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Eigenspectra and pseudospectra of the mean-linearized Navier-Stokes (LNS) operator are used to
characterize amplification mechanisms in laminar and turbulent flows in which linear mechanisms
are important. Success of mean flow (linear) stability analysis for a particular frequency is shown
to depend on whether two scalar measures of non-normality agree: (1) the product between the
resolvent norm and the distance from the imaginary axis to the closest eigenvalue and (2) the
inverse of the inner product between the most amplified resolvent forcing and response modes. If
they agree, the resolvent operator can be rewritten in its dyadic representation to reveal that the
adjoint and forward stability modes are proportional to the forcing and response resolvent modes at
that frequency. Hence the real parts of the eigenvalues are important since they are responsible for
resonant amplification and the resolvent operator is low-rank when the eigenvalues are sufficiently
separated in the spectrum. If the amplification is pseudoresonant, then resolvent analysis is more
suitable to understand the origin of observed flow structures. Two test cases are studied: low
Reynolds number cylinder flow and turbulent channel flow. The first deals mainly with resonant
mechanisms hence the success of both classical and mean stability analysis with respect to predicting
the critical Reynolds number and global frequency of the saturated flow. Both scalar measures of
non-normality agree for the base and mean flows and the region where the forcing and response
modes overlap scales with the length of the recirculation bubble. In the case of turbulent channel
flow, structures result from both resonant and pseudoresonant mechanisms, suggesting that both
are necessary elements to sustain turbulence. Mean shear is exploited most efficiently by stationary
disturbances while bounds on the pseudospectra illustrate how pseudoresonance is responsible for
the most amplified disturbances at spatial wavenumbers and temporal frequencies corresponding to
well-known turbulent structures. Some implications for flow control are discussed.

I. INTRODUCTION

A. Background

Decomposing unsteady and turbulent flows into low-rank models is an important step towards
the realization of closed-loop flow control, which has proven to be elusive (at least in part) due
to the high degrees of freedom in most flow systems. Despite the inherent complexity, a time-
averaged flow, or mean, that is statistically stationary can often be defined and leveraged using
the eigenvalue spectrum of the governing Navier-Stokes equations (NSE) to educe the frequencies,
i.e. the imaginary part of the eigenvalues, and shapes of coherent structures which appear in the
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flow. Recent studies have demonstrated the success of mean flow stability analysis for a variety of
flows including thermosolutal convection [1], turbulent jets [2–4], and flow over a backward facing
step [5]. There is also a significant body of work discussing stability analysis of the mean cylinder
wake which was shown by Barkley [6] to correctly identify the frequency of the globally unstable
flow above the critical Reynolds number of Re = 47 [7–9]. Notably, classical linear stability analysis
of the base flow, which is an equilibrium solution of the NSE, at supercritical Reynolds numbers
does not predict the correct observed frequency. The base (laminar) and mean (time-average of
the fluctuating velocity field) profiles are differentiated because of the importance of nonlinearity
in sustaining the latter.

Recent work has endeavored to explain why and when mean stability analysis is valid. Barkley [6]
suggested that success corresponds to cases where the Reynolds stresses are unperturbed at order
ε when considering infinitesimal perturbations εũ(x, y)exp(λt) to the mean flow solution. This was
confirmed by Sipp and Lebedev [10] who determined that the nonlinear interaction of the leading
global mode with its conjugate, i.e. the contribution to the mean Reynolds stresses, significantly
outweighed the interaction of the mode with itself leading to higher frequency harmonics. As shown
by Mantič-Lugo et al. [11] the Reynolds stresses can be approximated with the leading global mode
and its conjugate. Sipp and Lebedev [10] used open cavity flow as a counter example to the
validity of mean stability analysis where the predicted frequencies do not match direct numerical
simulation (DNS) of the flow. This discrepancy can be attributed to the non-normality of the flow
which leads to non-orthogonality of the global modes and sensitivity of the spectrum to perturbation
of the operator [12]. The behavior of these systems can be more accurately characterized by the
pseudospectrum of the LNS operator using resolvent analysis [e.g. 12, 13] rather than the spectrum
alone. Jovanović and Bamieh [14] formulated the linearized problem for laminar channel flow in
input-output terms, where the resolvent operator constitutes the transfer function between them,
considering the component-wise transfer from harmonic exogenous disturbance or forcing (input)
to velocity response (output). There is also a broad literature considering stochastic forcing, [e.g.
15], and the initial condition, transient growth problem, [e.g 16].

