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Abstract

Transition to turbulence in incompressible adverse-pressure-gradient (APG) boundary layers is

investigated by direct numerical simulations. Purely two-dimensional instability waves develop on

the inflectional base velocity profile. When the boundary layer is perturbed by isotropic turbulence

from the free stream, streamwise elongated streaks form and may interact with the instability

waves. Subsequent mechanisms that trigger transition depend on the intensity of the free-stream

disturbances. All evidence from the present simulations suggest that the growth rate of instability

waves is sufficiently high to couple with the streaks.

Under very low levels of free-stream turbulence (∼ 0.1%), transition onset is highly sensitive to

the inlet disturbance spectrum, and is accelerated if the spectrum contains frequency-wavenumber

combinations that are commensurate with the instability waves. Transition onset and completion in

this regime is characterized by formation and breakdown of Λ vortices; but they are more sporadic

than in natural transition. Beneath free-stream turbulence with higher intensity (1–2%), bypass

transition mechanisms are dominant, but instability waves are still the most dominant disturbances

in wall-normal and spanwise perturbation spectra. Most of the breakdowns were by disturbances

with critical layers close to the wall, corresponding to inner-modes. On the other hand, the propen-

sity of an outer mode to occur increases with the free-stream turbulence level. Higher intensity

free-stream disturbances induce strong streaks, that favorably distort the boundary layer and sup-

press the growth of instability waves. But the upward displacement of high amplitude streaks

brings them to the outer edge of the boundary layer, and exposes them to ambient turbulence.

Consequently, high amplitude streaks exhibit an outer-mode secondary instability.
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I. INTRODUCTION

Traditionally, the term ‘bypass’ has been used to classify transition processes in which

Tollmien-Schlichting (TS) waves do not play a prominent role. In recent literature, bypass

transition has been synonymous with the phenomenon of breakdown to turbulence in bound-

ary layers forced by modest to high free-stream perturbations. In this case, shear acts as

a low-pass filter and admits only the low frequency disturbances into the boundary layer

[19, 34]. They spawn streamwise streaky distortions in the u-perturbation component. These

streaks grow rapidly through shear amplification [23, 28]. This, non-modal, amplification

of streaks means that bypass transition may be underway even before the critical Reynolds

number for the TS wave is reached [14, 35]. Therefore, it is understood that instability

waves play no role in bypass transition.

In adverse pressure gradient (APG), the base-flow profile becomes inflectional and in-

viscidly unstable. Depending upon flow regime, the instability wave and Klebanoff streaks

may have commensurate amplitudes. For example, non-modal growth is weak under low

intensity free-stream turbulence (FST), so that the instability wave amplification ought to

be relevant. Therefore, up to moderate levels of free-stream excitation, an interactional

mixed mode of transition is expected [2, 12, 24]. Bose and Durbin [7] demonstrated that

such regime can, indeed, be created, even in ZPG. In those simulations, both a TS wave

and FST were injected at the inflow, and transition occurred through their interaction. The

present work examines this regime in the natural setting of an APG boundary layer, without

imposing a TS wave at the inflow.

Experimental studies by Walker and Gostelow [30] and Gostelow et al. [15] demonstrate

the complexity of transition phenomena in APG flat-plate boundary layers. Unlike bypass

transition in ZPG, their experiments identified spontaneously appearing discrete instability

waves beneath FST. Walker and Gostelow [30] attributed transition under low-intensity

FST to subharmonic secondary instability of the naturally appearing instability waves. In

another experimental effort, Hughes and Walker [18] detected instability waves in their data

on transitional flow over a compressor blade, when turbulence intensity in the free stream

was as high as 8%. They removed high-amplitude low-frequency disturbance components

by a filtering technique, and identified instability wave-packets in the residual. Hence, they

speculated that the instability waves triggered breakdown to turbulent spots in regions of
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flow deceleration.

Similar observations have been made in computational studies. Zaki et al. [33] used

DNS to study bypass transition in flow over a compressor blade. Instability waves could be

identified in their visualizations of the disturbance flow field near the blade surface.

There is evidence of instability wave-packets, in the APG region after the blunt lead-

ing edge of a flat plate: Nagarajan et al. [26] observed instability wave-packets to trigger

turbulent spots in their DNS of this configuration. Strong competitive growth of expo-

nential instability, also was obtained by Corbett and Bottaro [10], in their linear optimal

disturbance studies of Falkner-Skan boundary layers. They demonstrated that in APG, the

optimal streamwise vortices undergo transient growth and may attain similar amplitudes as

exponential instabilities, at supercritical Reynolds numbers.

All these results indicate that both ‘natural’ and ‘bypass’ transition in APG boundary

layers can involve instability waves. In the present study, direct simulations of an APG

boundary layer are performed in regimes where both streaks and instability waves co-exist

and can interact.

Late stages of boundary layer transition in ZPG were studied extensively in the litera-

ture, both experimentally and computationally. Secondary instability is activated beyond

a critical amplitude of the primary instabilities. In orderly transition, secondary instability

leads to formation of Λ shaped vortices that break down into turbulent spots [21, 22]. For

streaks, an inviscid secondary instability analysis was developed by Andersson et al. [1] and

others [14]. They showed that the lifted, high-amplitude, low-speed streaks are susceptible

to spanwise asymmetric, sinuous instability in ZPG boundary layers. Amplification of span-

wise symmetric varicose modes was predicted, only at very high streak amplitudes. Later,

using Floquet stability theory, Vaughan and Zaki [29] showed that the critical layer of the

most amplifying sinuous disturbances was near the edge of the boundary layer (∼ 0.7δ99).

They also predicted another secondary instability with a critical layer closer to the wall

(∼ 0.4δ99). Therefore, they named these as outer and inner modes, respectively. In a fol-

lowing DNS at Tu = 3%, Hack and Zaki [16] verified that the turbulent spot precursors in

APG are inner modes. The possible explanation for a shift in critical layer from ZPG to

APG was the absence or presence of an inflection point in the base profile.

In simulations of mixed mode transition in ZPG, Bose and Durbin [7] observed a regime,

between orderly transition via Λ vortices and bypass transition via outer streak instability, in
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which both streaky disturbances and TS waves contributed significantly to amplifying per-

turbations. Breakdown via helical secondary structures was observed. The helical secondary

instability is an inner mode. In that study, the base profile was not inflectional; instability

waves were created at the inflow. Since APG promotes discrete exponential instabilities,

one can predict that helical waves will arise naturally in decelerated flows.

