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On the physics of singularities in pressure-impulse theory
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The classical solution in the pressure-impulse theory for the inviscid, incompressible,
and zero surface tension water impact of a flat plate at zero deadrise angle exhibits
both singular in time initial fluid acceleration, ∂v/∂t|t=0 ∼ δ(t), and a near-plate-
edge spatial singularity in the velocity distribution, v ∼ r−1/2, where r is the distance
from the plate edge. The latter velocity divergence also leads to the interface being
stretched infinitely right after the impact, which is another non-physical artefact.
From the point of view of matched asymptotic analysis, this classical solution is a
singular limit when three physical quantities achieve limiting values – sound speed
c0 → ∞, fluid kinematic viscosity ν → 0, and surface tension σ → 0. This leaves
open a question on how to resolve these singularities mathematically by including
the neglected physical effects – compressibility, viscosity, and surface tension – first
one by one, and then culminating in the local compressible viscous solution valid for
t → 0 and r → 0 demonstrating a nontrivial flow structure that changes with the
degree of the bulk compressibility. In the course of this study, by starting with the
general physically relevant formulation of compressible viscous flow, we clarify the
parameter range(s) of validity of the key analytical solutions including classical ones
(inviscid incompressible and compressible, etc.), understand the solution structure,
its intermediate asymptotics nature, characteristics influencing physical processes,
and the role of potential and rotational flow components. In particular, it is pointed
out that sufficiently close to the plate edge surface tension must be taken into account.
Overall, the idea is to highlight the interesting physics behind the singularities in the
pressure-impulse theory.

Keywords: water impact; pressure-impulse theory; low Mach number limit; singular-
ity; discontinuous boundary conditions
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FIG. 1. Plate impact problem: (a) setting, and (b) flow field.

I. INTRODUCTION

While research on water impact phenomena was originally motivated by landing on sea
almost a century ago1, key aspects of the fundamental classical solutions have not yet been
fully resolved. In the present work we will focus on singularities in the classical incompress-
ible inviscid solution corresponding to the potential flow, cf. Fig. 1, right after the impact of
a plate of half-width l on a semi-infinite body of liquid of density ρ with velocity V0, which
does not change in the course of impact if the plate mass is assumed infinite. As formally
argued in the classical texts2–5, if the question is to predict the fluid velocity distribution
right after the impact (t = +0) on the fluid initially at rest, then neither nonlinear advection
nor viscous terms can balance the dominant time-derivative, ∂v/∂t; rather only the sharp
pressure gradients can maintain this sudden change in fluid motion:

∂v

∂t
= −1

ρ
∇p, (1)

where the contributions due to viscosity ν are neglected because any boundary layer formed
by a diffusion of viscous effects would grow as

√
ν t and thus at t = +0 would be infinitely

thin. Then the fluid incompressibility, ∇ · v = 0, implies that the pressure p is a harmonic
function, ∆p = 0, and thus the fluid motion is potential right after the impact with v = ∇φ,
where φ is the velocity potential, also a harmonic function, ∆φ = 0. The impulsive nature of
the problem is reflected in the fact that the solution of (1) for t→ 0 behaves as v(x, t) ∼ H(t)
and therefore p(x, t) ∼ δ(t), where H(t) is the Heaviside step function and δ(t) the Dirac
delta-function. This is the basis of the classical pressure-impulse theory.

Thus, for t → +0, one can consider water impact as the boundary value problem in the
inviscid potential flow approximation with the boundary conditions at y = 0 (cf. Fig. 1(a)):

solid plate, x ∈ [−l, l] :
∂φ

∂y
= −V0, (2a)

free interface, x /∈ [−l, l] : φ = 0, (2b)

where the latter condition follows from the fact that the free interface outside the plate
footprint is not subject to the pressure impulse and hence the Cauchy-Lagrange integral
∂φ/∂t = −p/ρ of (1) after integration from t = −0 to +0 yields φ = 0 (see also the
discussion in §II D). The solution to the above problem generated by a pressure impulse
was constructed by Lavrentiev and Keldysh4,6, who recognized that due to the boundary
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condition for the velocity potential at the free surface, φ = 0, one can extend the flow in
a mirror fashion to the upper half-plane so that φ(t, x, y) = −φ(t, x,−y) and thus reduce
the problem to the motion of a plate in the entire plane using methods of complex analysis.
With conformal mapping techniques the complex potential f = φ+ i ψ relating the velocity
potential φ and the streamfunction ψ is found to be:

f(z) = i V0

(
z −
√
z2 − l2

)
, (3)

where z = x + i y and the value of
√
z2 − l2 is made unique by specifying a branch cut in

the z-plane along the interval x ∈ [−l, l]; the corresponding streamlines are shown in the
laboratory frame of reference in Fig. 1(b). This solution exhibits a singularity at the plate
edges in both x and y velocity components u− i v = f ′(z) diverging as

v ∼ r−1/2, r → 0, (4)

with r being the radius coordinate positioned at the plate edge. The intuition behind
this singular solution is naturally related to the origin of ejecta – in the incompressible
case, strictly speaking, the entire fluid body is affected due to the infinite speed of sound
propagation, but the volume effectively brought into motion is actually finite, which can
be seen from the decay rate of the velocity field: u − i v ∼ (l/z)2 for |z| → ∞. This is,
in fact, the explanation as to why the added mass is effectively finite4 and equal to the
half-cylinder of the radius l, cf. Appendix A. Hence, since the mass brought into motion is
finite (a half-cylinder under the plate) and the velocity field decays as r−2 far from the plate
edges, the displaced mass is ejected near the plate edges, where the velocity field is the most
singular (4).

If we are interested in the flow near the plate edges, by shifting the coordinate system
to, say, the right edge, z → z′ + l, and expanding in z′ from (3) we find that

(u− iv) e−iθ =
df

dz′
= − i a√

2 z′ l
+ i V0 −

3 i a

4
√

2 l3/2

√
z′ + h.o.t., (5)

where a = V0 l. Thus, the asymptotics (4) is valid for distances close to the edge, r � l,
which is equivalent to the condition that this leading order term in the velocity components
(5) is dominant, i.e. a/

√
2 r l � V0. The implication of this observation is that one can

justifiably neglect the vertical velocity component of the plate, −V0, i.e. the second term in
(5), when analyzing the flow structure near the plate edge, as the key goal is to resolve the
singularity in the leading order pressure-impulse theory. In this (inviscid) approximation,
the boundary conditions for the velocity field become homogeneous both at the plate surface
(no-penetration in the direction n normal to the plate) and interface:

no penetration, θ = −π :
∂φ

∂n
(≡ vθ) = 0, (6a)

free surface, θ = 0 : φ = 0. (6b)

In view of the homogeneity of the boundary conditions (6), one may consider the leading
order term in the solution (5) as an eigensolution7 of the Laplace equation with the boundary
conditions (6), which gives the leading order velocity potential8:

φ '
√

2 l V0r
1/2 sin

θ

2
. (7)
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In addition to the singularities at t → 0 and r → 0, a singular velocity distribution (4)
is non-physical as it would lead to an instant infinite stretching of the fluid interface. Since
in reality the latter has surface tension, it would mean that after the finite energy impact
the interface attains infinite surface energy, which is impossible since the energy gained by
fluid during impact is always finite even if the plate mass is infinite (cf. Appendix A). Thus,
surface tension should be present in the leading order solution9.

In the present paper we will elucidate the fundamental aspects of the above singular
behaviors. The appropriate problem formulation in the framework of compressible Navier-
Stokes equations (NSEs) is given in §II, which is then properly non-dimensionalized and
scaled. The latter, in particular, allows us to identify the limits of validity of the classical
pressure-impulse solution (3), cf. §II D. Next, in the subsequent sections we systemati-
cally resolve the spatial and temporal singularities by taking into account viscosity r → 0
(§III), compressibility t → 0 (§IV), and finally both viscosity and compressibility t, r → 0
(§V). In all these sections we construct solutions analytically, identify their key properties
(self-similarity, etc.), the regions of validity in the time-space domain in terms of the key
non-dimensional parameters (Mach, Reynolds, Weber, etc. numbers), and, where possi-
ble, establish the relation between these key solutions, e.g. relaxation of the post-shock
wave solution to the incompressible one (§IV C). Finally, in the discussion of the early time
viscous compressible solution we highlight the processes responsible for the resolution of
singularities: this is done with the help of mathematical tools – vector field decomposition
into irrotational and potential parts (§V A) as well as characteristic analysis (§V B) – and
physical insights into the mechanisms responsible for signal propagation, i.e. diffusion and
compressible effects. The solution in the viscous compressible region near the plate edge
and at early times exhibits a rich structure defined by the dependence on the ratio of the
first and second viscosities (§V C). The discussion is concluded in §VI with a summary and
some open questions requiring further study.

II. PROBLEM FORMULATION AND SCALING

A. Governing equations and boundary conditions

In vector form, the dimensional Navier-Stokes equations governing the plane motion of a
compressible fluid of density ρ with velocity v and pressure p in the gravity field g are

∂ρ

∂t
+∇ · (ρv) = 0, (8a)

ρ

[
∂v

∂t
+ (v · ∇) v

]
= −∇p+∇ · τ + ρg, (8b)

where, according to Newton’s law of viscosity, the viscous stress tensor τ reads

τ = µ
[
∇v + (∇v)†

]
+

(
λ− 2

3
µ

)
(∇ · v) I, (9)

with I being the unit (dyadic) tensor (Kroneker delta-function), µ and λ the first and second
(bulk) coefficients of viscosity, respectively, both positive10 for media in thermodynamic
equilibrium11.
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FIG. 2. Near the plate edge region: θ = −π is the plate, θ = h(t, r) is the liquid interface.

The above formulation requires two boundary conditions for each of the velocity compo-
nents vr and vθ, naturally at the plate surface θ = −π and free surface θ = h(t, r), cf. Fig.
2. At the free surface boundary one has the dynamic condition – zero net force acting on the
interface at a particular point, i.e. the dot product of the vector n normal to the interface
with the total stress tensor −p I + τ balanced by the capillary pressure:

θ = h(t, r) : −(−p I + τ ) · n = σ (∇ · n)n. (10)

The interface is also subject to the kinematic condition, which can be written using an
implicit representation of the interface, H = θ − h(t, r):

∂H

∂t
+ v · ∇H = 0, so that

∂h

∂t
+ vr

∂h

∂r
=
vθ
r

at θ = h(t, r), (11)

i.e. the vanishing total (material) derivative – in physical terms, this implies that velocity
of the liquid normal to the interface, n · v with n = ∇H/ |∇H|, should be equal to that of
the interface, Ht/ |∇H|, for the sake of the fluid continuity. If the normal and tangential
vectors in polar coordinates (er, eθ) are defined by

n =
∇H
|∇H|

=
−r hrer + eθ√

1 + r2h2r
, t =

er + r hreθ√
1 + r2h2r

, (12)

then both pairs (er, eθ) and (t,n) are right-handed coordinate systems. The curvature is

∇ · n|θ=h(t,r) = −1

r

1

(1 + r2h2r)
3/2

[
2 r hr + r2hrr + r3h3r

]
, (13)

and, in the limit r → 0, ∇ · n ' −2hr − rhrr under the appropriate assumptions on the
smallness of r hr, which is consistent with the physical requirement12 that the interface
departs from the plate edge h→ 0 as r → 0.

