet in the field-of-view of the cameras per loop. When a particle

enters the field-of-view, laser light passes through the hydrogel and illuminates the glitter. The

velocity of the glitter, which acts as a tracer locked in the hydrogel, is measured with the SPIV

system. Particles are identified by pre-processing images using an average intensity threshold.

Within images, the area occupied by the particle is identified using an edge-preserving median

filter combined with a local intensity threshold. Velocity vectors are calculated via a multi-pass
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algorithm where the final pass uses direct correlation with 64×64 pixels subwindows with 50%

overlap and square top-hat weighting function. Spurious vectors, which constitute less than 5% of

the total vectors, are identified and removed in post-processing by using the normalised median

test described in Ref. [30].

B. Computing particle rotation

The particle angular velocity vector, ωp = (ωpx, ωpy, ωpz), can be calculated from the velocity

vectors inside the particle in two ways: (i) using velocity differences in the equation for solid body

rotation as outlined in Bellani et al. [23], or (ii) fitting the velocity measurements directly to the

equation for solid body rotation. Both methods operate on finding the linear velocity variation

within the particle. As explained in Ref. [23], the velocity-differences method solves the solid

body rotation equation using velocity differences between vector pairs and vector triplets. Since

the velocity vectors are measured in the z = 0 plane, the ωpz component can be computed from

differences between vector pairs, but the the ωpx and ωpy components require vector triplets. By

cycling through all combinations of vector pairs and triplets, many estimates of the particle angular

velocity are produced and the median of this distribution is chosen as the final value. This is very

similar to a Theil-Sen estimate (e.g., see [31]), which is known to compete well with ordinary least

squares and be robust to outliers.

In the fit-velocity method, the linear velocity variation within the particle is fitted directly to

the solid body rotation equation using non-linear regression. Using the measured velocity vector

TABLE II. Particle dimensions with 95% confidence intervals computed using Student’s t distribution from

30 − 50 samples. For the cone and the cylinders, the diameter = d1 = d2 and the height = d3. deq is the

equivalent diameter, i.e., the diameter of a sphere having the same volume as the particle.

Particle d1 (mm) d2 (mm) d3 (mm) deq (mm)

Cube 8.2± 0.1 8.2± 0.1 8.2± 0.1 10.1± 0.1

Cuboid 4.0± 0.1 7.7± 0.1 15.7± 0.4 9.8± 0.2

Cone 10.9± 0.1 10.9± 0.1 10.0± 0.2 8.4± 0.1

Small cylinder 4.8± 0.1 4.8± 0.1 5.0± 0.2 4.9± 0.1

Medium cylinder 8.1± 0.2 8.1± 0.2 7.8± 0.3 8.0± 0.3

Large cylinder 19.7± 0.5 19.7± 0.5 20.6± 1.0 20.0± 0.5

Long cylinder 5.1± 0.2 5.1± 0.2 19.0± 0.8 7.9± 0.2
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FIG. 2. Particle angular velocity for a subset of cube data calculated from two different methods described

in the text. The solid line shows the 1:1 correspondence.

components (vx∗
, vy∗ , vz∗) at locations (x∗, y∗) in the z = 0 plane, the ωpz component is calculated

by fitting the data to the lines given by

vx∗
= −ωpzy∗ + Cx; (1a)

vy∗ = ωpzx∗ + Cy, (1b)

where Cx and Cy are fitting parameters that are discarded because the centre of volume is not

known. The value of ωpz is taken as the average of the two estimates. The ωpx and ωpy components

are calculated by fitting the data to the plane given by

vz∗ = ωpxy∗ − ωpyx∗ + Cz, (2)

where Cz is again a fitting parameter that is discarded, similar to the Cx and Cy in Eqs. (1).

The velocity-differences method and the fit-velocity method yield very similar results, as shown

in Fig. 2, but the advantages of the fit-velocity method are that it is significantly faster to compute

and the standard error in each measurement can be obtained directly from the non-linear regression.

This error can be significant since the particle angular velocity is measured via velocity variation

over a small distance in which the velocity vectors have noise associated with the SPIV system.

Removing the effects of measurement noise in statistics of the particle angular velocity is discussed

in the following section.