A. Contribution

In the present work, direct numerical simulations of transition in adverse-pressure-

gradient boundary layers are performed. In these simulations, Reynolds number and the

level of APG are sufficiently high so that instability waves amplify spontaneously without

explicitly injecting them at the inflow as in previous work in ZPG. The effect of free-stream

turbulence spectrum and its amplitude on the transition mechanism are examined. The

simulations are aimed to assess the propensity of the external forcing, at low turbulence in-

tensities, to spawn instability waves inside the boundary layer, in a process similar to orderly

transition. At moderate levels of free-stream forcing, the helical structures are sought in the

mixed mode transitional regime. At higher turbulence intensities, the simulations examine

the interplay between instability waves and Klebanoff streaks. The numerical experiments

were performed to demonstrate the following:

• Instability and transition to turbulence at very low turbulence intensities is highly

sensitive to the scales of the incoming turbulence.

• An intermediate regime exists between natural transition beneath very low inten-

sity broadband free-stream turbulence and bypass transition beneath high turbulence

intensities; this regime may appear naturally without having a TS wave in the free-

stream disturbance spectrum.

• The instability waves participate in transition at supercritical Reynolds numbers in

APG even at relatively high turbulence intensities. When Klebanoff streak and insta-

bility wave amplitudes are of same level, instabilities of helical nature trigger transition.

• It is generally accepted that ‘inner’ secondary instabilities trigger breakdown in an

APG bypass transitional boundary layer. In current simulations, with increase in
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Klebanoff streak amplitude at higher levels of free-stream forcing, propensity of outer

sinuous mode breakdown is increased. The increased proclivity is a consequence of

damping of instability waves and susceptibility of high-amplitude streaks to secondary

disturbance growth.

II. DIRECT NUMERICAL SIMULATIONS

The numerical technique to perform the simulations has been developed in studies of

transitional and turbulent flows for more than a decade [27, 32]. The simulation code solves

the incompressible Navier-Stokes and continuity equations by a finite-volume formulation,

on a staggered, curvilinear grid. The upper boundary is contoured to impose APG on the

bottom, flat wall. The domain setup is characterized by fig. 1.

The velocity components are solved at the faces of a computational cell and pressure at its

centre. A fractional step procedure is adopted. The nonlinear advection terms are advanced

in time with a second-order, Adams-Bashforth scheme. Advection terms are computed by

a blend of seven-tenths central differences and three-tenths QUICK, to avoid numerical

oscillations. The diffusion terms are split into explicit and implicit parts. Cross derivatives

on the curvilinear grid are treated explicitly, and are time-advanced with second order

Adams-Bashforth. The implicit terms are advanced with Crank-Nicolson. The Pressure

Poisson equation is solved using a Fourier transform in the spanwise periodic direction, and

multi-grid in the x− y plane.

Y

X

ZPG APG

Inflow 

plane

Blasius

profile

  Contoured 

top boundary

FIG. 1: Schematic of the setup simulated numerically.
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The current simulations examine the effect of APG on bypass transition. To facilitate

comparison with prior ZPG simulations [7], a Blasius profile at Reynolds number Reb =
√

U0x0/ν = 398 (based on momentum thickness is Reθ ∼ 265) is specified at the inlet

plane; thus the inlet conditions can be specified as in previous studies. Here, x0 is the

downstream distance of the inflow plane from the leading edge. All lengths in the simulations

are nondimensionalized by the 99% thickness of the Blasius boundary layer at the inlet plane,

hereafter denoted as δ0. The velocity scale is the free-stream speed U0, also taken at the

inflow plane. Consequently, the characteristic time scale is δ0
U0

. All variables mentioned

in the text are nondimensionalized by these scales unless otherwise mentioned. From here

onwards, streamwise distance from the inlet plane, nondimensionalized by δ0 is denoted as

x.

The size of the computational domain in each direction is given in table I for all the

simulations. Detailed grid and domain independence studies are summarized in Bose [5].

The number of grid points used in each direction is also listed in table I. The grid resolution

is unchanged among all simulations. The grid resolution was found to be sufficient to resolve

up to the completion of transition, but is insufficient in the fully turbulent regime.

A. Base flow and exponential instability wave

APG is induced by diverging the upper boundary of the computational domain and

applying impermeability and free-slip conditions at that boundary (figure 1). The pressure

gradient follows a power-law distribution downstream of the inlet plane, P∞(x) = Kx2m.

Here, m is related to Hartree parameter, m = βH/(2 − βH). Throughout this work βH =

−0.14 which is equal to the value used in earlier studies [16, 27].

In order to characterize the pressure gradient in the simulation domain, first the laminar

base flow was computed. The inflow condition was the ZPG, Blasius solution. The base

flow relaxes towards a Falkner-Skan profile at the target acceleration parameter. In fig. 2a,

the scaled streamwise velocity profile is plotted at different streamwise locations. After an

initial adjustment length (x ∼ 70), the velocity profiles are in very good agreement with the

Falkner-Skan similarity solution. The pressure gradient parameter λθ = θ2

ν
dU∞

dx
is a good

measure of the imposed streamwise pressure gradient. In this expression, U∞(x) is the local

free-stream speed. In fig. 2b, λθ is plotted against streamwise distance x. After an initial
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adjustment, λθ remains constant. The imposed pressure gradient level matches well with

the target βH = −0.14.
u
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FIG. 2: (a) u/U∞(x) plotted against the similarity variable η at select streamwise stations.

(b) Pressure gradient parameter λθ plotted against x.

At βH = −0.14, the velocity profile is inflectional, which significantly lowers the critical

Reynolds number, and enhances instability [31]. An exponentially unstable wave with very

small magnitude is excited spontaneously, inside the computational domain. The unstable

wave grows sufficiently fast to become nonlinear. The instantaneous streamwise and wall-

normal perturbation velocities, u′ and v′, at a wall normal height y = δ0/2 are plotted in fig.

3a. Near x = 400, the magnitude of u′ attains a value as high as 1% of the inlet free-stream

velocity.

Frequency spectra of u′ and v′ components were computed at x = 210, where the ampli-

tude of the instability wave is small. The disturbances are linear at this location. The peak

amplitude was obtained at ω = 0.11. Another broad peak was obtained close to ω = 0.22;

higher harmonics are also excited.