McKeon and Sharma [17] and Hwang and Cossu [18] considered the resolvent reformulated with
respect to the turbulent mean flow for canonical turbulent wall flows. The latter authors employed
an eddy viscosity to account for the action of the Reynolds stresses, while the former analysis
extends the approach to include the nonlinear terms as the input forcing to the linear operator, i.e.
closing the feedback loop. McKeon and Sharma [17] performed a singular value decomposition of
the resolvent to identify the inputs giving rise to the most amplified responses which are ranked by
their gain (singular value). The approach has been extended to non-parallel flows [e.g. 5, 19–21].
Beneddine et al. [5] concluded that mean stability analysis was valid when the dominant singular
value of the resolvent operator was significantly greater than the others at a given frequency and
that this condition holds for flows where there is a dominant convective instability mechanism and
an eigenvalue which is nearly marginally stable. In such circumstances, it was shown that the
eigenmodes are proportional to the resolvent response modes.

B. Motivation and scope of the study

This study addresses both stability and resolvent analyses for base and mean flows with an
emphasis on the latter. The analyses are formally related through a dyad expansion of the resolvent
operator and we examine the circumstances under which the stability and resolvent modes are
proportional. The real part of an eigenvalue, which is difficult to interpret when the NSE are
linearized around the mean flow, is shown to be important as it influences the degree to which a
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disturbance is amplified. It also has a bearing on whether or not the resolvent operator is low-
rank since an eigenvalue must be sufficiently separated from the rest of the spectrum in order
to dominate the contribution of other eigenvalues in the dyad expansion. When an eigenvalue is
marginally stable, or very close to the imaginary axis, it drowns out the effect of other eigenvalues
over a large range of temporal frequencies. Non-normality also plays a role in amplification, and
can be investigated through the lens of the pseudospectrum of the LNS operator. Most previous
studies have only investigated the pseudospectra of parallel base flows [e.g. 12, 13, 22–25]. In this
study, pseudospectral analysis is extended to mean flows with or without streamwise development.

We compare two scalar measures of non-normality and argue that the equivalence of the two
implies a resonant amplification mechanism which can be identified by mean stability analysis. The
first compares the contribution from resonance, by computing the distance between the imaginary
axis and the nearest eigenvalue, to the resolvent norm. The product of these two quantities is a
scalar measure of non-normality. The second, which was proposed by Chomaz [26], is to calculate
the inverse inner product between the most amplified resolvent forcing and response mode; this has
also been applied in passing by Qadri and Schmid [27]. When these two measures agree, the most
amplified structure is an eigenvector of the LNS operator. When they do not agree, amplification
can be attributed to pseudo-resonance. The final objective of this study is to be able to predict
the type of amplification mechanism and hence the mode shapes based on the mean profile or
wavenumber vector selected. Analysis of the spectra and pseudospectra of the flows considered
here will form a basis for how to interpret the mechanisms identified by the resolvent for more
complex flows.

C. Choice of flows and outline of the paper

We consider low Reynolds number cylinder flow and turbulent channel flow to demonstrate the
contributions of this paper. Flow around a circular cylinder is an example of an oscillator flow [28]
which has intrinsic dynamics that are insensitive to background noise. The flow exhibits a region
of absolute instability [29, 30] which can be approximated using the wavemaker [e.g. 31]. Using
resolvent analysis and plotting bounds of the pseudospectrum for a given perturbation magnitude,
it is evident that resonance accounts for the bulk of the amplification. The impact of mean flow
advection, however, leads to a resolvent norm which is appreciably larger than the contribution from
resonance alone. In the case of turbulent channel flow, which is a noise-amplifier [28], the choice of
temporal frequency and spatial wavenumbers has an impact on the influence of non-normality. We
analyze several structures which are either highly amplified or representative of known turbulent
structures in order to establish the role of resonant and pseudoresonant mechanisms as well as
generalize when low-rank behavior can be expected. We stress that we consider here flows in which
the dynamics of the linear operator contain features which are related to the full flow.

The rest of the paper is organized as follows. In Section II, the governing equations are de-
rived for the linear operators which form the basis of stability and resolvent analyses and we review
known amplification mechanisms. In Section III, the resolvent operator is rewritten using its dyadic
representation to formally relate stability and resolvent modes and show when the rank-1 approxi-
mation is appropriate for resonant mechanisms. In this section, we introduce the scalar measures of
non-normality and explore the projection of resolvent modes onto eigenmodes. Application of the
findings to circular cylinder flow is considered in Section IV. Resolvent analysis is applied to both
base and mean flows and the results are compared to those from a stability analysis. Section V
considers turbulent channel flow where the influence of the wall-normal height and spatial and
temporal wavenumbers are shown to play a major factor in the type of amplification mechanisms
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which dominate as well as whether or not the resolvent is low-rank. Conclusions are presented in
Section VI along with the implications for reduced-order modeling and control.