In both methods described above, it is useful to set the minimum cross-sectional area of a particle

for which the angular velocity will be calculated. This is an important threshold in the analysis
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because a larger cross-sectional area gives a greater number of velocity vectors inside the particle,

which reduces the uncertainty in the particle angular velocity and guards against the possibility of

stray pieces of hydrogel being mistaken for a particle. We set the threshold to minimum value of

20 vectors for the particles manufactured for this study, which is close to the expected number of

vectors when the particles are bisected by the light sheet.

III. RESULTS AND DISCUSSION

A. Particle rotation

The results of particle rotation for the cubes, cuboids, and cones are summarised in Table III.

The table also contains results of cylinders, which are from data collected using similar procedures

in the same facility and were originally presented in Ref. [26]. The vector fields from that dataset

have been re-analysed using the fit-velocity method to allow consistent comparison.

Since the background flow is isotropic, the components of particle angular velocity have means

that are close to zero and much smaller than the root-mean-square (rms) values (see Table III).

We observe that the rms value of ωpx is generally greater than that of the other components; this

is due to the fact that the particles are slightly negatively buoyant [29] and hence spend a greater

amount of time near the bottom of the tank where the flow is anisotropic and the component of

fluid vorticity in the ±x-directions is higher than the other components.

We are interested in the mean-square of the total particle angular velocity, 〈ωp
2〉 = 〈ωp

2
x〉 +

〈ωp
2
y〉+ 〈ωp

2
z〉, but its value calculated from the data is expected to be larger than its actual value

due to measurement noise. Each measurement of a particle angular velocity component can be

TABLE III. The mean and root-mean-square values of particle angular velocity components, and the root-

mean-square values of the uncertainties in measurements of particle angular velocity components (rads−1).

Particle 〈ωpx〉 〈ωpy〉 〈ωpz〉 〈ωp
2

x〉1/2 〈ωp
2

y〉1/2 〈ωp
2

z〉1/2 〈δωp
2

x〉1/2 〈δωp
2

y〉1/2 〈δωp
2

z〉1/2

Cube 0.01 −0.03 −0.02 0.73 0.45 0.51 0.13 0.10 0.12

Cuboid 0.00 0.00 −0.01 0.68 0.54 0.62 0.14 0.12 0.14

Cone 0.01 0.03 −0.03 0.72 0.53 0.67 0.13 0.12 0.14

Small cylinder 0.01 0.07 −0.05 1.18 1.04 1.02 0.20 0.19 0.54

Medium cylinder −0.01 −0.07 0.01 0.76 0.62 0.68 0.07 0.07 0.15

Large cylinder 0.00 0.01 0.01 0.44 0.34 0.39 0.03 0.03 0.06

Long cylinder 0.08 0.01 −0.06 0.81 0.81 0.70 0.19 0.17 0.41
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thought of as the sum of its actual value and the measurement uncertainty: ωpx = ωpx,a ± δωpx.

The mean-square value of that component is then given by 〈ωp
2
x〉 = 〈(ωpx,a ± δωpx)

2〉 = 〈ωp
2
x,a〉 +

〈δωp
2
x〉±2〈ωpx,aδωpx〉. The pure noise term is known since we have δωpi in each measurement from

the non-linear regression. Assuming that the uncertainty in a measurement is not correlated with

the actual value and that the distribution of the actual values has zero mean, the final term in the

mean-square expansion vanishes, i.e., 2〈ωpx,aδωpx〉 = 2〈ωpx,a〉〈δωpx〉 = 0. Thus, the contribution

of the measurement noise to the mean-square value can be removed by subtracting off the mean-

square uncertainties from each component: 〈ωp
2
x,a〉 = 〈ωp

2
x〉 − 〈δωp

2
x〉. We use this procedure to

remove the effects of measurement noise from the total mean-square particle angular velocity in

Fig. 3.