In fig. 3b, contours of amplification rate (ki) for the spatially most unstable mode from

the discrete spectrum of the OS equation are plotted in the (Reδ∗ , ωδ∗) plane for the Falkner-

Skan boundary layer with βH = −0.14. The reference scales are the displacement thickness δ∗

and free-stream speed U∞. At the Reynolds number Reδ∗ at x = 210, the value of ωδ∗ which
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FIG. 3: (a) Instantaneous u′ and v′ plotted against x at y = δ0/2. (b) Contours of the

growth rate (ki) of the most unstable mode as a function of Reynolds number Reδ∗ and

frequency ωδ∗ for the Falkner-Skan boundary layer with βH = −0.14. The reference scales

are displacement thickness δ∗ and local free-stream speed U∞. The vertical dashed line

indicates the Reynolds number at the inlet plane. The unstable mode from DNS at

x = 210 is marked by the black dot.

corresponds to ω = 0.11 (observed in DNS) is marked by the filled circle. The frequency

from the DNS is very close to that of the locally most unstable instability wave. The

theoretical wavelength calculated from the real part of the complex wavenumber obtained

from the linear stability theory (the imaginary part is plotted in fig. 3b) is 17.91δ0; in the

DNS 18.25δ0 was observed.

B. Inlet FST

Inlet free-stream turbulence was synthesized as a superposition of eigenmodes of the

linear perturbation equations [8, 20]. The number of eigenmodes was 32 in each of temporal

frequency, wall-normal wavenumber, and spanwise wavenumber. The spectral amplitudes

satisfy isotropy and continuity. The inlet condition is synthesized to reproduce a Von-

Karman energy spectrum with the peak at wavenumber kp ∼ 1 (nondimensionalized by the
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streamwise integral scale, L11). This method of inlet FST generation is regularly used for

studies of bypass transition, as it reduces the computational cost by circumventing the high

grid resolution, and numerical inaccuracy, that occur near a leading edge.

x

r.
m

.s
.

0 80 160 240 320

0.01

0.02
0.03

FIG. 4: Free-stream decay of rms value of u′ (solid), v′ (dashed) and w′ (dash-dotted) for

cases 1a (blue), 2 (green) and 3 (red).

Three levels of FST intensity, Tu =
√

(u2
rms + v2rms + w2

rms)/3 = {0.1, 1.0, 2.0}%, were

applied at the inflow plane. The simulation parameters are listed in table I. The downstream

evolution of rms values of u′, v′ and w′ in the free stream are shown in fig. 4 for cases 1a,

2 and 3. Turbulence remains fairly isotropic in the free stream, throughout the domain, for

all three cases.

The spectral content in cases 1a, 2 and 3 is identical. For case 1b, the lowest frequency

is reduced relative to case 1a, but the turbulence intensity is unchanged. The inlet energy

spectra for cases 1a and 1b are compared in fig. 5, where they are plotted against the

temporal frequency ω in fig. 5a and spanwise wavenumber kz in fig. 5b. The amplitudes

of the zero-frequency modes are set to zero to avoid base-flow distortion. The number of

inlet frequency modes is identical for both these cases. Inlet disturbances for case 1a have

more high-frequency components. Low frequency disturbances are more energetic for case

1b. As purely 2D instability waves (kz = 0) were spontaneously instigated while computing

the base flow, they were excluded from the inlet disturbance spectra to avoid augmentation

of the amplitude of the instability waves.

The integral of the energy spectral density E(κ), where κ is the magnitude of the three-
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FIG. 5: (a) Disturbance kinetic energy at inlet as a function of (a) frequency (ω) (b)

spanwise wavenumber (kz) for the cases 1a and 1b (see table I).

dimensional wavenumber vector, over a sphere in wavenumber space gives the kinetic energy:

∫

∞

0
E(κ)dκ =

1

2

∫

∞

0
4πκ2(ûû∗ + v̂v̂∗ + ŵŵ∗)dκ.

The energy E as a function of κ is plotted for cases 1a and 1b in figure 6. Each symbol in this

figure represents an individual disturbance mode. It is evident that the inlet disturbances

for case 1b contain more large-scale modes even though Tu is the same for these two cases.

The inlet spectral content has profound effect on the transition process, as is discussed in

the next section.

III. FREE-STREAM EXCITATION

Four direct numerical simulations were performed with the conditions and designations

listed in table I. In figure 7a, instantaneous skin-friction coefficient Cf is plotted against

Rex for all cases, at a single spanwise location. The relationship between Rex and x is

Rex =
(1+ x

x1
)m(x+x0)

ν
= 2556.9(x + 81.34)(x + 58.19)−0.0654. Here, x0 is the distance of the

inflow plane from the leading edge. x1 is obtained by equating δ0 to the 99% thickness of the

APG boundary layer (βH = −0.14) at the inlet Reynolds number. In the inset of figure 7a

is a zoomed-in view; the presence of instability waves for all cases is clear. The magnitude
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FIG. 6: Energy spectral density, E(κ), of inlet perturbations plotted against κ for the

cases 1a and 1b. Each symbol represents an inlet disturbance mode. Only half of the total

number of modes is plotted for clarity.

Case Domain size Grid size Tu Lowest nonzero

designation (lx× ly × lz) (nx× ny × nz) inlet frequency (ω)

1a 320δ0 × 40δ0 × 20δ0 1024 × 192× 160 0.1% 0.636

1b 480δ0 × 40δ0 × 35δ0 1536 × 192× 280 0.1% 0.357

2 320δ0 × 40δ0 × 20δ0 1024 × 192× 160 1% 0.636

3 320δ0 × 40δ0 × 20δ0 1024 × 192× 160 2% 0.636

TABLE I: Summary of simulations.

of instability waves is highest for the case 1b.

Streaks are the boundary-layer response to free-stream forcing, at intensities Tu ≥ 0.5%.

Hence cases with Tu ≥ 0.5% can potentially undergo mixed-mode transition. There is

significant difference in the transition routes undertaken in such cases.

In figure 7b, the mean skin-friction coefficient < Cf > is plotted versus Rex. The flow

remains laminar within the computational domain for the very low intensity case (Tu =

0.1%) simulated in shorter domain (case 1a). That is why the large domain case (case 1b)

was simulated. Case 1b transitions within its computational domain. Despite their matching
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FIG. 7: (a) Instantaneous skin-friction coefficient (Cf) at a select spanwise location plotted

against Rex for all cases tabulated in table I. A zoomed-in view of the curves is shown in

the inset. (b) Mean skin-friction coefficient (< Cf >) plotted against Rex. The line type

and colour for individual cases are the same as in fig. 7a. The black dashed lines represent

the laminar solution and turbulent correlation.

free-stream forcing intensities, cases 1a and 1b have drastically different instability routes.