Finally, we are not going to take into account thermodynamic effects, i.e. we will close
the above system with a barotropic fluid equation of state p = p(ρ), which is known to be
valid for fluids such as water even at very high pressures13. In terms of the deviation p1 of
the pressure from its equilibrium value p0, i.e. p− p0 = p1, the equation of state is given by

p1 = B

[(
ρ

ρ0

)n
− 1

]
, (14)

where B = ρ0c
2
0/n with the following values (for water): ρ0 = 1000 kg/m3, c0 = 1500 m/s,

and n = 7.15. Then the speed of sound for barotropic undisturbed media, i.e. at the density
value ρ0, is simply

c0 =
√

dp/dρ
∣∣∣
ρ0

; (15)
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in particular, the equation of state (14) is consistent with this formula. Also, in the present
analysis we are going to assume both viscosities, µ and λ, to be constant.

B. Non-dimensionalization

Since we are interested in resolving the physics on the acoustic and longer time-scales,
the proper time scale is defined by the plate size l and sound speed c0. The flow velocity
scale is set by the impact velocity V0. The pressure scale is estimated based on the loads
during the flat-bottomed impact on a compressible liquid surface: as first arrived at by von
Karman1 using Newton’s second law,14 the result is on the order of ρ0 c0 V0, where c0 is the
sound speed, ρ0 the density of the liquid, and V0 the impact velocity. Therefore, using thus
motivated non-dimensionalization

r → l r, v→ V0 v, t→
l

c0
t, ρ→ ρ0 ρ, p→ ρ0c0V0 p, (16)

the system (8) reads

∂ρ

∂t
+M ∇ · (ρv) = 0, (17a)

ρ

[
∂v

∂t
+M (v · ∇) v

]
= −∇p+

M

Re
∇ · τ +

M

Fr2
ρ eg, (17b)

with eg being the unit vector in the direction of the gravity g = g eg and the non-dimensional
viscous tensor τ (9) now given by

τ =
[
∇v + (∇v)†

]
+

(
λ

µ
− 2

3

)
(∇ · v) I =

[
∇v + (∇v)†

]
+ (χ− 1) (∇ · v) I, (18)

where χ = λ
µ

+ 1
3
; the dynamic boundary condition (10) becomes

θ = h(t, r) : −
(
−p I +

M

Re
τ

)
· n =

M

We
(∇ · n)n, (19)

and the kinematic (11) furnishes

θ = h(t, r) :
1

M

∂h

∂t
+ vr

∂h

∂r
=
vθ
r
, (20)

where the non-dimensional complexes

Re =
ρ0V0l

µ
, M =

V0
c0
, We =

ρ0V
2
0 l

σ
, Fr =

V0√
g l
, (21)

are Reynolds, Mach, Weber, and Froude numbers, respectively.
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C. Scalings

Next, since we are interested in the early times after the impact event and because of
the continuity of the solutions of the fluid dynamics equations, we can consider the regime
when density variation can be treated as a perturbation of the initial state ρ0,

ρ→ ρ0 + ρ, |ρ| � ρ0, (22)

i.e. a weakly compressible impact15. As a result, propagation of only a weak discontinuity10 –
a compression wave – will be considered here16. Hence, if (in dimensional form) the equation
of state is p(ρ), then its Taylor series near ρ0 is

p(ρ) = p(ρ0) +
dp

dρ
(ρ0) (ρ− ρ0) +

d2p

dρ2
(ρ0)

(ρ− ρ0)2

2
+ . . . , (23)

so that in the non-dimensional form we get

p(ρ)− p(ρ0)
ρ0c0V0

=
c20
c0V0

ρ− ρ0
ρ0

+ . . . ⇒ δp =
1

M
δρ. (24)

From the system (17) it is clear that simply putting M = 0 or, as motivated by (24),
expanding density (and velocity) in a Taylor series ρ = 1 + Mρ1 + M2ρ2 + . . ., does not
lead to the incompressible NSEs. Hence, as the flow develops in the near-plate-edge region
incompressibility can appear (and can be justified) only at certain time and length scales,
which are to be determined in §II D.

Let us introduce the following scalings of the already non-dimensionalized variables (16)

t→ κ−1 t, r → ε r, v→ δ v, ρ→ 1 + ∆ ρ, p→ Π p, (25)

where δ need not be small, ∆� 1 corresponds to a weakly compressible case, κ = O(1) to
the compressible flow time scale, and κ� 1 to long-time asymptotics (which is why we use
κ−1). Here δ, ∆, and Π in general depend on ε, κ, M , Re, Fr, We and are determined as
part of the solution. As a result, we get the following scaled continuity equation

∆
ε

δM
κ
∂ρ

∂t
+ ∆ [(v · ∇) ρ+ ρ∇ · v] +∇ · v = 0, (26)

the momentum equation

(1 + ∆ρ)

[
∂v

∂t
+

1

κ

δM

ε
(v · ∇) v

]
=

− Π

ε δ κ
∇p+

1

κ ε2
M

Re
∇ · τ +

1

δ κ

M

Fr2
(1 + ∆ ρ) eg,

(27)

and the dynamic boundary condition

θ = h(t, r) : −
(
−p I +

1

κ ε2
M

Re
τ

)
· n = σ̃ (∇ · n)n, with σ̃ =

1

δ κ ε2
M

We
, (28)
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which in the normal n and tangential t components can be written as

θ = h(t, r) : n : p− 1

κ ε2
M

Re
n · τ · n = σ̃ (∇ · n) , (29a)

t :
1

κ ε2
M

Re
t · τ · n = 0. (29b)

Finally, the kinematic boundary condition becomes

θ = h(t, r) :
∂h

∂t
=
δM

ε κ

(
−vr

∂h

∂r
+
vθ
r

)
. (30)

In summary, the a priori asymptotic assumptions are dictated by the physics

∆� 1, ε� 1,M � 1, Re−1 � 1, (31)

which accounts for the small density variation, close distance to the plate edge (compared
to the plate size), low Mach number, and low viscosity flow, respectively. Here, strictly
speaking, ∆ is determined as part of the solution; from the equation of state (24), after
application of the scalings (25), we find

∆ = M Π. (32)

Also, we assume no significant effect of gravity (since the involved initial acceleration due
to impact dominates that of gravity):

1

δ κ

M

Fr2
� 1, (33)

which is a valid assumption for sufficiently short (physical) times, and take

Π = ε δ κ (34)

as it is the pressure (gradient) which balances the sudden acceleration ∂v/∂t as per the
discussion in §I. Given the general asymptotic scalings (31-34) we may proceed with different
limiting situations: it is only δ, which is found as part of the solution as a function of ε, κ,
M , Re, Fr, and We. Finally, we need[

δM

ε

]
1

κ
� 1, (35)

so that the nonlinear terms in (27) can be neglected, thus justifying the formal (physical)
argument of classical texts2–5 mentioned in the Introduction.

D. Inviscid incompressible sublimit

With the above general setting, non-dimensionalization, and scalings, we are now in a
position to clarify the conditions under which the classical solution (3) is valid. From the
scaled continuity equation (26) it follows that in order to get an incompressible limit

∇ · v = 0, (36)
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the conditions ∆� 1 (which is given a priori (31) due to weakly compressible impact) and
[ε/(δM)]κ∆� 1 must be satisfied, which, taking into account (32) and (34), lead to

M Π� 1, ε κ� 1 or Π�M−1, ε� κ−1, (37)

where the latter condition means that we are far behind the shock wave corresponding to
ε ∼ κ−1.

From the momentum equation (27) we need

1

κ ε2
M

Re
� 1, (38)

in order to discard the viscous contribution thus producing the momentum equation, with
nonlinearity neglected provided (35) is satisfied,

∂v

∂t
= −∇p. (39)

Under the condition (38) the dynamic boundary condition (29) reduces to the normal com-
ponent only:

θ = h(t, r) : p = σ̃∇ · n with σ̃ =
1

δ κ ε2
M

We
. (40)

Note that the inviscid momentum equation (39), i.e. when viscous effects are negligible,
stays exactly the same in both compressible and incompressible cases, but the continuity
equation naturally changes as we will see in §IV A.

In summary, the inviscid incompressible sublimit corresponds to the system of bulk mo-
tion equations (36,39), which, as argued in the Introduction, can be reduced to the following
problem for the velocity potential φ:

∆φ = 0, (41a)

∂φ

∂t
= −p, (41b)

where the latter equation (Cauchy-Lagrange integral4) follows from integration of (39). The
(asymptotic) solution of (41) with the boundary conditions (6) near the plate edge is, in
dimensional variables, equation (7). Applying the scalings (16,25) to (7) consecutively, we
arrive at the scaling for velocity

δ ∼ ε−1/2 (42)

i.e. the closer to the plate edge (smaller ε), the more singular the velocity; physically, the
singularity is due to the fluid particles being squished once they approach the near-plate-
edge region8. The scaling (42) can be predicted a priori by observing that the flow near
the plate edge corresponds to the flow around the infinitely thin plate10, i.e. in the sector
of angle 2π, as is also obvious from the derivation of (3). With (42) the condition (35)
necessary for neglecting the nonlinearity in (27) becomes

ε3/2κ�M or ε� (M/κ)2/3, (43)
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which means that one also requires κ � M , i.e. to be early enough in time (in particular,
compared to the flow time scale l/V0), and to be far enough from the edge. In addition,
to be able to neglect the viscous effects the distance from the edge must obey ε � εvis =√
M/(Reκ) (viscous length scale) as follows from (38). Based on (43), nonlinearity becomes

important at the distance ε ∼ (M/κ)2/3 from the plate edge. In the ideal incompressible
limit M → 0, nonlinearity is not important at any distance from the plate edge. Of course,
in reality, M is finite and set by the physics, while time scale κ on which we consider the
problem can be chosen arbitrarily. Also, as follows from the inequality Π�M−1 derived in
(37) and scalings (34,42):

ε�M−2κ−2, (44)

which is always satisfied as long as κ ≤ M−2; the latter condition is not restrictive for our
purposes as we consider the low Mach number M � 1 and long-time κ � 1 (as per §II C)
limits.