In Fig. 3, we plot the total mean-square particle angular velocity as a function of particle size,

where size is characterised by the equivalent diameter of a volume-matched sphere, deq. These

quantities are made dimensionless by the Kolmogorov scales, τη and η, respectively. The data

appear to follow a scaling law shown by the dashed lines: for all particle types, regardless of shape,

the mean-square particle angular velocity falls off as deq
−4/3. This scaling is consistent with the

original Kolmogorov similarity hypotheses (K41 theory). If we postulate that turbulent motions

of size deq, with a turnover time scale τdeq, are the primary source of particle rotations, then

the mean-square particle angular velocity should scale as 〈ωpa
2〉 ∼ τeq

−2. For deq in the inertial

subrange, K41 theory relates τeq to deq and the mean dissipation rate via the scaling relation

τdeq ∼ deq/(deq〈ǫ〉)1/3. Substituting this into the scaling relation of the mean-square particle

angular velocity gives 〈ωpa
2〉 ∼ deq

−4/3. This type of scaling was introduced by Parsa and Voth

[11] for tumbling of thin fibres in turbulence and by Bordoloi and Variano [26] for rotations of

inertial cylinders with aspect ratios 1:1 and 1:4. Here, we find that cubes and cones with aspect

ratio 1:1, and cuboids with aspect ratio 1:2:4 also agree with this scaling. This provides evidence for

the fact that deq is the relevant measure of particle size for characterising rotations of the inertial

particles of the type we have tested in turbulence.

In Fig. 4, we consider the particle angular velocity distributions by plotting probability density

functions (PDFs) of measured particle angular velocity components normalised by their respective

rms values. They show good fits to the model given by:

P (a) =
exp(3s2/2)

4
√
3

[

1− erf

(

ln|a/
√
3|+ 2s2

s
√
2

)]

. (3)

This model is derived by assuming that the magnitude of the angular velocity vector follows a
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FIG. 3. Dimensionless mean-square particle angular velocity plotted against the dimensionless particle size

measured by the diameter of a volume-matched sphere. The mean-square uncertainty, 〈δωp
2〉 = 〈δωp

2

x〉 +
〈δωp

2

y〉+ 〈δωp
2

z〉, is subtracted from the mean-square particle angular velocity, 〈ωp
2〉 = 〈ωp

2

x〉+ 〈ωp
2

y〉+ 〈ωp
2

z〉,
to remove the effects of measurement noise as explained in the text. Data of cubes (red square), cuboids

(red diamond) and cones (red triangle) are plotted along with small, medium and large cylinders (black

squares) and long cylinders (black circle). Cylinders data (black symbols) have been made dimensionless by

η = 0.3 × 10−3 m and τη = 0.11 s, as reported in Ref. [26]. The 95% confidence interval uncertainty bars

are calculated from a bootstrap analysis. The dashed lines are given by (deq/η)
−4/3 and 2(deq/η)

−4/3.

log-normal distribution and the direction of the angular velocity vector is isotropic with respect to

the laboratory frame. Zimmermann et al. [19] and Klein et al. [18] have previously shown that this

model provides good fits to data of angular velocity components of inertial spheres in turbulence.

The values of the dimensionless fitting parameter, s, are listed in Table IV.

We have studied the effect of measurement noise on the value of s via simulations of the data

collection and analysis, similar to Ref. [24]. We generate noise-free particle angular velocity vectors

that are isotropically distributed with vector magnitudes that are log-normally distributed with

variance that match data of cubes, cuboids, and cones. Next, the angular velocity vectors are

converted to synthetic velocity measurements arranged in a rectangular array in the z = 0 plane.

The number of synthetic velocity vectors to be created is decided by drawing from a uniform

distribution spanning the interval 20 – 50, which is similar to the data for cubes, cuboids, and

cones. Gaussian random noise is added to the velocity vectors with variance that matches the

known noise level in the SPIV data. The noisy velocity vectors are then processed using the fit-
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velocity method described above to arrive at synthetic measurements of particle angular velocities.

The synthetic data show that noise in the velocity vectors increases the mean-square particle

angular velocity and can be corrected for as described above. More importantly, the synthetic data

show that noise in the velocity vectors only slightly reduces the value of s, by an amount on the

order of the uncertainty bounds in fitting Eq. (3) to the data. We conclude from this that the

shape of the PDFs are not overly affected by measurement noise.

From Table IV and Fig. 5, we observe that the PDFs are super-Gaussian with heavy tails for

all particles and that the value of s is a function only of particle size as measured by deq. Cubes,

cuboids, and cones have PDFs with very similar shapes despite the difference in particle shapes.

We also observe that s increases as deq decreases. In other words, the tails of the PDF become

heavier for smaller particles.