The difference is due to their spectra at the inlet.

Reynolds numbers and streamwise locations of transition inception and completion for all

cases are listed in table II. The onset of transition is defined as the location where < Cf >

is minimum in fig. 7b. Similarly, completion of transition is the location where < Cf > is
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Case Transition onset Transition completion

Rex xs Rex xe

1a – – – –

1b 5.2 × 105 211.25 6.9× 105 316.5

2 4.4 × 105 163.75 5.8× 105 247.5

3 3.5 × 105 109.3 5.4× 105 224.3

TABLE II: Transition onset and completion locations for all cases.

maximum.

A. Effect of inlet FST spectrum on transition location

The difference in the spectra of the inlet disturbances has a profound effect for cases 1a

and 1b. These two cases are first compared phenomenologically by plotting the perturbation

velocity fields. In fig. 8, contours of u′ are shown at different wall-normal heights for case

1a. The free-stream disturbances have many scales. In the horizontal plane at y = δ0, up

to some distance downstream of the inlet, broadband disturbances persist. When this plane

is sufficiently inside the boundary layer, after x ∼ 80, streaky disturbances appear. Further

downstream, in the last quarter of the domain, locally spanwise coherent instability waves

start to amplify. Those are clearly modulated by the streaks. Deep inside the boundary

layer, shown in the bottom frame, streaks are much weaker; by the exit plane instability

waves dominate the flow field. At the exit plane, the 99% boundary-layer thickness is at

y = 2.59δ0. The selected plane shown in the bottom frame is below the critical layer of the

instability waves.

Transition takes place in case 1b. Fig. 9 shows the u′ and v′ contours at y = δ0/2 for this

case. There is significant difference between u′ in the top frame and the bottom frame of fig. 8

for case 1a, at the same wall normal height. The instability waves are prominent, although

their wavelength changes as the flow moves downstream. This change is seen clearly in the

v′ plot (bottom frame of fig. 9). Three separate zones are identifiable. Just downstream of

the inflow plane, marked as zone i in the bottom frame, the wavelength is shorter than the

waves in zone iii, prior to transition. In between, in zone ii, a change in wavelength takes
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FIG. 8: Instantaneous contours of −0.001 ≤ u′ ≤ 0.001 in x− z planes at indicated wall

normal heights for case 1a. The z axis has been enlarged by a factor of two. Dark contours

represent negative values.

place. Transition is triggered by breakdown of the newly dominant instability wave.

FIG. 9: Instantaneous contours of −0.4 ≤ u′ ≤ 0.4 (top frame) and −0.2 ≤ v′ ≤ 0.2

(bottom frame) at a wall normal height y = δ0/2 for the case 1b. The z axis has been

enlarged by a factor of two. Dark is negative.

The rms of u′ and v′ are plotted in fig. 10 at a constant wall normal height, y = 0.7δ0.

This fixed location is chosen because the peak rms values for a portion of that plane, close

to the inlet, lies in the free stream. This wall-normal height corresponds to y ∼ δ99/3 in
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FIG. 10: u′

rms (thick solid) and v′rms (thin dashed) as a function of x at a wall normal

height y = 0.7δ0 for the cases 1a (green) and 1b (red). The shaded portion is the

transitional regime for case 1b.

the transitional regime. For both cases 1a and 1b, there is some weak, initial growth of the

u-perturbation, followed by viscous decay. For both cases, u′

rms grows again from x ≈ 25;

the growth is exponential, as the curves are linear, when plotted on a logarithmic scale. For

case 1b, v′ amplifies and, from x ≈ 110, grows all the way to transition. The disturbance

rms for case 1a increases at a lower rate. The change in the rate of amplification is due to

a change in the dominant instability wave.

1. Primary instability

The most dominant instability wave is identified by plotting the frequency spectra of

v′ for cases 1a and 1b in fig. 11. A few inlet disturbance frequencies are also marked by

squares, in the figure. Only frequencies with at least 16 periods in the stored time series are

plotted. The spectra are broadband, and dominated by disturbances with frequencies lower

than the smallest inlet frequency. Hence, they are created by fluid mechanics, within the

computational domain.

Clearly, the most dominant frequencies differ for the two cases. The dominant frequency

for case 1a is ω = 0.17. The 2D modes corresponding to this frequency show up in the
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FIG. 11: (a) Frequency spectra of v′ for cases (a) 1a and (b) 1b. For case 1a, the

wall-normal location is at y/δ99 ∼ 0.33. For case 1b, the locations at x = {50, 130, 210} are

to y/δ99 = {0.51, 0.4, 0.33}. Black squares mark frequencies that are prescribed at the inlet.

contour plots in fig. 8. At this frequency, the most unstable wavelength is 13.08δ0 as per

linear spatial stability theory. The average wavelength of disturbances from DNS at x = 210

is 13.44δ0.

Fig. 11b helps to identify the most unstable frequencies for case 1b. To aid the inter-

pretation of the spectra, contours of the locally most unstable eigenvalues (ki) from the OS

equation for the DNS mean flow, are plotted in fig. 12a. The lowest frequency excited at

the inlet is ω = 0.357 which has the maximum amplitude at x = 50 in fig. 11b. ω = 0.357

is unstable up to x ≈ 91 (fig. 12a). As the flow develops downstream, the frequency of

the most unstable mode decreases. The most dominant frequency at x = 210 is ω = 0.15

(fig. 11b) which only starts amplifying at about x = 16 as per linear theory. So, for x > 91,

disturbances with frequencies ω = {0.15, 0.174, 0.198} start amplifying at a high rate while

ω = 0.357 starts decaying (also see fig. 12b).

Amplification of v′ disturbances at the aforementioned frequencies is shown by plotting

the modal energy (v̂v̂∗) versus streamwise stations in fig. 12b. Clearly, ω = 0.357 has a much

higher amplitude at the inlet. From x ∼ 30, disturbances with ω = {0.15, 0.173, 0.198} start

growing at an exponential rate. It is interesting to note that ω = {0.15, 0.198, 0.357} form a
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FIG. 12: (a) Contours of the linear spatial growth rate (ki) plotted in (x, ω)- plane for case

1b. The frequency peaks indicated in figure 11b are also marked on the ω axis. (b)

Downstream amplification of v′ perturbation energy at dominant frequencies from the

spectra in figure 11b: ω = 0.15 (solid red), ω = 0.173 (dashed blue), ω = 0.198 (dash

dotted green), ω = 0.3 (dotted pink) and ω = 0.357 (dash dot-dotted orange). The

transition regime is marked by the vertical grey strip.

triad. Perhaps, 2D disturbances with ω = 0.15 eventually dominate due to nonlinear energy

transfer to this frequency [13]. The energy for ω = 0.15 overtakes that for ω = 0.357 at

x ∼ 128 and becomes the most dominant instability wave which eventually breaks down to

turbulence (fig. 9).