ϵ

κ

(Μ/κ)
2/3

1/κ

Μ /κ   2

long time short time

comp.

inc.

time

d
is

ta
n
ce

FIG. 3. Regions of validity of the inviscid incompressible (45) (dark shaded) vs the compressible

(92) (light shaded) approximations for M � 1. The time and distance arrows crossing the region

indicate the growth of the corresponding variable (time or distance), cf. discussion in §VI.

Altogether, we get the following inequality conditions for the validity of the inviscid
incompressible case with negligible nonlinearity:

(M/κ)2/3 � ε� κ−1 �M−1 (45)

illustrated in Fig. 3 in the (ε, κ)-plane. Clearly, the curves κ−1 and (M/κ)2/3 may intersect
at κ ∼ M−2, which makes ε = M2 and corresponds to a very short time and distance from
the edge when nonlinearity is important on the shock wave despite that it was assumed
weak.

Finally, σ̃ in (40) can be put in the form

σ̃ =
M/κ

ε3/2
1

We
, where

M/κ

ε3/2
� 1 due to (43), (46)
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so that if We is finite from (29a,30) in the inviscid case, i.e. when (38) is satisfied, we get
the following system of dynamic and kinematic conditions at the interface:

θ = h(t, r) :
∂φ

∂t
= −σ̃∇ · n, (47a)

∂h

∂t
= δ̃

(
−vr

∂h

∂r
+
vθ
r

)
, vr =

∂φ

∂r
and vθ =

1

r

∂φ

∂θ
, (47b)

where δ̃ = δM/(ε κ) = (M/κ)/ε3/2 � 1 due to (43) and the term −vr ∂h/∂r in the kinematic
condition is negligible compared to vθ/r for small interfacial deflections h.

If 0 < δ̃ � 1 and We =∞, the first of equations (47) produces the dynamic condition

θ = h(t, r) :
∂φ

∂t
= 0, (48)

from where it also follows that φ = 0 after integration along the interface17 in the context
of the linear problem (1) – this is consistent with p = 0 at the free surface based on the
Cauchy-Lagrange integral (41b). This condition on the velocity potential in the form (6b)
is needed for the classical solution (3) to be valid and entails the orthogonality of the free
surface to the velocity vectors at the instant of impact (given here in dimensional form):

θ = 0 : vr = 0, vθ ∼ r−1/2, (49)

i.e. the velocity is directed normal to the interface, cf. Fig. 1(b), which should lead to
singular h(t, r) near the edge – the intrinsic deficiency of the classical solution (3); due to
(49), from (47b) we find ∂h/∂t → ∞ as r → 0. Thus, the Kutta-Joukowsky condition –
the tangential departure of the interface from the plate edge – cannot be enforced. If, on

the other hand, for 0 < δ̃ � 1 one formally neglects the right-hand side in the second of
equations (47)

θ = h(t, r) :
∂h

∂t
= 0, (50)

it entails h ≡ 0 if the interface was not deflected initially – this, in turn, would imply that the
Kutta-Joukowsky condition18 is satisfied automatically due to the tangential departure of
the interface. However, the singularity (49) of vθ in the classical solution shows inconsistency
with non-deflected interface h = 0.

Finally, in the real physical situation δ̃ 6= 0 and We < ∞, which implies that both
compressibility and surface tension need to be taken into account, as will be discussed in
detail in §IV D. For the purpose of the present discussion we just mention that after reducing

(47) to a single equation it becomes clear that when σ̃ δ̃ ∼ O(1) surface tension effects must
be taken into account and thus the solution (7) is valid only for the distances

ε� (M/κ)2/3

We1/3
. (51)

III. SINGULARITY r → 0: VISCOUS INCOMPRESSIBLE SUBLIMIT

A. On the prediction of δε(t) and unimportance of nonlinearity

The discussion of the viscous incompressible case in this section supplements and provides
a different angle on the problem of incompressible water impact compared to previous work19.
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To develop some intuition on how viscosity may regularize δ(t) in the pressure-impulse
theory, consider the diffusion problem on a half-line, in which the boundary point x = 0
gets an initial release of a finite energy at a single instant of time t = 0:

∂u

∂t
= ε

∂2u

∂x2
, (52a)

x = 0, t ≥ 0 : u(t, 0) = δ(t), (52b)

t = 0, x > 0 : u(0, x) = 0. (52c)

The solution of this problem

u(t, x) =
x

2
√
π ε t3

e−
x2

4εt , (53)

is no longer singular, but in the limit ε→ 0 (or t→ 0) recovers δ(t). Hence, in our problem,
in the presence of viscosity it is natural to expect that δ(t) in the pressure p and acceleration
∂v/∂t is also replaced by a delta-sequence δε(t) with ε ∼ Re−1, which in the limit Re→∞
(vanishing viscosity ν → 0) gives δ(t). From physical and characteristics viewpoints20, the
reason for the singular behavior is that the incompressible problem is elliptic, which means
that the speed of propagation is infinite – since the effective “front” is propagating as ∼

√
ν t,

its speed ∼
√
ν/t is infinite at t = 021.

Therefore, in the regularized theory the velocity must have the form v ∼ Hε(t) r
n, where

n changes from −1/2 in the inviscid region to some positive value in the viscous region to be
determined in what follows and Hε(t) is the Heaviside function smoothed by the viscosity,
so that H ′ε(t) = δε(t) is the delta-sequence approximating the Dirac delta-function with
lim
ε→0

δε(t) = δ(t). Under such an assumption one can estimate the terms in the dimensional

NSEs as follows:

∂v

∂t︸︷︷︸
V0
√

l
r
δε(t)

+ (v · ∇)v︸ ︷︷ ︸
V 2
0

l
r2

= −1

ρ
∇p︸ ︷︷ ︸

V0
√

l
r
δε(t)

+ ν∆v︸︷︷︸
νV0
√

l
r

1
r2

, (54)

where the strongest singularity in space (from the inviscid region) was assumed. Hence, only
the first, most singular in time, terms on the left and right hand sides in (54) can balance
each other, bringing us to (1). An alternative way to appreciate the linear structure of the
governing equations at early positive times is first to realize that since equation (1) is linear,
due to continuity its extension to t > 0 must be linear at leading order up to some finite
time: thus, in analogy with the problem (52) one may expect that the Dirac delta-function
δ(t) in the solution for the impact on an ideal fluid should be replaced by a delta-sequence
δε(t) in the impact on a real fluid, where ε represents the physical effect (such as viscosity
ν) responsible for smoothing δ(t). For positive times, t > 0, regardless how small, one needs
to account for viscosity and hence retain the viscous stresses term ∇ · τ in (8) in order to
satisfy the no-slip boundary condition at the plate. A systematic justification of the above
considerations will be given in §III B.

12



B. Formal analysis

The requirements necessary for the validity of the incompressible viscous approximation
include the conditions on

importance of viscous terms : ε ∼ εvisc =

(
M

κRe

)1/2

, (55a)

unimportance of nonlinearity :
δM

ε κ
� 1, (55b)

incompressibility : ε κ� 1. (55c)

Combining these yields

κ� Re

M
and δ �

( κ

M Re

)1/2
=

1

M

(
κ

Re/M

)1/2

. (56)

As follows from the first expression, the time-scale becomes arbitrary in the limit M → 0.
Next, the parameter σ̃ in (28) becomes

σ̃ =
1

δ

Re

We
, (57)

from which we conclude that the closer to the edge, δ → 0 (obviously), the larger σ̃ and
hence the contribution of surface tension becomes important.

With these considerations, the viscous incompressible sublimit corresponds to the con-
tinuity equation (36) and the (non-dimensional) viscous stress tensor now reduces to τ =
∇v + (∇v)†, so that ∇ · τ = ∇2v and the viscous incompressible momentum equation is

∂v

∂t
= −∇p+∇2v. (58)

The dynamic boundary condition is just (28) or, in component form (29), with ε given by
(55a) and σ̃ by (57).

Historically, self-similarity was the key to understanding the flow structure near the plate
edge in both inviscid22 and viscous19 incompressible cases. Applying the affine group trans-
formation (the angle coordinate θ is naturally not transformed)

t→ α t, r → β r, v→ γ v, p→ ζ p, (59)

to the system (36,58), where the pressure variable is needed in the incompressible approx-
imation, and determining the conditions on the scaling factors α, β, γ, ζ under which this
system stays invariant, we find that α = β2, ζ = γ/β, which means that the solution is
self-similar19, i.e. the velocity field has the form v ∼ taṽ(η) with η = r/t1/2 and some
power a. Obviously, self-similarity is more restrictive than in the inviscid incompressible
case: indeed, applying (59) to the system (36,39), we find that the only restriction in the
latter case is γ = ζα/β. We will revisit this discussion in §III C.

To analyze the system (36,58), one can introduce the stream-function ψ such that

vr =
1

r

∂ψ

∂θ
, vθ = −∂ψ

∂r
, (60)

13



(a) (b)

FIG. 4. Inviscid (a) and Stokes (b) streamline patterns near the plate edge in the eigensolution

setting (only leading order terms in the asymptotic expansions (5,65) are plotted). In contrast to

the Stokes solution where the no-slip condition slows the flow down, the inviscid solution exhibits

distinguished crowding of the streamlines near the plate edge, where the velocities are considerable.

Viscosity also affects the apparent slope of the streamlines, though in both cases they end up

meeting the interface orthogonally.

and hence, after applying ∇× to the incompressible momentum equation (58), it becomes

∂

∂t
∆ψ = ∆2ψ. (61)

Finally, the boundary conditions are

no-slip : θ = −π : ψ = ψθ = 0; (62a)

free boundary : θ = 0 : equations (28, 30), (62b)

where the scalings in (28,30) should comply with the considerations at the beginning of
this section. Note that while in previous work19 the solution to the above problem was
constructed by first finding self-similarity, and only then taking the limit t → 0 so that
nonlinear terms are neglected, here we first derived the general equation (61) and only
then find its self-similar solution, which is obviously a function of a self-similar independent
variable r̃ = ε κ1/2M−1/2r/

√
t as (61) is a diffusion-type equation. The time exponent in

the self-similar representation of ψ is found from the requirement that we need v ∼ r−1/2

in order to be able to match with inviscid asymptotics (4), so that the streamfunction in

the physical space V
5/4
0 l3/4t

1/4
ψ̃(r̃) or, after application of (16,25), in non-dimensional form

ψ = δ−1ε−1κ−1/4M1/4t1/4ψ̃(r̃), where bar denotes dimensional variables and ψ̃(r̃) is the
self-similar dependent variable.