II. REVIEW OF GOVERNING EQUATIONS AND AMPLIFICATION MECHANISMS

The relevant operators for the analyses that follow are derived from the incompressible NSE
which are non-dimensionalized by the characteristic length and velocity scales, L and U :

∂tu+ u · ∇u = −∇p+Re−1∇2u (1a)

∇ · u = 0. (1b)

The states u(x, t) and p(x, t) are the spatially- and temporally-varying velocity and pressure fields,
respectively (explicit statement of the spatial and temporal dependences will be dropped hereon
for conciseness), while Re is the Reynolds number based on L and U . After Reynolds-decomposing
the states into a stationary temporal mean (denoted by an overline) and a fluctuating component
(denoted by a prime), one obtains the mean flow equations:

u · ∇u+∇p−Re−1∇2u = −u′ · ∇u′ (2a)

∇ · u = 0. (2b)

For an exact solution of the NSE, i.e. a true base flow, the divergence of the Reynolds stress tensor,
or the right-hand term in Equation 2a, is zero. Henceforth we identify the temporal mean in such
a case by u = U0. If the term is nonzero, however, u does not constitute an exact solution and
the action of Reynolds stresses must be taken into account to satisfy the NSE. We will refer to u
in this case as a (turbulent) mean flow.

Subtracting the mean momentum equations (Equation 2) from the NSE (Equation 1) yields the
following for the fluctuating quantities:

∂tu
′ + u · ∇u′ + u′ · ∇u+∇p′ −Re−1∇2u′ = −u′ · ∇u′ + u′ · ∇u′ = f ′ (3a)

∇ · u′ = 0. (3b)

Equation 3a has been written such that all linear terms appear on the left-hand side. The nonlinear
terms on the right-hand side can be lumped together as a forcing f ′ without loss of generality. The
literature devoted to analyzing these linearized equations is broad and covers a range of flows. We
recap here the analyses required for the subsequent development and refer the reader to recent
reviews and contributions [24–26, 32, 33] for further information.

Our development considers global and spatially periodic modes in the context of bluff body
and wall-bounded turbulent flows, respectively. The conclusions, nevertheless, are applicable when
using the parabolized stability equations (PSE), [e.g. 5], although PSE is appropriate only for the
treatment of convective instability and not absolute instability [34]. They are also applicable to
both base and mean flows although there are important differences between the results for these
profiles which will be drawn out. The temporal mean velocity profiles are known throughout the
domain from numerical simulation for the cylinder flow while they are obtained via an eddy viscosity
model [e.g. 35] for the turbulent channel flow. We begin by considering the general case in which
there exists invariance only in time. In other words, the analysis is performed in the frequency
domain, such that mode shapes may be functions of all three spatial dimensions. Decomposition
into spatial wavenumbers is applied in the case of wall-bounded turbulent flows with streamwise
and spanwise periodicity in Section V.
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A. Eigenmode decomposition

The classical (temporal) linear stability analysis, detailed, for example, in [13], proceeds under
the assumption of small perturbations to the steady state. It has been performed relative to both
base and mean flows in order to determine frequencies subject to exponential growth (instability).
See e.g. [36] for further details. Substituting perturbations of the form

u(x, t) = u(x) + εũ(x) exp(λt), (4)

where ε� 1, into Equation 1 yields at O(ε):

λũ = −u · ∇ũ− ũ · ∇u−∇p̃+Re−1∇2ũ (5a)

∇ · ũ = 0, (5b)

where a tilde will be used to denote that a stability analysis has been performed. Written explicitly
for base flows in operator form, one obtains

λB

(
ũ
p̃

)
= A

(
ũ
p̃

)
, (6)

where A is the LNS operator with respect to the base flow,

A =

(
−U0 · ∇()− () · ∇U0 +Re−1∇2() −∇()

∇ · () 0

)
, (7)

and

B =

(
1 0
0 0

)
. (8)

Similarly, we use L to denote the LNS operator with respect to the mean flow, such that for mean
flow stability analysis

λB

(
ũ
p̃

)
= L

(
ũ
p̃

)
, (9)

with

L =

(
−u · ∇()− () · ∇u+Re−1∇2() −∇()

∇ · () 0

)
. (10)

The resulting eigenvalue problems for base and mean flows are summarized in the upper row of
Table I. Stability analysis is based on the spectrum of the LNS operator and λ is an indicator of the
linear stability of a given profile. The eigenvectors may be used as a basis for modal decomposition.