The wavelength predicted by linear theory for the most unstable mode at x = 50 with

frequency ω = 0.357 is 6.8δ0. The average wavelength of disturbances from DNS at this

location is approximately 6.9δ0 (zone i in fig. 9). The most unstable mode at x = 210 (zone

iii) has frequency ω = 0.15 and wavelength 13.9δ0; the average wavelength observed from

DNS is approximately 13.6δ0.

It is important to note that the change in transition from case 1a to case 1b is not due

to a change in the primary instability of the base flow and its eigenspectrum; the mean

flows from these calculations were the same until secondary instability kicked in for case

1b. Instead, it is due to the change in the spectrum of the free-stream disturbance, which
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FIG. 13: Mean rms perturbation velocity profiles plotted at selected streamwise stations

for the case 1b at streamwise stations: x = 50 (solid red), x = 130 (dashed green) and

x = 210 (dash dotted blue).

interacts with the boundary layer and seeds its primary instability.

2. Transition to turbulence: Λ vortices

The critical layer of the instability waves is closer to the wall (often at y/δ99 ∼ 1/3).

Disturbance amplification is expected to be most prominent near that location [13]. Profiles

of rms perturbations for all three velocity components are plotted in fig. 13. The ordinate

is the wall-normal distance scaled by the local 99% boundary-layer thickness. The selected

streamwise stations are the same as in the spectra of fig. 11b (representative of each zone in

fig. 9). A clear peak inside the boundary layer is only noted at x = 130 for all the velocity

components. Disturbance amplification is appreciable for 50 < x < 130 and comparatively

much higher between x = 130 and x = 210 due to the high exponential amplification rate

in zone iii (see fig. 12a). All three velocity perturbation components are of the same order

of magnitude in the transitional regime. In fact, the peak wall-normal rms of u and w is

almost the same at the onset of transition, at x = 210. In a purely bypass transitional

boundary layer, the u perturbation is generally three to five times larger than the other two

components [27]. Here the transition process is more akin to orderly breakdown.

The late stages of orderly transition is well documented [21, 22]. The three-dimensional

secondary instability leads to the formation and breakdown of Λ shaped vortices. Although

there is an idealized notion of K and H-type patterns — fundamental or subharmonic sec-
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FIG. 14: Isosurfaces of the Q- criterion colored by the wall normal distance y for the case

1b. Here, Q = 0.003. Also shown are the contours of −0.3 ≤ v′ ≤ 0.3 in a horizontal plane

at a wall normal height y = 0.7δ0. Dark is negative. δ99 at x = 250 is at y = 2.33.

ondary instabilities of the primary wave, appearing as Λ vortices arrayed either as aligned,

or staggered patterns — in a broadband disturbance environment those patterns do not

occur. For example, Borodulin et al. [3, 4] investigated natural transition in a Falkner-Skan

boundary layer (βH = −0.115). A monochromatic instability wave was perturbed by broad-

band disturbances through wall excitation. Transition to turbulence was via Λ vortices with

various shapes, sizes and alignments. The transition process for case 1b is qualitatively

similar to these observations. However, in the present case, the primary instability appears

spontaneously and is not monochromatic.

Isosurfaces of Q-criterion are shown in fig. 14, colored by the wall-normal distance y. A

horizontal slice at y = 0.7δ0 with contours of v′ is also included. Vortices are manifest at

the junction of negative and positive patches of v′ implying the 2D vortices have negative

vorticity. The Λ vortices break down at their tips to spawn patches of turbulence. A

fully developed Λ structure is seen to break down at the far end, x ∼ 250. The tips of

fully formed Λ vortices extend to the boundary-layer edge. Occasionally, these vortical

structures start breaking down before being fully formed, for example, in the middle of the
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FIG. 15: (a) Contours of −0.2 ≤ u′ ≤ 0.2 in the (t, z)- plane for the case 1b. The

streamwise station is (x = 250, y = 0.775). (b) Profile of u′

rms at x = 250. The dashed line

indicates the wall normal location of the station corresponding to (a).

domain near x ∼ 265. Also, unlike Λ vortices generated by monochromatic forcing, the

vortices in the present simulation are often asymmetric, being tilted towards one side or

the other [3]. The spanwise sizes of these vortices vary between 9 − 15δ0. Herbert [17]

predicted a range of spanwise wavenumber, b, using Floquet stability theory for significant

subharmonic secondary growth in ZPG boundary layer. The highest amplification was

obtained for b ∼ 0.2. The nondimensional spanwise wavenumber for a Λ vortex of size 12δ0

is b ≈ 0.68. Hence, the vortices observed here are quite wider than those of H and K-type

secondary instability.

Temporal evolution of the pattern of Λ vortices is not strictly periodic. This is demon-

strated by plotting the contours of u′ in the (t, z)- plane at x = 250 in fig. 15(a). The local

profile of u′

rms is plotted in fig. 15(b) at this streamwise position to show the wall normal lo-

cation of data-extraction relative to the boundary layer thickness and the disturbance peak.

An apparent row of Λ vortices aligned in the streamwise direction with their apex at z ∼ 5

is seen. But if closely examined, their streamwise alignment is not exact and the vortices

are at varying stages of development from time to time. The fluctuating contour values and

their distortion reveal the asymmetric nature of the vortices. Often a few vortices merge

together to form more complex structures [3], e.g. the vortices between t = 300 and 400.

The evolution depends on the instantaneous disturbances within the boundary layer and the

forcing from the free stream.

20



B. Effect of inlet FST amplitude on transition

The inlet disturbance spectra for cases 2 and 3 in table I are a scaled version of that for

case 1a. The only difference is the amplitude, or Tu. For both cases, transition is triggered

and its location is earlier upstream with increasing levels of FST (fig. 7).

1. Primary instability

FIG. 16: Instantaneous contours of −0.3 ≤ u′ ≤ 0.3 (top frame) and −0.2 ≤ v′ ≤ 0.2

(bottom frame) at a wall normal height y = 0.87δ0 for the case 2. Dark is negative. Local

peak of u′

rms is at this wall-normal height at transition onset.