As established in previous work19, the solution to (61,62) uniformly valid in both inviscid
and viscous regions can be expressed in terms of confluent hypergeometric functions (for
further details the reader is referred to19). Its inviscid asymptotics for r̃ � ε1/2, where
ε = 2κ ε2/M = 2/Re is different from ε introduced in (55a), reads

ψ̃(r̃, θ) = −C1

2
ε ln ε r̃1/2 cos

θ

2
, (63)

which allows us to determine the value of the constant C1 = 2
√

2/(ε ln ε) as there should
be no ε-dependence in the inviscid limit, i.e. the leading order term is

ψ̃(r̃, θ) = A0 r̃
1/2 cos

θ

2
. (64)
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The corresponding Stokes asymptotics for r̃ � ε1/2 is

ψ̃(r̃, θ) = C(c) r̃5/2
[
cos

5θ

2
− 5 cos

θ

2

]
, (65)

where C(c) = −C1/30 = −
√

2/(15 ε ln ε). The regularity of this Stokes velocity field guaran-
tees that the interface obeying (28,30) no longer exhibits a singularity, i.e. does not stretch
to infinity as predicted by the inviscid incompressible solution.

Clearly, (63) dominates (65) for ε1/2 � r̃ � |ε ln ε|1/2; note that the minimum of |ε ln ε|1/2
is at ε = e−1, thus defining a non-vanishing O(1) interval of applicability of the inviscid
solution. The leading order pressure, p̃ = M−1/4κ−3/4t3/4p =

√
2 ln−1 ε r̃1/2 sin (θ/2), gives

the following formula in physical space

ρ0V
5/4
0 l3/4t

−3/4
p̃ = ρ V0

√
2 l

t
−1

ln ε
r1/2 sin

θ

2
, (66)

i.e. the pressure is singular at t = 0 (from this point on dropping the bar for the dimensional
variables), which is a consequence of the incompressible flow approximation. This formula
is nothing more than the pressure from the classical potential flow solution discussed in the
Introduction, with the only difference that the Dirac delta function δ(t) is now replaced
by the delta-sequence23 δε(t) = −t−1/ ln ε. Since the formula for pressure (66) is uniformly
valid in both viscous and inviscid regions, the pressure distribution in space is the same as
from the potential flow solution, but its singular time-dependence δ(t) is smoothed by the
viscosity producing δε(t) such that in the limit of zero viscosity it converges to the Dirac
delta-function:

lim
ε→0

δε(t) = δ(t). (67)

Hence, one must recover the inviscid potential solution (3) and the corresponding governing
equation (1) when taking the limit t → 0 in the NSEs in the weak topology sense, i.e.
almost everywhere except for an infinitely thin boundary layer, in the same way as the
Euler equations are recovered from the NSEs in the limit of zero viscosity24. Indeed, based
on the definition of the delta-sequence (and the Dirac delta-function) as a distribution23

(δ(t), ϕ(t)) = ϕ(0) (68)

for any test function ϕ ∈ C∞0 (i.e. infinitely differentiable and with compact support) one
finds

(δε, ϕ) = − 1

ln ε

∫ τ2(ε)

−τ1(ε)

ϕ(t)

t
dt = − 1

ln ε

∫ τ2(ε)

−τ1(ε)

ϕ(t)− ϕ(0)

t
dt− 1

ln ε

∫ τ2(ε)

−τ1(ε)

ϕ(0)

t
dt, (69)

where in the limit τ1,2(ε) → 0 as ε → 0 the first integral vanishes since ϕ(t) − ϕ(0) = O(t)
as t→ 0 and the second integral gives

−ϕ(0)

ln ε
ln
τ2(ε)

τ1(ε)
=
ϕ(0)

ln ε
ln
τ1(ε)

τ2(ε)
. (70)

That is by appropriately choosing the interval of integration, τ1(ε)/τ2(ε) = ε as ε → 0,
one proves that our delta-sequence δε(t) converges to the Dirac delta-function δ(t), since
lim
ε→0

(δε, ϕ) = ϕ(0). Note that the asymmetry of the time integration interval (−τ1(ε), τ2(ε)),
as opposed to the symmetry of integration limits in Cauchy’s principal value method, is
dictated by the physical asymmetry of the impact event in time: the fluid is undisturbed
for t < 0 and disturbed for t > 0.
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C. On Yakimov’s self-similarity

Just to conclude the discussion of the inviscid incompressible solution, let us revisit its
self-similar structure, which, as was shown in §III B, admits a continuum of self-similar
dependent variables. Let us look at the above mentioned and Yakimov’s22 self-similarities:

present : r → t1/2r̃, v→ t−1/4ṽ, (71a)

Yakimov’s : r → t2/3r̃, v→ t−1/3ṽ. (71b)

Notably, while both scalings give (4), since they are designed based on the asymptotics (4)
of the classical potential flow solution, Yakimov’s scaling (71b) is based on the assumption
that

v =
dr

dt
, (72)

which, together with (4), leads to (71b). Formally, this self-similarity is allowed in the invis-
cid incompressible case, cf. discussion in §III B. However, (72) is the equation for pathlines,
i.e. the line traced by a given particle – this is a Lagrangian concept and therefore the
application of the Yakimov’s scaling obtained from it to the equations in Eulerian variables
is fundamentally flawed. Such an assumption can be valid only if the Lagrangian and Eule-
rian descriptions coincide, but they are almost always different for unsteady problems: the
streamlines and pathlines generally differ in the unsteady case. The problem under consider-
ation is obviously intrinsically unsteady. At the interface, which is a material line, however,
each point moves with the same velocity as the fluid thanks to the kinematic boundary
condition (11) and thus one arrives at the scaling (71b), which explains why the comparison
with experimental measurements of the interfacial motion in Peters et al.25 is in reasonable
agreement with Yakimov’s scaling. As for the whole flow19, Yakimov’s scaling (71b) fails to
preserve the property that “in the limit t → 0 in the Navier-Stokes equations one must re-
cover (1) and the corresponding inviscid potential solution (3)” after the self-similar scaling
is applied to the NSEs, since in general self-similarity simply limits the possible solutions of
the corresponding PDE to a more narrow class (cf. Appendix B).

IV. SINGULARITY t→ 0: INVISCID WEAKLY COMPRESSIBLE
SUBLIMIT

After the aforementioned work of von Karman1, the first significant quantitative advance-
ment in understanding compressible effects was made by Galin26, who used the displacement
potential formulation27 along with some results from supersonic aerodynamics28, allowing
him to obtain the formula for the time-dependent force acting on the impacting plate of
half-length l during the times 0 < t < l/c0 and to predict rebound phenomena under certain
conditions. Later, in the velocity potential formulation, Flitman29 and Mikhlin30 analyzed
the same problem as well as Ogilvie31 extended Galin’s analysis for later times. Equivalently,
the same problem of compressible impact in the potential flow formulation can be solved in
terms of the pressure variable, which was done by Kubenko32 and Sagomonian33.
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A. Weakly compressible limit

From the scaled continuity equation (26) it follows that in order to get its weakly com-
pressible limit:

∂ρ

∂t
+∇ · v = 0, (73)

one should require [δM/ε] κ−1∆−1 ∼ 1 along with ∆ � 1, which together with (32,34)
produces an M -independent condition

ε ∼ κ−1, (74)

which makes sense as the wave equation ∂2t ∼ ∂2x, after applying the scalings (25), implies
that κ ∼ ε−1 as required to resolve the shock wave region. As follows from (35,74), the
nonlinear terms can be neglected provided

δM � 1. (75)

Altogether, the inviscid weakly compressible sublimit corresponds to

∂p

∂t
+∇ · v = 0, (76a)

∂v

∂t
= −∇p, (76b)

where we took into account that ∂ρ/∂t = (dρ/dp) ∂p/∂t with dρ/dp = 1 in the scaled
variables (16,25). In the case of potential flow, i.e. when v = ∇φ, (76) reduces to

∂2φ

∂t2
= ∆φ, (77a)

p = −∂φ
∂t
, (77b)

where the latter equation is again the Cauchy-Lagrange integral. At the interface we get
from (77b) and (30):

θ = h(t, r) :
∂φ

∂t
= −σ̃∇ · n, (78a)

∂h

∂t
= δ̃

(
−vr

∂h

∂r
+
vθ
r

)
. (78b)

If We =∞ (surface tension is not important), we get the classical case ∂φ/∂t|θ=h = 0 from
where it follows that φ|θ=h = 0 based on the same considerations as in §II D. In general,

surface tension is important when σ̃ δ̃ = O(1) as can be seen by reducing (78) to a single
equation.
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FIG. 5. The domain of integration σ in (80) and the regions (1−4) of the solution definition. Region

σ (shaded) is bounded below by the ξ-axis and above by the curve Γ1 : τ = t −
√

(x− ξ)2 + y2.

Regions 1 − 4 are separated by the ξ-axis, the trajectory of the plate edge Γ2 : |ξ| = 1, and the

characteristics Γ± : ξ − 1 = ±τ . The plate corresponds to the points |ξ| ≤ 1.

B. Compressible inviscid solution: global problem and resolution of the
singularity t→ 0

Based on the above considerations, the global problem statement for the impact of a
finite plate in absence of surface tension is

y < 0 : (bulk) :
∂2φ

∂t2
= ∆φ, (79a)

t = 0 : φ = φt = 0, (79b)

y = 0 : (plate) :
∂φ

∂y
= −1, |x| < 1, (79c)

(free surface) : φ(t, x) = 0, |x| > 1, (79d)

where the initial condition (79b) represents the fact that due to the finite speed of signal
propagation the fluid is undisturbed right at the moment of impact. The solution to (79) in
the entire lower half-plane is formally determined from

φ(t, x, y) =
1

π

∫∫
σ

w(τ, ξ) dτ dξ√
(t− τ)2 − (x− ξ)2 − y2

, (80)

where the region of integration σ is defined in Fig. 5 and the function w(t, x) = ∂φ/∂y|y=0

is known only at the plate surface, w(t, x) = −1 for |x| ≤ 1, while for |x| > 1 it needs to be
found from the integral equation

1

π

∫∫
σ

w(τ, ξ) dτdξ√
(t− τ)2 − (x− ξ)2

= 0. (81)

The solution of (81) is29

w(t, x) =

{
0, x > t,

2
π

[
arccos

√
x
t
−
√

t
x
− 1
]
, x < t,

(82)
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(a)

(b)

(c)

FIG. 6. Equipotential patterns (black lines) of (83) and velocity fields (blue arrows) near the

plate edge at three different times: (a) t = t1 � l/c0, (b) t = 2 t1, (c) t = 4 t1; the half-circle

shows the boundary of the disturbance and its center corresponds to the plate edge. The scaling

self-similarity of Figs. (a-c) suggests self-similarity of the solution near the edge at early times.

which has a singularity w(t, x) ∼ 1/
√
x as x→ 0.