The model PDF in Eq. (3) with the fitting parameter s can be used to calculate the kurtosis of

the particle angular velocity components, which can then be compared to the kurtosis of velocity

increments in the flow, i.e., velocity structure functions. This comparison should give insight

into whether turbulent motions of size deq also control the extreme events in rotations of inertial

particles. The kurtosis of the particle angular velocity components is calculated via numerically

evaluating the integral
∫

∞

−∞
a4P (a)da for P (a) given by Eq. (3). The kurtosis values are listed

in Table IV. For comparison to particle angular velocity, we choose to calculate the kurtosis

of the transverse velocity increments in the flow: 〈∆xu
4
y〉/〈∆xu

2
y〉2, where ∆xuy is the velocity

increment in uy across a given separation distance in the x-direction. The kurtosis values of

velocity increments over distances in the inertial subrange in turbulence are known to increase

TABLE IV. The fitting parameter, s, for the PDFs of the particle angular velocity components in Eq. (3)

and its 95% confidence intervals from the fit. K is the kurtosis of the PDF calculated using Eq. (3) for each

value of s.

Particle s K

Cube 0.63± 0.01 8.6± 0.4

Cuboid 0.62± 0.01 8.2± 0.4

Cone 0.64± 0.01 9.4± 0.5

Small cylinder 0.73± 0.02 14.8± 1.5

Medium cylinder 0.58± 0.02 6.9± 0.6

Large cylinder 0.41± 0.01 3.5± 0.1

Long cylinder 0.59± 0.02 7.1± 0.7
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a) cubes b) cuboids c) cones

d) small
    cylinders

e) medium
    cylinders

f) large
    cylinders

g) long
    cylinders

FIG. 4. Probability density functions (PDFs) of particle angular velocity components normalised by their

rms values: blue crosses, ωpx; magenta squares, ωpy; red circles, ωpz. a) cubes; b) cuboids; c) cones; d)

small cylinders; e) medium cylinders; f) large cylinders; g) long cylinders. The PDFs are fitted to Eq. (3)

and the fitting parameter, s, is listed in Table IV.

with decreasing scale due to internal intermittency [32]. Thus, we also compare these kurtosis

values with the predictions of the refined Kolmogorov hypotheses (K62 theory). In this theory, the

moments of velocity increments are conditioned on the moments of the locally-averaged value of

the dissipation rate, which itself is assumed to follow a log-normal distribution (e.g., see [33]). The

moments of velocity increments in the inertial subrange are predicted to scale with the separation

distance, deq, as 〈[∆xuy]
n〉 ∼ deq

(n/3)−µ(n/6)[(n/3)−1] . Taking the value of the intermittency exponent

as µ = 0.25 gives the scaling prediction for kurtosis of velocity increments to be ∼ deq
−0.11.

The kurtosis values of particle angular velocity components and those of the transverse velocity
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FIG. 5. Probability density functions (PDFs) of one component of particle angular velocity normalised by

its rms value. Data of cubes (red squares), cuboids (red diamonds) and cones (red triangles) are plotted

along with Eq. (3) with s = 0.63, which is the average value across the three shapes (see Table IV).

FIG. 6. Kurtosis values of particle angular velocity components and transverse velocity increments in the

flow. A Gaussian distribution would have a value of K = 3. The symbols are the same as Fig. 3 and their

error bars are calculated from the 95% confidence intervals on the fitting parameter, s, and listed in Table

IV. Cylinders data (black symbols) have been made dimensionless by η = 0.3× 10−3 m, as reported in Ref.

[26]. The solid line is 〈∆xu
4
y〉/〈∆xu

2
y〉2 and the dashed line shows the power law deq

−0.11.
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increments in the flow are shown in Fig. 6 together with the predicted scaling law from K62 theory.

The predicted scaling law (dashed line) seems to describe the data of 〈∆xu
4
y〉/〈∆xu

2
y〉2 (solid line)

for deq/η > 60. However, the kurtosis values for the particle angular velocity components do not

follow the kurtosis values of velocity increments in the flow or the prediction of K62 theory. We

make three further observations from the data in Fig. 6: (i) for all particles, the kurtosis is larger

than the value of a Gaussian distribution (K = 3); (ii) for deq/η < 30, particle angular velocity

components appear to have a higher kurtosis than transverse velocity increments; and (iii) the

kurtosis of particle angular velocity components seems to fall off at a much steeper rate (close

to deq
−1) than that of transverse velocity increments. We interpret these results as the effects of

particle inertia, which is further discussed in the following section.