Instantaneous contours of u′ and v′ are plotted in fig. 16 for case 2. The selected horizontal

planes are at the wall-normal height where u′

rms has its local peak at the onset of transition.

Unlike the very low Tu cases 1a and 1b, visual identification of the primary instability is

not straightforward. On one hand, the streamwise Klebanoff streaks are apparent in the u′

contours; On the other, the two-dimensional instability waves are clearly identifiable in the

v′ contours. As in pure bypass transition, v′ perturbations are initially associated with the

low-frequency Klebanoff streaks. Downstream, from x ∼ 80 onward, the instability waves

seem to take over and become dominant. In APG, the Klebanoff streaks and instability

waves have competing growth rates. From fig. 16, it is difficult to ascribe breakdown to

bypass transition (top frame) or to instability waves (bottom frame) conclusively. Such

transitional flow is complex, and best described as a mixed mode regime [7].
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FIG. 17: (a) Frequency spectra of u′ (grey) and v′ (black) for the case 2 at x = 155. The

wall-normal location is y/δ99 ∼ 0.285. (b) Comparison of mean streamwise velocity profiles

for cases 1a (black dashed line) and case 2 (orange solid line) at x = 155.

To identify the primary instability for case 2, the frequency spectra of u′ and v′ compo-

nents are shown in fig. 17a at x = 155, just upstream of onset of transition (see table II).

The spectrum is evaluated at a height y ∼ 0.285δ99 from the wall. The time span of the

data equals 16 periods of the lowest frequency in the spectrum. The linearly unstable modes

for the time-averaged flow from the DNS at this station are in the range ω ∈ [0.031, 0.266].

This range is much higher than the streaky perturbations in fig. 16. The most dominant

frequency in the spectrum is ω = 0.17, and is therefore within the range predicted by linear

theory. The instability waves are more prominent in the spectrum for v′ compared to u′,

but the same peaks can be identified in both quantities. Also prominent in the spectrum

for u′ is the peak at very low frequencies due to Klebanoff streaks.

Interestingly, the dominant instability wave is the same as the dominant mode in case

1a. As noted earlier, the inlet spectra for these two cases are similar except the amplitude

scaling. In fig. 17b, local profiles of the scaled mean streamwise velocity (u/U∞) are plotted

for cases 1a and 2 at the streamwise station where the spectra were computed. There is

some difference between the profiles from the two cases. The results reaffirm the influence

of the inlet spectrum on the most dominant instability waves and transition in APG, even
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FIG. 18: Downstream amplification of perturbation energy in u′ and v′ at dominant

frequencies from frequency spectra for the case 2 in fig. 17a: ω = 0.0077 (solid), ω = 0.17

(dash dotted). Thick (blue) and thin (red) lines indicate the mode energy for u and v

components, respectively. Onset and completion of transition is distinguished by the

vertical grey coloured strip.

at moderate Tu.

Disturbance energy in u′ and v′ perturbations at the most energetic frequency ω = 0.17

and the lowest frequency in the spectra, ω = 0.0077, are plotted as functions of x in fig. 18.

The energy of the lower frequency mode is included to compare the growth rates of the

instability wave (at ω = 0.17, dash dotted lines) and Klebanoff streaks (at ω = 0.0077, solid

lines). Thick (blue) and thin (red) lines represent the mode energy for u and v components,

respectively. As expected, the lower frequency amplifies more quickly. Also the transient

amplification is more pronounced for u′. The amplitude of u′ is at least 3 orders of magnitude

higher than v′ as the disturbances saturate. On the other hand, the disturbance with

ω = 0.17 amplifies exponentially for both u′ and v′ from x ∼ 80 onwards. In the transitional

region, demarcated by the grey strip, the disturbances with ω = 0.17 are about the same

order of magnitude as ω = 0.0077. Exponentially growing waves thus contribute appreciably

during the transition process.

The instability wave role in transition to turbulence is less clear-cut at higher FST lev-

els (case 3). Evidence suggests that the TS waves are excited, but streaks become more
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dominant. Contours of instantaneous u′ and v′ are plotted in a horizontal plane that slices

through the boundary layer in fig. 19. The FST intensity is 2% at the inlet. Only long

wavelength streamwise streaks are detectable in the u′ contour plot in the top frame. The v′

contours in the bottom frame qualitatively resemble the u′ contours, but spanwise coherent

patches can be identified in v′ from x ∼ 120 onwards.

FIG. 19: Instantaneous contours of −0.3 ≤ u′ ≤ 0.3 (top frame) and −0.2 ≤ v′ ≤ 0.2

(bottom frame) at a wall normal height y = 0.75δ0 for the case 3. Dark is negative. The

wall normal peak of u′

rms is at y = 0.75δ0 at transition onset.

Frequency spectra for u′ and v′ perturbations are plotted in fig. 20a at x = 130 for case

3, just after the onset of transition (table II). Also included is the frequency spectrum for

v′ with spanwise wavenumber kz = 0, i.e., for 2D disturbances. The selected point is at

y ∼ 0.267δ99, close to the critical layer of instability waves. The range of frequencies for

linear instability of the base profile is marked by the grey strip. A broadband peak, at lower

frequencies than the exponentially unstable range is seen for the u component. Similar to

case 2, the peak in the v′ spectrum is highest in the frequency range of exponential instability.

At higher frequencies, such as ω = {0.17, 0.243, 0.285}, the 2D instability waves have almost

the same magnitude as the overall spectrum.

Downstream amplification of v′ disturbances at selected frequencies are shown in fig. 20b.

Amplification of frequencies dominated by two-dimensional disturbances are coloured black.

After an initial transient amplification, all frequencies grow exponentially up to the tran-

sition region marked by the grey strip. Disturbance energy is similar for all the shown

frequencies in this region. Downstream, the secondary instability of streaks and their break-
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FIG. 20: (a) Frequency spectra of u′, v′ and 2D component of v′ for the case 3 at x = 130.

The wall-normal location corresponds to y/δ99 ∼ 0.267. The grey region shows the

exponentially unstable frequency range for the mean velocity profile. (b) Downstream

amplification of perturbation energy in v′ at dominant frequencies from spectra plot in

fig. 20a: ω = 0.083 (solid), ω = 0.114 (dashed), ω = 0.17 (dash dotted), ω = 0.243 (dash

dot dotted) and ω = 0.285 (dotted). The black lines represent frequencies dominated by 2D

modes. Onset and completion of transition is highlighted by the vertical ash coloured strip.

down to turbulence are triggered by high-frequency disturbances, which are largely due to

two-dimensional instability waves.