Given the knowledge of the function w(t, x) everywhere on the x-axis, the solution to
(79) can be expressed as

φ(t, x, y) = − t
2

+
1

π

∫ t

0

arcsin
x− 1 + τ −

√
(x− 1)2 + y2√

τ 2 − y2
dτ , (83)

and is weakly discontinuous (i.e. continuous itself, but has discontinuous derivatives): snap-
shots in time are shown in Fig. 6. While (83) admits explicit integration in terms of ele-
mentary functions, for the sake of brevity we will refer only to this integral representation.
Also, note that pressure can be readily found from (83) via p = −φt. In the compressible
inviscid case, obviously pressure is no longer a Dirac delta-function at t = 0, i.e. the force
which acts on the plate is finite as consistent with the work of Galin26.
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C. Relaxation to inviscid incompressible solution without surface tension

To understand how the inviscid compressible solution (83) relaxes to the incompressible
one (7) near the plate edge, let us consider the limit t � r corresponding to the solution
behind the shock wave (or ε � κ−1 after (25) is applied). The integrand in (83) simplifies
to

arcsin
x− 1 + τ −

√
(x− 1)2 + y2√

τ 2 − y2
' arcsin

1− 2 sin2 θ
2

t/r
' π

2
−

2 sin θ
2√

t/r
, (84)

so that the velocity potential becomes

φ(t, r, θ) = − 4

π
sin

θ

2
r1/2t1/2. (85)

One can arrive at this asymptotic solution independently, without knowledge of the com-
plete global solution (83), which also helps to highlight its physical significance. Given the
problem statement defined by the eigenproblem (79a,6) we can look for a local compressible
inviscid solution. The idea is that the form of the inviscid incompressible solution (7) should
stay relevant after the compression wave passed, t� r, so that we can expect the following
form

φ = const tmr1/2 sin
θ

2
, (86)

which makes the Laplacian part of the wave equation (79a) vanish. This means that time-
dependence should be determined from some other principles (note that we dropped the
initial conditions (79b) since the solution is considered for t� r; this solution construction
procedure can also be reconciled by a recursive approach, cf. Appendix D). Physically, t� r
means that we are studying decay (the tail) of the signal after the compression wave has
passed. Since the pressure and the velocity potential are related via

∫
dp/ρ = −φt and one

can view the plate edge as an instantaneous source of energy, which creates the compression
(strong shock, in the high energy case) wave, in such a situation pressure is known to decay
as

p ∼ t−1/2 (87)

after the propagation of a cylindrical shock wave produced by an instantaneous energy release
from a line source34; hence the exponent in (86) is m = 1/2. This theory is an extension of
Taylor’s original work35 on an atomic explosion in the atmosphere from spherical geometry
to the cylindrical one36 in the case when the shock propagation and its speed depend on the
equation of state, such as in the underwater explosion34,37,38. In our case, however, weak
compressibility is considered, which brings us to the linear wave equation (79a) and hence
the compression (shock wave speed is that of sound. Notably, (87) shows that the role of
compressibility (liquid elasticity) is in the slower relaxation of pressure compared to p ∼ δ(t)
in the classical pressure-impulse theory, where pressure impulse relaxes sharply for t > 0.
Another way to view (86) with m = 1/2 is by taking into account that the solution to (79)
near the plate edge is self-similar (after applying the affine scaling (59) we find that α = β):

φ ∼ tΦ (η, θ) , η = r/t, (88)
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based on the symmetry of the wave equation (79a) and the boundary conditions (6) – the
eigenvalue solution corresponds to the choice of the power a in φ ∼ ta Φ (η, θ) which gives the
same leading order non-degenerate solution as in the incompressible case8 (cf. Appendix C).
The solution (85) can also be constructed using the Laplace transform method (cf. Appendix
E).

The global solution (cf. §IV B) allows one to establish the value of the factor in (86),
which is −4/π valid for t � r, i.e. after the compression wave passed. In summary, after
propagation of the compression wave the solution “relaxes” back to the inviscid incompress-
ible solution (7): compare Figs. 4(a) and 6. As a result, the solution (85) does not allow
one to take the limit t → 0 for a fixed r since when t ∼ r the asymptotics becomes invalid
and should correspond to the compression wave, while for t < r the solution becomes zero
(in the inviscid approximation) as the shock wave has not propagated yet. However, in the
viscous approximation the solution is nonzero even for t < r, which will be elaborated on in
§V.

Applying the scalings (16,25) to (85) consecutively, we find the scaling for velocity

δ ∼ ε−1/2 κ−1/2 (89)

which is valid provided ε� κ−1. This means that in this limit (behind the shock wave):

δ � 1, (90)

which is expected as the solution should relax to the incompressible one (42) singular near
the plate edge. Given (89), the nonlinear terms are negligible, as per (75), provided

ε�M2/κ, (91)

where clearly one needs κ� M2 (long time limit) as ε must be small. Altogether, solution
(85) is valid provided

M2/κ� ε� κ−1 �M−2 (92)

versus the analogous condition (45) in the incompressible case, cf. Fig. 3. Thus, nonlinearity
in the compressible case becomes important if ε ∼ M2/κ, i.e. close enough to the edge
(the shorter the time, i.e. the larger κ, the smaller this distance). Curves κ−1 and M2/κ
apparently cannot intersect, while the curves M2/κ and (M/κ)2/3 intersect at κ = M4, so
that ε = M−2; however, one needs κ � M2 for the solution (85) to be valid, cf. (92), so
such an intersection is not possible.

Turning our attention to the boundary conditions (78) at the interface, with (89) the

parameter δ̃ in (78b) becomes

δ̃ =
δM

ε κ
=

(
M2/κ

ε

)3/2
1

M2
, where

M2/κ

ε
� 1. (93)

The parameter σ̃ in (78a) can be put in the form

σ̃ =

(
M2/κ

ε

)1/2
1

ε

1

We
, where

M2/κ

ε
� 1, (94)
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but, because ε � 1, the closer to the edge, the more important is surface tension. In fact,

there is a (short) distance close enough to the edge ε ∼ (M/κ)2/3 /We1/3 (same as in the
incompressible case, cf. §II D), at which surface tension is no longer non-negligible. Note

that (91) can still hold while σ̃ δ̃ becomes O(1) for small enough ε as follows from (93,94).
Altogether, the solution (85) is valid when surface tension effects can be neglected (51) as
the boundary condition (78a) should become ∂φ/∂t = 0, so that φ = 0 on the interface
(79d).

D. Post-shock wave asymptotics with surface tension

Given the above point that close enough to the plate edge surface tension becomes impor-
tant, let us consider the post-shock wave asymptotics by taking into account surface tension
in problem (79). Then instead of condition (79d) we should use (78), where in (78b) we
neglect the term vr ∂h/∂r based on the same considerations as in the inviscid incompressible
case (§II D) since the horizontal velocity component vanishes at θ = 0, cf. (85). The idea is
to determine the post-shock (long time) asymptotics with the help of the final value theo-
rem in the Laplace transform theory4 exemplified in Appendix E for the case of no surface
tension. Following the approach of Appendix E and applying the Laplace transform in time
to equation (78) linearized around θ = 0 we get

θ = 0 : σ̃
(

2 ĥr + r ĥrr

)
= λ φ̂, (95a)

λ ĥ =
δ̃

r2
∂φ̂

∂θ
. (95b)

From the solution of Bessel’s equation for small r, cf. Appendix E, we know that φ̂ =
C(θ)(λ r)n, so that the first (dynamic) equation above gives

ĥ =
C(0)

σ̃(n+ 1)(n+ 2)
(λ r)n+1 for n 6= −1,−2. (96)

The second (kinematic) equation (95b) yields in turn

1

(n+ 1)(n+ 2)
λ2r3C(0) = σ̃ δ̃ C ′(0), (97)

where λ r � 1 since we are interested in the asymptotics behind the shock wave, i.e. t� r,
which in the Laplace space variable implies λ−1 � r. If σ̃ = 0, then C(0) = 0 as in the
case considered in the previous section without surface tension. If σ̃ 6= 0, then without loss

assuming that σ̃ δ̃ = O(1), the only reasonable option left is to consider C ′(0) = 0, which
leads to quantization different from the case without surface tension, namely

C(θ) = const cosnθ, n ∈ Z. (98)

Note that C ′(0) = 0 implies that the angular velocity vθ vanishes at the interface – surface
tension “rigidifies” the interface – versus C(0) = 0 for the classical case We =∞ considered
in the previous section. Hence, compressibility (as opposed to incompressibility) does not
push the fluid upwards at this early stage – this is how compressibility and surface tension
regularize the free surface behavior. Since the case n = 0 gives a trivial solution, the lowest
positive n leading to a nontrivial solution is n = 1, i.e. the velocity field v = ∇φ is no longer
singular. The basic physical interpretation of this result is that surface tension regularizes
the flow near the plate edge, essentially by suppressing it even in absence of viscosity.
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V. SINGULARITIES r → 0 AND t→ 0: VISCOUS WEAKLY
COMPRESSIBLE SUBLIMIT

The viscous weakly compressible sublimit corresponds to:

∂ρ

∂t
+∇ · v = 0, (99a)

∂v

∂t
= −∇p+

1

κ ε2
M

Re
∇ · τ , (99b)

where

∇ · τ = ∆v + χ∇ (∇ · v) , (100)

as per (18) and the most non-degenerate case is when M/(κ ε2Re) ∼ O(1), but we keep
it general for now. Applying the affine group transformation (the angle coordinate θ is
naturally not being transformed)

t→ α t, r → β r, v→ γ v, p→ ζ p, ρ→ ξ ρ (101)

to system (99) and determining the conditions on the scaling factors α, β, γ, ζ, ξ under which
(99) stays invariant we find that α = β = 1, γ = ξ, implying that no self-similarity is
present. Thus, the analysis of the viscous compressible case is complicated by the absence
of a symmetry even though near the plate edge there is no characteristic geometric length
scale. This means that for the existence of self-similarities it is not sufficient to have only
absence of an independent geometric length-scale (near the edge there is none). Therefore,
one can get self-similarities only in the sense of intermediate asymptotics39, e.g. when one
of the effects (compressibility or viscosity) is dominating the other.