B. Discussion

The results of this study point to the fact that the majority of the particle rotations in turbulence

are primarily due to turbulent motions of size deq or larger. This is supported by the collapse of the

mean-square particle angular velocity onto a common power law based on deq. It is also supported

by the collapse of standardised PDFs for particle angular velocity components of particles with

different shapes and similar deq. It seems that particle shape plays a very minor role, if any at all,

in determining rotation of the inertial particles that have low aspect ratios and dimensions that

exceed the Kolmogorov scale in all three particle axes.

It is instructive to compare the rotations of inertial particles tested here to those of four thin

rods arranged in a tetrahedral ‘skeleton’ developed by Voth and collaborators [34]. These shapes

have length scales in the inertial subrange, but much less particle inertia than the particles tested

here. Data from Ref. [34] on the rotation of such particles show that 〈ωp
2〉τ2η ≈ 8(d/η)−4/3, where

d is the diameter of the sphere that circumscribes the tetrad and falls in the inertial subrange.

The coefficient of 8 is precisely the result that would be expected if transverse velocity increments

at a scale of d were rotating the tetrads. This can be seen from the K41 theory of transverse

velocity increments: denote 〈∆Nu2〉 as the mean-square of transverse velocity increments in the

flow at scale d and then postulate that without particle inertia, the mean-square particle angular

velocity will be given by 〈ωp
2〉 = 3〈∆Nu2〉/d2. The factor of 3 is required to include all three

components of particle rotation (in the laboratory frame). Substituting in the prediction of K41

theory 〈∆Nu2〉 = (4/3)C2(〈ǫ〉d)2/3 with C2 = 2.0 gives 〈ωp
2〉τ2η = 8.0(d/η)−4/3 .

We can discern the effect of inertia by comparing the power-law coefficient of 8.0 in Ref. [34] to
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the coefficient for our data, which is between 1 and 2. It seems particle inertia reduces the mean-

square particle angular velocity by a factor in the interval 4 – 8. Our data show that this decrease

occurs without disturbing the power law scaling in the inertial subrange, which is predicted by K41

theory and observed in the second-order fluid velocity statistics.

Interestingly, the fourth-order fluid velocity statistics show a power law that is not at all matched

by the data of inertial particle rotation. This implies that extreme events of particle rotation do

not occur with the same frequency as extreme events in fluid motions of size deq. The kurtosis

values of particle angular velocity components for deq/η < 30 seem to suggest that the PDFs of

particle angular velocity have heavier tails than that of velocity increments at the same scale. Our

interpretation of these data are that only the very rare and energetic turbulent motions cause

particle rotations that are large multiples of the rms value, but they are likely to be sustained for

longer than the turbulent motions when they do occur. Comparing the trend in our kurtosis values

to those of angular velocities of inertial spheres reported in Ref. [18] (K = 6 for d/η = 100) and

Ref. [19] (K = 4 for d/η = 600), we note that there doesn’t seem to be a consistent power law

behaviour from all the data. Thus, more data of extreme events of particle rotations is required to

establish a firm scaling law (if it exists). While the precise kurtosis values reported here should be

interpreted with caution since that they are computed via fits to the measured PDF, the data do

seem to show a clear trend of decreasing kurtosis with increasing particle size.

IV. CONCLUSIONS

The main conclusion from this study is that the appropriate scale to characterise rotations of

low-aspect-ratio inertial particles of different shapes in turbulence is deq, the equivalent diameter

of a volume-matched sphere. The mean-square rotation rate of the inertial particles we tested scale

as deq
−4/3, which is consistent with the predictions of K41 theory assuming that transverse velocity

increments in the flow can be directly related to particle rotation. The physical picture that emerges

from this scaling relationship is that particles stop responding to the energy cascade at a scale of

deq, despite a factor of 2 difference between deq and the shortest or longest particle dimension.

Further evidence of the importance of deq is provided by the standardised PDFs, which collapse

for different particle shapes at a given deq. Thus, the statistics of particle rotation measured in the

laboratory frame have been found to be insensitive to particle shape. However, certain applications,

e.g., modelling plankton, require knowledge of particle rotations about specific particle axes, which

may still be influenced by particle shape. We envisage that future investigations that measure
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particle rotation in the particle frame will be able to make further inroads into this problem.
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