2. Secondary instability: Inner & Outer modes

The discrete instability waves are excited spontaneously under APG conditions, as evi-

denced by the perturbation spectra; but their presence is masked by the Klebanoff distortions

at moderate and high Tu. In cases 2 and 3, the streamwise streaks locally break down due

to secondary instabilities and form turbulent spots. The secondary disturbances can be

classified into ‘inner’ and ‘outer’ modes based on the heights of their critical layers [29].

Previous works include the studies by Cossu and Brandt [12] and Liu et al. [25]. They

performed Floquet stability analysis of periodic base flows that included both the Klebanoff
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FIG. 21: Mean rms perturbation velocity profiles plotted at selected streamwise stations

for the case 2 at streamwise stations: x = 100 (solid red), x = 150 (dashed green), x = 175

(dash dotted blue) and x = 200 (dash dot dotted orange).
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FIG. 22: Mean rms perturbation velocity profiles plotted at selected streamwise stations

for the case 2 at streamwise stations: x = 50 (solid red), x = 100 (dashed green), x = 125

(dash dotted blue) and x = 150 (dash dot dotted orange).

streaks (steady) and an instability wave, albeit in ZPG boundary layer. Hack and Zaki [16]

performed linear secondary stability analysis of velocity fields extracted from DNS of bypass

transition in APG and were able to take into account the inherently local nature of the

secondary instabilities. They found the critical layer of secondary instability in APG to be

closer to the wall compared to ZPG. Similar observations are made from the present results.

The discussion is solely based on analysis and visualization of mean and disturbance flow

fields from the present DNS.

Wall-normal profiles of rms perturbations at select streamwise positions are plotted in

figs. 21 and 22 for cases 2 and 3, respectively. A wall-normal peak for u perturbations is
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FIG. 23: (a) Isosurfaces of u′ = −0.15 coloured by the wall normal distance y showing a

helical secondary instability for case 2 [5]. (b) Isosurfaces of streamwise vorticity ωx = ±0.1

are overlaid on the helix. The boundary layer thickness at x = 215 is δ99 = 2.26δ0.

obtained at all stations considered while peaks in v and w perturbations are only obtained

well downstream of the inlet. This is due to transient amplification of u′. The peaks for all

the components are within y/δ99 < 0.5, which is an indicator of the deep lying critical layer:

for case 2, the peak of u′

rms is at y/δ99 ∼ 0.45 and for case 3 it is at y/δ99 ∼ 0.4. Also the

peaks for v and w profiles are closer to the wall than the u component. This difference is

because the Klebanoff streaks contribute mainly to u′.

As for the transitional case 1b, the rms amplitudes of v′ and w′ are of the same order

of magnitude as u′ for case 2. This behavior is characteristic of transition by discrete

instability waves. Due to very high growth rate of the instability, v′ grows quickly in APG.

With the additional presence of the streaks, the flow configuration becomes one of mixed

mode transition. On the other hand for case 3, peak rms of u′ is at least an order of

magnitude higher than the v′ and w′, which indicates that this case is more in line with the

conventional bypass transition dominated by Klebanoff streaks.

The flow structures in an APG transitional boundary layer are different from their ZPG

counterpart. While bypass transition in ZPG is dominated by outer sinuous instabilities,

inner instabilities are prevalent in APG [9, 27]. Secondary instability and consequent break-

down for case 2 are initiated via the secondary helical modes [6] which are essentially a class

of inner modes. Helical features are seen in both cases 2 and 3, but more frequently identi-

fiable for case 2. In fig. 23(a), an emergent helical mode breakdown is shown by isosurfaces

of u′ = −0.15. It develops on a negative streak, in the high shear region between adjacent
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positive and negative streaks. Hack and Zaki [16] found that inner secondary instabilities

develop in similar high shear regions. Bose and Durbin [6] attributed the helical breakdown

to interaction of instability waves and Klebanoff streaks.

The streaks are jet-like, streamwise perturbations; these may be assumed to be the pri-

mary state. The helices are flow structures observed in u′ isosurfaces. Therefore, these may

be termed secondary perturbations. Following the analysis by Hack and Zaki [16], therefore,

streamwise vorticity (ωx) approximately represents the secondary disturbances.

ωx = ω̄x + ωp
x + ωs

x.

Here, three terms on the right hand side are streamwise vorticity due to mean flow, primary

perturbations and secondary perturbations, respectively. ω̄x = 0 for the mean flow, and

ωp
x ≈ 0 for the primary disturbances which are streaks; predominantly u′. So, ωx ≈ ωs

x,

where ωs
x denotes the streamwise vorticity due to secondary perturbations. Isosurfaces of ωx

for a pair of positive and negative values are plotted in figure 23(b) that depict the helical

nature of the instability. Isosurfaces of u′ = −0.15 are also shown. Prior to formation of

the helical mode, isosurfaces of ωx wrap around the unstable streak. Initially ωx is weak

and strengthens with formation of the helical instability. After inception of the secondary

instability, the isosurfaces of ωx orient in an approximately helical pattern. For x > 215,

troughs and crests in ωx become apparent along the helical structure.

Flow structures for case 3 are more diverse. Both inner and outer secondary instabilities

are observed. In fig. 24a, isosurfaces of u′ are plotted for selected values to visualize break-

down of streaks at an instant. Breakdown of two separate inner modes is captured. At the

same time an outer sinuous mode, also, is developing prior to its breakdown. In fig. 24b,

those same isosurfaces are colored by wall-normal distance y to highlight the wall-normal

location of the streaks. That the outer mode grows on a low-speed streak is evident. The

streamwise extent of the instability prior to the onset of turbulence is long. The inner mode

breakdowns take place on streaks closer to the wall, which is clear from fig. 24b, and the

onset of turbulence is abrupt.

For case 2, the inner modes are the only breakdown route; outer modes are entirely

absent. A relative measure of inner and outer breakdowns was noted by following flow

structures prior to their breakdown, in animations of disturbance velocity fields created from

instantaneous snapshots of DNS data at regular time intervals. 22 breakdown sequences were

28



(a)

(b)

FIG. 24: Instantaneous isosurfaces of u′ = ±0.1 depicting inner mode breakdown and outer

sinuous mode spot precursor for the case 3: (a) u′ = 0.1 (dark) and u′ = −0.1 (grey), (b)

color contoured by the wall normal distance y. Boundary layer thickness at x = 155 is

δ99 = 2.28δ0.

observed within a timespan of 491.4 δ0
U0

for the case 2. All the breakdowns were via inner

instabilities. For 21 of these spot precursors, the noted streamwise wavelength was between

2δ0 − 3δ0. The exceptional inner spot precursor had a wavelength of 5δ0. Phase speed of

these inner forerunners ranged between 0.31U0 − 0.55U0.