A. Irrotational and solenoidal components

The last term in (100) has the meaning of the gradient of the velocity divergence, i.e.
it measures how compressibility varies with respect to a particular direction, and can be
decomposed into

∇ (∇ · v) = ∆v +∇× ω, (102)

where ω = ∇×v is the vorticity and the term∇×ω is called the flexion field40, which is non-
zero even in the 2D case considered here. Using the Helmholtz decomposition theorem41, we
can resolve the velocity field outside the singular point (r = 0) into the sum of an irrotational
(curl-free) scalar field φ and a solenoidal (divergence-free) vector field A:

v = ∇φ+∇×A, (103)

respectively, where φ is a scalar potential and A is a vector potential, which in our 2D case
is simply A = ψ ez with some scalar ψ to be defined later and ez being the unit vector
orthogonal to the plane of motion.
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The first observation to make is that the compressibility measured by ∇·v is contributed
only by the irrotational part φ of v since the solenoidal part A vanishes after the application
of the divergence operation

∇ · v = ∇2φ+∇ · (∇×A) = ∇2φ = ∆φ = −∂ρ
∂t

(104)

in non-dimensional variables (16). From (104) we also find that (102) is simply

∇ (∇ · v) = ∇ (∆φ) . (105)

Second, by taking the divergence of the momentum equation (100) and excluding the
velocity divergence ∇ · v using the continuity equation, we get decoupled equations for the
density and the velocity vector:

∂2ρ

∂t2
=

1

ε2κ2

[
1 + κ

M

Re
(χ+ 1)

∂

∂t

]
∆ρ, (106a)

∂2v

∂t2
=

1

ε2κ2

[
1 + κ

M

Re
χ
∂

∂t

]
∇ (∇ · v) + κ

M

Re

1

ε2κ2
∂

∂t
∆v, (106b)

respectively. That is, the velocity components are coupled through the flexion field ∇× ω
because of (102), so that when the flow is potential (and thus irrotational) the velocity
components decouple and obey the standard wave equation for Re =∞. Both (106a,106b)
reduce to the wave equation in the limit of Re = ∞ and initially irrotational flow (so that
the vorticity ω vanishes and thus ∇ (∇ · v) reduces to ∆v); the additional terms in (106)
due to the presence of viscosity account for dissipation. Remarkably, the coupled equations
for the velocity components (106b) can be reduced to a scalar equation for the velocity
divergence ∇ · v identical to (106a) for the density:

∂2

∂t2
(∇ · v) =

1

ε2κ2

[
1 + κ

M

Re
(χ+ 1)

∂

∂t

]
∆ (∇ · v) , (107)

which shows how the quantity ∇ · v = −∂ρ/∂t evolves in time; note that (107) gives an
equation for ∆φ from (104).

Third, the equation for the vorticity evolution is obtained by taking the curl of the
momentum equation (99), producing the diffusion equation

∂ω

∂t
=

1

κ ε2
M

Re
∆ω, (108)

where ω has only one component in 2D, i.e. in the ez-direction, so that (108) is scalar in
essence. Equations (107,108) also form a closed system, but decoupled as opposed to the
vector equation (106b). Taking into account that in 2D ω = ∇× v = −∆A and A = ψ ez,
one can rewrite (108) for the streamfunction ψ:

∂

∂t
∆ψ =

1

κ ε2
M

Re
∆2ψ. (109)

The velocity vector (103) can then be found from the knowledge of ∇ · v and ∇ × v after
solving (107) and (108), respectively, since φ = ∆−1 (∇ · v) and A = −∆−1ω.
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The above discussion of the irrotational and solenoidal components of the solution allows
one to reach an important conclusion. Namely, as follows from equations (107,108), the
irrotational φ-part evolves according to the wave equation (hyperbolic), while the solenoidal
A-part evolves according to the diffusion equation (parabolic). As we will see, these two
processes are important for understanding the interplay of compressible and viscous effects
in the resolution of the pressure-impulse theory singularities and can be related to the
characteristic analysis of (99) to be performed next, in §V B. Finally, note that in general
both components in (103) are non-zero at the interface and hence the vorticity is important
in understanding the interface evolution.

B. Characteristic analysis and the physics behind it

Performing a change of independent variables to the characteristic surface42 (t, r) →
Ω(t, r) in (99) converted back to dimensional variables in order to highlight the physics of
the signal propagation processes, we find the following characteristic determinant defining
the characteristic surface Ω(t, r):∣∣∣∣∣∣

ρ0Ωr ρ0Ωr Ωt

ρ0Ωt − µΩ2
r −

(
λ+ µ

3

)
Ω2
r −

(
λ+ µ

3

)
Ω2
r c20Ωr

−
(
λ+ µ

3

)
Ω2
r ρ0Ωt − µΩ2

r −
(
λ+ µ

3

)
Ω2
r c

2
0Ωr

∣∣∣∣∣∣ =

{
ρ0Ωt − µΩ2

r

}{
ρ0Ω

2
t − Ω2

r

[
ρ0c

2
0 +

(
λ+

4µ

3

)
Ωt

]}
= 0, (110)

where the first bracket on the right clearly stands for the parabolic behavior, while the second
bracket gives both hyperbolic (non-dissipative terms) with a finite speed of propagation c0 =
±Ωt/Ωr and parabolic behavior (dissipative terms). The analysis above is done for simplicity
in the polar system of coordinates, since we are interested in propagation of information
along er. Note that the original NSEs (8) have the same characteristic properties.

The mixed characteristic type of the system (99) has a simple physical explanation, which
will be crucial for our further considerations. Namely, over the time t since the moment of
impact, viscous effects (due to the initial wall jet propagating from the high pressure region
at the plate center to the plate edge where the pressure is atmospheric) diffuse a distance
lν =

√
ν t and the compressible effects propagate a distance lc = c0 t. Due to the difference

in the time exponents, this observation implies that up to the time

t∗ = µ/(ρ0c
2
0), (111)

and thus the distance

l∗ = µ/(ρ0c0), (112)

viscous effects propagate faster and, in fact, the speed of propagation at t = 0 is infinite as
is common in parabolic systems. This interesting property of the compressible viscous NSEs
allows for their (equations) regularization at short times. For t > t∗ a compression wave
propagates in the inviscid region, but, of course, the compression wave itself is regularized by
viscosity locally43–45. It is notable that both t∗ and l∗ depend only on the fluid properties. For
example46, for water one finds t∗ = 10−12 s and l∗ = 10−9 m, while for glycerol t∗ = 10−9 s and
l∗ = 10−6 m. The expressions (111-112) show that under certain conditions such as for water
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FIG. 7. On the flow structure: (a) c0 t <
√
ν t, (b) c0 t >

√
ν t. Dashed line is the ‘viscous front’√

ν t, solid line is the shock wave c0 t; regions: 1 – viscous, 2 – viscosity smoothened shock wave,

3 – inviscid region, 4 – undisturbed (quiescent) fluid.

at atmospheric pressure and room temperature the characteristic scales are at the limits of
the continuum description and therefore require insights into new physical phenomena not
accounted in the NSEs (cf. Appendix F).

To get a better understanding of the physical meaning of t∗ and l∗, recall that, com-
pared to gases and solids, interactions in liquids are both system-specific and strong47,48 and
therefore maintain modes with wavelengths ranging from the body size down to interatomic
separations49. As argued by Frenkel47, liquid flow results from thermally activated spatial
rearrangement of atoms (or molecules), which are not fixed, but may jump from their sur-
rounding cage, accompanied by large scale rearrangement of the cage atoms – this process
corresponds to each flow event and is called a local relaxation event with the associated
relaxation time τ between these events at one point in space estimated as µ/G, where G
is the instantaneous shear modulus50. In this context, it must be noted that the time-scale
t∗ estimated above (111) is comparable to the characteristic relaxation time-scale τ of liq-
uid matter47 below which liquids behave like solids, since t∗ ∼ µ/K, where K is the bulk
modulus typically of the same order as the shear modulus G46. This fact in turn affects the
interpretation of both the diffusion mechanisms (phonon vs. non-phonon type propagation)
and sound propagation since solids maintain not only longitudinal waves but also transverse
waves – the latter are absent in liquids and gases under normal conditions. However, on
the time-scales below t∗ liquids exhibit elastic shear stresses opposing deformations similar
to solids, while under the normal conditions, t � t∗, liquids (or any other fluids, for that
matter) do not oppose resistance to shear forces, but only to rate of shear deformations.

Based on the above characteristic analysis and the discussion in §V A, one arrives at the
flow structure shown in Figures 7(a) and 7(b), when the viscous front could be faster than the
shock wave and the opposite, respectively. In Fig. 7(a) the shock wave is propagating in the
already affected by viscous diffusion, while in Fig. 7(b) there is the region 3, which is inviscid
and affected by compressibility due to the propagated shock wave, separating the viscous
region 1 and the shock wave 2, which is of course regularized by viscous effects. Hence, the
competing diffusion and shock wave propagation effects dictate the solution structure.

C. Early-time limit

As follows from the structure of equation (106b), it is not separable in general. However,
rewriting it in the form

ε2κ2
Re

κM

∂2v

∂t2
=

[
Re

κM
+ χ

∂

∂t

]
∇ (∇ · v) +

∂

∂t
∆v, (113)
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we can see that in the limit of early time, κ→∞, while ε κ ∼ O(1) so that ε→ 0 (close to
the plate edge), we are left with the diffusion part only (since for short times ∼

√
t grows

faster than ∼ t and hence the wave equation component vtt ∼ ∆v is negligible):

χ
∂

∂t
∇ (∇ · v) +

∂

∂t
∆v = 0. (114)

The latter is also not separable in general, but becomes so in the vicinity of the plate edge
v ∼ rn for r → 0; as for values of χ we consider the interval χ ∈ [1/3, 1], i.e. λ/µ ∈ [0, 2/3].
Integrating equation (114) w.r.t. time and without loss taking the constant of integration
(function of space) to be zero, we get χ∇ (∇ · v) + ∆v = 0 or in component form:

1

r

∂

∂r

(
r
∂vr
∂r

)
+

1

r2
∂2vr
∂θ2

+ χ
∂

∂r

[
1

r

∂

∂r
(rvr) +

1

r

∂vθ
∂θ

]
= 0, (115a)

1

r

∂

∂r

(
r
∂vθ
∂r

)
+

1

r2
∂2vθ
∂θ2

+ χ
1

r

∂

∂θ

[
1

r

∂

∂r
(rvr) +

1

r

∂vθ
∂θ

]
= 0. (115b)

These equations are supplied with the no-slip boundary conditions at the plate:

θ = −π : vr = vθ = 0, (116)

and the following conditions at the interface. Assuming that the interfacial deflection from
flat interface is small for early times and close to the edge, so that n ' eθ and t ' er, we
get the following set of boundary conditions linearized around θ = 0:

tangential :
1

r

(
∂vr
∂θ
− vθ

)
+
∂vθ
∂r

= 0, (117a)

normal :
2

r

(
∂vθ
∂θ

+ vr

)
+
χ− 1

r

[
∂

∂r
(rvr) +

∂vθ
∂θ

]
=

1

δ

Re

We
[2hr + r hrr] , (117b)

kinematic :
∂h

∂t
= δM

vθ
r
. (117c)

Note that (117b) follows from (29a), first rewritten as

θ = h(t, r) : n : p− 1

κ2 ε2
κM

Re
n · τ · n =

κM/We

δ κ2 ε2
∇ · n (118)

then plugging in (74) and taking the limit κ→∞ in

θ = h(t, r) : n :
Re

κM
p− n · τ · n =

1

δ

Re

We
∇ · n, (119)

which yields (117b).
Since we are working on short distances from the plate edge, we can look for a solution

in the form vr = rnU(θ) and vθ = rnV (θ), which leads to two coupled ODEs:

Uθθ +
[
n2 + χ(n2 − 1)

]
U + χ(n− 1)Vθ = 0, (120a)

(1 + χ)Vθθ + n2V + χ(n+ 1)Uθ = 0. (120b)
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Putting (U, V ) = (Û , V̂ ) emθ, we get the quadratic determinant for finding m2:

(1 + χ)m4 +
[
2n2(1 + χ)− χ

]
m2 + n2

[
n2(1 + χ)− χ

]
= 0, (121)

the solution of which is

m2 =

{
−n2,−n2 +

χ

1 + χ

}
, i.e. m1,2 = ±i n,m3,4 = ±i

√
n2 − χ

1 + χ
, (122)

where it is clear that we are interested in n > 0 so that v is non-singular. The boundary
conditions on U and V are

(tangential) θ = 0 : Uθ + (n− 1)V = 0, (123a)

(no-slip) θ = −π : U = V = 0. (123b)

From (120) we also find the relation between the amplitudes Û , V̂ :

V̂ = − χm (n+ 1)

m2(1 + χ) + n2
Û , (124)

or, more specifically, for each choice of m:

m2
1,2 = −n2 : V̂1,2 = −n+ 1

m1,2

Û1,2, (125a)

m2
3,4 = −n2 +

χ

1 + χ
: V̂3,4 =

m3,4

n+ 1
Û3,4. (125b)

Hence, the solution to (120) reads(
U
V

)
=
∑
i=1,2

Ûi

(
1
−n+1

mi

)
emiθ +

∑
i=3,4

Ûi

(
1
mi

n+1

)
emiθ. (126)

With the assumed form of the velocity field, the normal dynamic condition (117b) can
be rewritten as

2hr + r hrr = β rn−1, (127)

with β = const ∼ δ We/Re. Hence,

h = γ rn with γ =
β

2n+ n (n− 1)
, (128)

from where, again, it is clear that one needs n > 0 as h must tend to zero for r → 0. If the
interfacial deflection can be neglected at early times close to the plate edge (cf. §IV D) for
r’s in the range where the power-law vr, vθ ∼ rn and h ∼ rn is valid, then we get a fourth
condition on U, V from (117b):

(normal) θ = 0 : γ U + (χ+ 1)Vθ = 0, with γ = 2 + (χ− 1)(n+ 1). (129)
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Applying the boundary conditions (123a,123b,129) to the solution (126) produces a homoge-
neous 4-dimensional system, the determinant of which must be equal to zero for a non-trivial
solution to exist:∣∣∣∣∣∣∣∣∣

e−m1π e−m2π e−m3π e−m4π

−n+1
m1
e−m1π −n+1

m2
e−m2π m3

n−1e
−m3π m4

n−1e
−m4π

m1 − n2−1
m1

m2 − n2−1
m2

2m3 2m4

γ − (n+ 1)(χ+ 1) γ − (n+ 1)(χ+ 1) γ +
m2

3

n−1(χ+ 1) γ +
m2

4

n−1(χ+ 1)

∣∣∣∣∣∣∣∣∣ = 0. (130)

Branches of solutions n(χ) are shown in Fig. 8(a) with a sample solution for χ = 0.5 plotted
in Fig. 8(b) demonstrating noticeable differences from the incompressible flow patterns in
Fig. 4.

(a)

0.5 0.75 1

0.5

1.5

χ

n

(b)

FIG. 8. Solution to the viscous compressible problem near the plate edge for early times: (a)

branches of solutions n(χ), (b) streamlines in the viscous compressible case for χ = 0.5, n ' 1.32427.

VI. CONCLUSIONS

In conclusion, let us review the regions of validity of the key inviscid incompressible
(3) and compressible (83) approximations provided gravity (33), viscosity (38), and surface
tension (51) effects are irrelevant. If we compare the conditions (45) and (92), it follows
that in the region of interest, for a fixed ε with increasing time (horizontal arrow in Fig. 3)
one first goes from the mostly undisturbed region as the shock wave has not yet propagated
through the fluid, to the shock wave, to the linear compressible, linear incompressible, then
nonlinear incompressible, and finally to compressible regime again. At the latter stage, while
the curve M2/κ suggests that nonlinear effects should be important, the solution amplitude
decays and hence this stage is no longer of interest in the context of resolution of singularities.
Similar observations can be made for a fixed time κ with decreasing distance from the edge
(vertical arrow in Fig. 3). The nonlinearity becomes important in the compressible case
for ε ∼ M2/κ and in the incompressible case for ε ∼ (M/κ)2/3; both limits are plotted in
Fig. 3. The (lower) bounds on ε necessary for neglecting nonlinearity are different in the
compressible and incompressible cases because the latter is more restrictive since it requires
the incompressibility condition to be satisfied, which leads to (42), and hence its boundary
is higher than that for compressible case. Viscous effects engage at the distance εvis given
by (55a), which may happen in the compressible or incompressible regime depending on
the relative values of κ, M , and Re. Finally, surface tension effects come into play when
inequality (51) fails in both incompressible and compressible cases.

29



Due to the linear structure of the governing equations as justified by the physics of the
impact phenomena at early times, the solutions at each of the key stages properly defined
in the (t, r)-plane by the relevant non-dimensional parameters (M , Re, We, etc.) – viscous
compressible (§V C), viscous incompressible (§III B), inviscid compressible (§IV B), invis-
cid incompressible (§I) – can be constructed analytically with the help of a self-consistent
asymptotic analysis. These solutions prove to be self-similar in the region near the plate
edge, though with different forms of self-similarity and non-overlapping regions of validity
thus making it impossible to recover one solution from another (by taking limits), except
for the incompressible case19. This means that in between these self-similar solutions in the
(t, r)-plane for a given set of non-dimensional parameters there must exist non-self-similar
solutions providing appropriate transition (matching), but they cannot be constructed ana-
lytically. The first three asymptotic solutions – viscous compressible, viscous incompressible,
and inviscid compressible – resolve the corresponding singularities: the singularity at t→ 0
and r → 0 is isolated in the sense that outside it one has the classical inviscid incompress-
ible solution (3), but its singularity does not propagate to t → 0 and r → 0, where the
physics unaccounted in the pressure-impulse theory resolves the singular behavior. In view
of the characteristic properties of the problem, the dynamics is dominated by diffusion in
the limit of short times, t→ 0, which leads to incompressible viscous equations, the solution
of which is responsible for the regularization of the singular limits t → 0 and r → 0 in
the pressure-impulse theory. At the same time, depending on the nature of the impacted
liquid, this “incompressible viscous” stage may require a deeper look at the submicroscopic
physics when the NSEs are not applicable. Namely, the momentum (energy) diffusion and
compressibility (sound, shock wave) propagation mechanisms can be different from those
for liquids under normal conditions in view of the time scales below the relaxation period
– existence of transverse sound waves and phonon-type diffusion are among the processes
atypical for normal conditions.

Questions requiring future study include energy and dimensionality effects. Namely, while
in the present study we limited ourselves to the case of barotropic fluids, p = p(ρ), it would
be interesting to understand the thermodynamic aspects of the impact when the equation
of state depends on temperature as well, p = p(ρ, T ), and thus the energy equation should
be taken into account. Also, while we considered the 2D flow only, one may wonder how
the crucial difference in the structure of the solution of the wave equation (106) between 2D
and 3D – namely, the existence of sharp signals in 3D as opposed to the 2D case – affects
the impact phenomena. One obvious consequence of this is a stronger (lasting) effect of
compressibility in 2D compared to that in 3D, which physically would be the flow around a
corner of a 2D impactor plate8. The evolution of vorticity does not differ, however, between
2D and 3D since the linear vector equation (108) is the same regardless of the dimension.

While the phenomena studied here proved to be interesting due to the sudden change
in the boundary conditions – from no-penetration to the free boundary (2) in the inviscid
case (exhibiting singularity) and from no-slip to the free boundary (62) in the viscous case
(partially regularizing the singularity, i.e. the involved forces are still divergent) – a possible
effect of substituting the no-slip by a slip condition in (62), as is common in the moving
contact line problem, might represent some interest as a means of further regularization in
the viscous case, in particular to make the forces finite. This could be especially relevant
for the solid-liquid combinations yielding a substantial slip51 such as in the case of polymer
solutions or hydrophobic surfaces, i.e. whenever hydrodynamic shear can easily lead to
molecular slip52. It must be noted, however, that in the moving contact line problem the
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no-slip condition leads to a singular shear stress even in the Stokes approximation versus
our case as per equation (65). Dealing with the contact line singularity becomes a necessity
in the case of impacts of blunt bodies and wedges, i.e. when there are moving contact lines.
The latter type of impactors naturally should also exhibit the linear and nonlinear as well as
the compressible and incompressible impact stages (albeit affected by the curvature or other
geometric features of the impacting body) considered in the present paper, which deals with
the most singular situation of impact phenomena – the flat plate impact problem.

Appendix A: Energy gained by fluid after impact

Note that regardless if the impacting plate is considered to have a finite or an infinite mass, the

fluid gains only a finite energy – otherwise the whole idea of added mass4 becomes invalid. Thus,

the kinetic energy of all the fluid set in motion right after the impact is finite even though some

parts of the impacted fluid (near the plate edges) move with an infinite speed, which is because

the mass of those fluid parts is infinitesimally small and thus the contribution to the total kinetic

energy of the entire semi-infinite fluid body is bounded. Therefore, the fact of an infinite mass

and finite speed (and thus infinite kinetic energy) of the plate does not entail that the energy

transferred to the fluid is infinite as well – in fact, it is finite and can be easily evaluated for the

early stage of the impact, in which we are interested, by following the standard considerations4 for

the impact of a plate of width 2 l, cf. Fig. 1(a). Since the complex potential in the z-plane is (3)

and the impulsive pressure in a fluid right after the impact P ≡
∫ +0
−0 pdt = ρφ, then on the plate

y = 0: P (z) = ρRef(z) = ρV0
√
l2 − x2, so that we can find the impulsive force acting on the plate

at the moment of impact:

F = ρV0

∫ l

−l

√
l2 − x2 dx =

π

2
ρV0l

2, (A1)

which should be equal to F = m(V−0−V0) by Newton’s second law, where V−0 is the plate velocity

before the impact, in general different from the velocity V0 ≡ V+0 after the impact due to the plate

finite mass m. Thus, because of the added fluid mass madd equal to half-cylinder of the radius l

(half-width of the plate), (π l2/2) ρ in (A1), the velocity of the plate decreases from V−0 to V0:

V0 =
mV−0

m+ πρl2

2

. (A2)

The momentum balance (A2) is applicable in the limit m → +∞ as well, which yields V−0 = V0.