For the higher Tu case 3, the outer modes are sparsely seen while the dominant mode
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FIG. 25: Contours of spatial growth rate (ki) plotted in (x, ω)- plane as per linear stability

theory for the time and span averaged mean flow for cases 2 (red solid) and case3 (black

dashed). Contour levels are between 0 and -0.04 with step size -0.02. Minimum ki was

-0.056 for case 2 and -0.04 for case 3.

is still the inner mode. The timespan for analysis for case 3 was 561.6 δ0
U0

, within which,

12 breakdowns were observed. 3 of these 12 breakdowns were preceded by a long outer

instability with wavelength in the range 8δ0 − 10δ0 and phase speed ∼ 0.75U0. The other 9

spot precursors had phase speed in the range 0.4U0 − 0.6U0. 2 of these 9 inner instabilities

had wavelength comparable to outer modes (∼ 8δ0) which also had higher phase speed

(∼ 0.6U0). Off the 7 remaining inner breakdowns, 4 had dispersion relation similar to

helical instabilities (wavelength 2δ0 − 3δ0 and phase speed ∼ 0.5U0). The wavelength of the

other 3 forerunners could not be determined.

The dominance of the secondary inner modes in APG might be attributed to the in-

flectional base profile [16]. To justify that argument, spatial growth rates (ki) of the most

unstable eigenvalue of the OS equation are plotted in the (x, ω) plane for the cases 2 and 3

in fig. 25. The flow field used for the calculation is the time and span averaged mean flow

from DNS. The minimum ki = −0.056 for the case 2. Also fig. 25 shows an extended region

of high exponential amplification.

The outer mode breakdowns in APG are more frequent at high Tu = 2%, which is case

3. Two considerations contribute to the change in flow stability. Firstly, high-amplitude
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rms plotted versus streamwise distance x for cases 1b (dark), 2 (grey)

and 3 (light).

Klebanoff streaks are subjected to high-frequency forcing from the free stream, enhancing

secondary instability. Figure 26 shows the local peak u′

rms as a function of x for all the

transitional cases reported here. Streamwise disturbance magnitude reaches a higher value

in case 3 than case 2, prior to transition. Secondly, the finite-amplitude Klebanoff streaks

indirectly affect stability of the mean flow; they distort the base flow to make the inflectional

profile to fuller [11], and therefore, less unstable. The effect is more pronounced for higher

amplitude Klebanoff streaks. Consequently the growth rate of the linear instability waves

is decreased. The minimum value of ki for the case 3 is -0.04 in fig. 25.

These arguments based on flow structures from DNS at moderate Tu are consistent with

statistical study by Hack and Zaki [16]. They reported, about 65% breakdowns in APG

bypass transitional boundary layer are preceded by inner instabilities at a higher Tu = 3%.

It must also be noted that even though their APG level was same as the present study, their

inlet Reynolds number was subcritical unlike herein.

IV. CONCLUSION

The role of instability waves in adverse pressure gradient (APG) boundary layer transition

beneath free-stream turbulence (FST) was investigated by means of direct simulations. It has
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been seen that instability waves contribute to transition, even with free-stream turbulence

intensities of 2%. The present results are all for a Falkner-Skan boundary layer. The pressure

gradient and inlet Reynolds number are sufficiently high (βH = −0.14, Reb = 400) so that

exponentially growing instability waves are spontaneously aroused even in the calculation

without FST. When FST was introduced at the inlet, the instability waves were detected

for all the cases considered. The spectral makeup of the turbulence in the free stream is

as important as its intensity in dictating the instability and transition route. This was

demonstrated by considering two cases with the same, low intensity (Tu = 0.1%), but with

different spectral content. Neither included the wavenumber-frequency combination of the

linear exponential instability waves. Yet, of the two spectra, transition was only triggered

for case 1b, which contained the frequency (but not wavenumber) of an unstable, instability

wave.

The most dominant primary instability changes with streamwise distance, depending

on modal energy (fig. 9). The spectrum prior to development of secondary instability is,

therefore, broadband. For low intensity FST at inlet (Tu = 0.1%), the flow undergoes

transition via secondary instability of the primary waves. Those take the form of Λ vortices

with irregular structures and patterns due to the broadband forcing from the free stream

(fig. 15).

The effect of free-stream forcing amplitude was studied by increasing Tu but keeping

the inlet turbulent scales unchanged. The most dominant instability waves remain the

same from case to case (cases 1a, 2 and 3). At Tu = 1% (case 2), instability waves are

clearly identifiable in the transitional region in u and v perturbation contours and instan-

taneous skin-friction plots. Perturbation velocity spectra reveal that the instability waves

are dominant in both u′ and v′ and are only masked by the Klebanoff streaks in the former.

The dominant 2D instability wave frequency has the highest magnitude in the nonlinear

transitional region; disturbances at this frequency grow exponentially, even in this region.

Breakdown to turbulence is via flow structures with helical appearance [6]. Interaction be-

tween Klebanoff streaks and the instability waves seems to drive the helical instability as

the breakdown is activated at relatively low streak amplitude (fig. 26). This inner instability

grows in the high shear region between a low and a high speed streak.

The instability waves are still apparent when the intensity is increased even higher, to

Tu ∼ 2% (case 3). Exponential amplification is dominant in the spectra for v′ but the u′
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spectra are dominated by Klebanoff streaks. The local u′

rms profiles have peak magnitude

an order of magnitude higher than v′rms and w′

rms. For case 3, breakdown is mostly via

inner modes. A few instances of outer modes were also seen. The Klebanoff streaks at

high Tu play a dual role: stronger streaks are more unstable and prone to outer instability;

also, they distort the mean boundary-layer profile, which stabilizes its primary eigenmodes.

The present simulations indicate that instability waves contribute substantially to transition

in APG and that their amplitude can be comparable to Klebanoff streaks [10]. Under the

conditions of the present numerical experiments, transition in APG boundary layers beneath

free-stream turbulence is therefore, truly, mixed mode transition.
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