To show that the energy acquired by the fluid is finite, append to the momentum balance (A2) the

energy balance

mV 2
−0

2
=
mV 2

0

2
+
maddV

2
ave

2
, (A3)

which, when solved together with (A2), in the limit m → ∞ gives for the average velocity Vave =√
2V−0 =

√
2V0 of the added mass madd, i.e. the energy acquired by fluid right after the impact

is finite. Note that based on (3), the velocity decays as r−2 with distance from the origin and thus

the energy decays as r−4, which explains why the added mass is finite and the kinetic energy of

the fluid acquired after the impact of a plate of an infinite mass is finite as well.
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Appendix B: On self-similarity of the wave equation

The standard 1D wave equation

∂2φ

∂t2
= c2

∂2φ

∂x2
, (B1)

has the obvious self-similar type symmetry, in which time and space coordinates are being stretched

with equal rates, thus allowing one to look for a solution in the form

φ = φ(η), η =
t

x
; (B2)

this means that the solution at the point (t, x) looks the same as at (α t, α x), α > 0. Substituting

the above Anzatz produces an ordinary differential equation

d2φ

dη2
= c2

[
2η

dφ

dη
+ η2

d2φ

dη2

]
, (B3)

the solution of which is

φ = C1 + C2 ln

(
1 + c η

1− c η

)
. (B4)

Now, if one compares this self-similar solution to the general solution of (B1)

φ = f(x− c t) + g(x+ c t), (B5)

with some arbitrary functions f and g, it is clear that (B5) in general does not possess the same

symmetry (B2) since φ = f(x− c t) + g(x+ c t) = f [x (1− c η)] + g [x (1 + c η)]. Indeed, the anzatz

φ = f̃(1 − c η) + g̃(1 + c η) satisfies (B1) only if g̃(y) = −f̃(y) = ln(y). This illustrates the basic

fact that self-similar solution (B4) represents a subclass of a general solution set (B5).

Appendix C: Compressible inviscid solution: self-similar structure

When considering the water impact problem locally, near the plate edge, or, equivalently, assum-

ing the plate to be semi-infinite, one expects the solution to be self-similar in view of the absence

of an independent geometric length scale. The corresponding mixed boundary-value problem for

the 2D wave equation

1

c2
∂2φ

∂t2
=
∂2φ

∂x2
+
∂2φ

∂y2
, (C1a)

y = 0 :
∂φ

∂y
= −V0, x < 0, (C1b)

φ = 0, x > 0, (C1c)

has an obvious affine symmetry group thus allowing the self-similar solution of the form:

φ(t, x, y) = c2 tΦ(ξ, η), ξ =
x

c t
, η =

y

c t
, (C2)

which produces the equation

(1− ξ2)∂
2Φ

∂ξ2
− 2 ξ η

∂2Φ

∂ξ ∂η
+ (1− η2)∂

2Φ

∂η2
= 0, (C3)
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of elliptic type in the region ξ2 +η2 < 1. This illustrates an interesting property: while the original

problem (C1a) is hyperbolic, its restriction (C3) to a self-similar plane is elliptic. Applying the

Chaplygin transformation

ξ = r cos θ, η = r sin θ, r =
2%

1 + %2
(C4)

to equation (C3) we get the Laplace equation in the region % < 1:

%
∂

∂%

(
%
∂Φ

∂%

)
+
∂2Φ

∂θ2
= 0, (C5)

the solution of which near the origin behaves as Φ ∼ %1/2 in analogy with the potential in the in-

compressible case (7) – reverting back to the original variables we get the leading order asymptotics

(85) for the compressible case.

Appendix D: On separability of the wave equation

In search for a separable solution to (B1), we assume φ(t, x) = A(t)B(x), which yields

Att
A

= c2
Bxx
B

= −λ2, (D1)

and hence harmonic solutions for both A(t) and B(x):

A = C1e
iλt + C2e

−iλt, (D2a)

B = C1e
iλx/c + C2e

−iλx/c, (D2b)

i.e. only smooth (Taylor expandable) solutions and therefore only integer powers of t and x.

As an alternative, let us look for a solution of (B1) in a recursive manner, i.e.

φ(t, x) =
∑
i

aix
nitmi , (D3)

where powers ni and mi are not necessarily integers. Substitution into (B1) gives the following

conditions for two terms to balance:

ni − 2 = nj , mi = mj − 2, ajmj(mj − 1) = c2aini(ni − 1). (D4)

If we are looking for solutions such that t� x/c, then if, say, nj = 1/2 and mj = 1/2, such a term

in the solution representation will be balanced by ni = 5/2 and mi = −3/2. This construction

enables the existence of a solution φ(t, x) ∼ t1/2 x1/2 with t� x/c, i.e. of the form (85).

Appendix E: Post-shock wave asymptotics without surface tension

In non-dimensional variables (16), the problem is formulated as follows:

y < 0 : (bulk) :
∂2φ

∂t2
= ∆φ =

1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2
∂2φ

∂θ2
, (E1a)

t = 0 : φ = φt = 0. (E1b)

y = 0 : (plate) :
∂φ

∂y
≡ −1

r

∂φ

∂θ
= −1, |x| < 1, (E1c)

(free surface) : φ(t, x) = 0, |x| > 1. (E1d)
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It is clear that due to the boundary condition at y = 0, |x| < 1, the solution is not separable.

Hence, we will consider the “eigensolution” case for a half-infinite plate, i.e. focus only on the

region near the plate edge, when the boundary condition (E1c) is replaced by φθ = 0 at y = 0,

x < 0. Letting φ(t, r, θ) = A(t)Φ(r, θ) with Φ(r, θ) = B(r)C(θ), we arrive at the following problems

for A(t):

Att − λ2A = 0; t = 0 : A = At = 0, (E2)

for C(θ):

Cθθ + n2C = 0; θ = 0 : C = 0, θ = −π : Cθ = 0, (E3)

and for B(r):

1

r

d

dr

(
r

dB

dr

)
−
(
n2

r2
+ λ2

)
B = 0, (E4)

which gives the solution in terms of modified Bessel functions

B(r) = C1In(λr) + C2Kn(λr), (E5)

where Kn(λr) is singular at the origin and should be discarded. Clearly, with the initial conditions

taken into account, the solution is not separable, but if we are looking for a long time limit t� r,

then the solution becomes separable. For that reason, it is convenient to solve the problem using

the Laplace transform:

L(φ) ≡ φ̂(λ) =

∫ +∞

0
φ(t) e−λt dt, (E6)

with the standard properties of the derivatives transformation:∫ +∞

0

dφ

dt
e−λt dt = λφ̂(λ)− φ(0),

∫ +∞

0

d2φ

dt2
e−λt dt = λ2φ̂(λ)− dφ

dt
(0)− λφ(0). (E7)

The solution for C(θ) is clearly quantized because of (E3) thus giving

C(θ) = const · sin
(

1

2
+m

)
θ, m ∈ Z. (E8)

If we are looking for the solution near the plate edge, r → 0, then the asymptotics of B(r) follows

from that of In(z) ∼
(
1
2z
)n
/Γ(n+ 1).

Since we are interested in the asymptotics behind the shock wave, i.e. t � r which in the

Laplace space variable means λ−1 � r or λ r � 1, and this asymptotics of the inviscid compressible

flow should be consistent with the asymptotics of the inviscid incompressible flow for r � 1, i.e.

φ ∼ r1/2, then the leading order term in the solution must correspond to m = 0:

φ̂ ∼ λ1/2r1/2 sin
θ

2
. (E9)

In order to recover the form of the solution in the physical space, note that the inverse Laplace

transform L−1 of λ−1/2 is

L−1
(

1√
λ

)
=

1√
πt
, (E10)

so that differentiating the solution (E9) in the Laplace space

dφ̂

dλ
∼ λ−1/2 ∼

∫ +∞

0
t φ(t) e−λt dt, (E11)

and comparing with (E10) we recover (85).
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Appendix F: On the physics of diffusion in liquids

While it is understood how an infinite speed of propagation occurs in the macroscopic diffusion

equation in the context of molecular diffusion (random walks)53, the estimates of t∗ and l∗ in §V B

imply that under certain conditions, e.g. when l∗ = 10−9 m, diffusion processes need to be revisited

in order to make a precise sense of the early times of the impact phenomena. First of all, it is

known that the standard diffusion equation fails at such scales54,55. Second, diffusion of viscous

effects is different from molecular diffusion since the former is momentum and energy transfer (as

opposed to mass transfer), which puts it in the realm of heat transfer and thus the dominating

physical mechanisms (phonons, electrons, photons, etc.) responsible for the diffusion differ from

material (random walk) transport of molecular diffusion and depend on the nature of the liquid. In

fact, the electromagnetic nature of the diffusion mechanisms allows faster than sound propagation

speeds, at least on small scales.

Depending on the nature of a particular liquid system, there could be several mechanisms

responsible for heat diffusion49,56–58 – such as by phonons, molecular random walks, electrons,

photons, etc. – each of which would have a different “speed of propagation”. Each process of heat

diffusion is linear and therefore, if the heat was released at a point, leads to a Gaussian distribution.

Since a linear combination of Gaussians is not a Gaussian, the system is in a non-equilibrium state

due to different carriers (phonons, molecules, electrons, photons, etc.) having different “tempera-

ture”. Given the linearity of the phenomena, such a non-equilibrium heat diffusion described by

several diffusion processes with different constant diffusion coefficients is qualitatively analogous to

the process described by a single linear equation model with a time-dependent diffusion coefficient.

For example, if we consider diffusion from the point source δ(x) on the real line x ∈ R:

∂u

∂t
= ε tα

∂2u

∂x2
, (F1a)

t = 0 : u(0, x) = δ(x), (F1b)

where α > 0, we find

u(t, x) =
1

2
√
πc2

e−
x2

4c2 , where c2 =
ε tα+1

α+ 1
, (F2)

i.e. the diffusion propagates with speed ∼
√
ε tα+1 as opposed to ∼

√
ε t in the constant diffusion-

coefficient case, which means that the speed of propagation may vary from infinite to finite. While

a macroscopic diffusion (viscosity) coefficient stands for the “front” (of the propagating quantity –

energy, vorticity, etc. – defined in some averaged statistical sense), some of the underlying mech-

anisms propagate faster, though carrying only a portion of the energy. However, physically, this

fact is important as the media is disturbed through viscous diffusion faster than the compression

wave propagates into it. Later on, more energy is transferred, which effectively means that the

viscosity coefficient is growing and thus time-dependent. Another important note to make is that

the mechanisms responsible for diffusion and sound propagation may overlap at submacroscopic

distances – for example, there exists a ballistic mechanism54,55,59 responsible for transport phe-

nomena at scales comparable to the mean free path, which makes transport faster than the speed

of sound60, not to mention that at the time-scales below relaxation phonons make it possible for

the existence of both phonon-mediated diffusion and transverse sound waves otherwise absent in

liquids on longer time scales61.
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