The adjoint NSE have been derived by, e.g. [37], and the linearized operators can be written for
both base and mean flows, A∗ and L∗, respectively, for the adjoint variables ṽ and q̃,

A∗ =

(
U0 · ∇()− () · (∇U0)∗ +Re−1∇2() ∇()

∇ · () 0

)
, (11)

L∗ =

(
u · ∇()− () · (∇u)∗ +Re−1∇2() ∇()

∇ · () 0

)
. (12)
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Base Flow Mean Flow

Stability Analysis λB

(
ũ
p̃

)
= A

(
ũ
p̃

)
λB

(
ũ
p̃

)
= L

(
ũ
p̃

)

Resolvent Analysis iωB

(
û
p̂

)
= A

(
û
p̂

)
+Cf̂ iωB

(
û
p̂

)
= L

(
û
p̂

)
+Cf̂

TABLE I. Operator form of the equations for stability and resolvent analyses. Variables with a tilde
correspond to stability analysis while a caret indicates resolvent analysis.

The operators satisfy

〈ũ,Aṽ〉 = 〈A∗ũ, ṽ〉 , (13)

〈ũ,Lṽ〉 = 〈L∗ũ, ṽ〉 , (14)

where <,> is the scalar product associated with the energy in the whole domain.
For a general operator, T , that is normal, i.e. TT ∗ = T ∗T , the eigenvectors of T corresponding to

distinct eigenvalues are orthogonal although the eigenvalues may be complex. Self-adjoint operators
(T = T ∗), on the other hand, have orthogonal eigenvectors and real eigenvalues. In general, the
LNS operators A and L are neither self-adjoint nor normal. These phenomena account for the
differences between Equations 7, 10 and Equations 11, 12.

B. Resolvent analysis

For the more general case when the perturbation cannot be considered to be infinitesimal and the
nonlinearity f ′ is retained, Equation 3a can be rewritten in terms of a transfer function between the
forcing (input) and response state (output) [e.g. 13, 14, 17]. This transfer function is the (linear)
resolvent operator, which can be defined around either the base or mean flow (see Table I).

For harmonic forcing and response at temporal frequency ω,

f ′ = f̂ exp(iωt), u′ = û exp(iωt) (15)

and a base flow profile, u = U0,

û = H(ω)f̂ , (16)

where the caret denotes that the perturbation is associated with a resolvent analysis. The resolvent
operator is given by

H(ω) = CT (iωB −A)−1C, (17)

where

C =

(
1
0

)
. (18)
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Similarly, for a mean flow,

H(ω) = CT (iωB −L)−1C. (19)

It should be noted that the sense of the imaginary and real parts of ω is reversed in the resolvent
analysis relative to the definition customary to the stability literature of Equation 4: here the real
part of ω is the frequency associated with a mode while the imaginary part is set to zero as only
neutral disturbances are considered. In stability analysis, the imaginary part of λ is the frequency
of the disturbance and the real part is the growth rate.
H(ω) can be decomposed via a singular value decomposition (SVD), e.g. [17]:

H(ω) = Ψ(ω)Σ(ω)Φ∗(ω), (20)

where Ψ and Φ are the left and right singular vectors corresponding to the response and forcing
modes, often called resolvent modes [see 17], respectively. Both sets of singular vectors are guaran-
teed to be orthonormal bases and are ranked according to their gain, or singular value, contained
in the diagonal matrix Σ. The resolvent operator can thus be written as the sum of outer products
of the left and right singular vectors

H(ω) =

∞∑
j=1

ψ̂j(ω)σj(ω)φ̂∗j (ω). (21)

H(ω) is (approximately) low rank if

p∑
j=1

σ2
j ≈

∞∑
j=1

σ2
j , (22)

where σp � σp+1 and p is small [33, 38] . If the leading singular value, or resolvent norm, is
significantly greater than all others (σ1 � σ2) then the rank-1 approximation can be invoked and
the resolvent is approximated by the outer product of the leading optimal response and forcing
modes:

H(ω) ≈ σ1ψ̂1φ̂
∗
1. (23)

The physical interpretation of the resolvent response modes is the response to forcing that results
in a neutrally stable response, i.e. with the real component of frequency equal to zero. The singular
value gives the input-output gain, here associated with the energy norm.

C. Amplification mechanisms

The origin of the amplification mechanisms can be identified by expanding the resolvent through
an eigenvalue decomposition of the LNS operator,

H(ω) = CT (iωB − V ΛBV −1)−1C. (24)

Here V represents the matrix of eigenvectors of the LNS operator for either the base or mean flow
profile and Λ the diagonal matrix of eigenvalues. These can be used to find an upper and lower
bound for the resolvent norm [see 13]:

‖iωI −Λ‖−1 ≤ ‖H(ω)‖ ≤ ‖V ‖‖V −1‖︸ ︷︷ ︸
pseudoresonance

‖iωI −Λ‖−1︸ ︷︷ ︸
resonance

, (25)
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where ‖ · ‖ is the (operator) 2-norm. The far-righthand term in Equation 25 is forcing in the
vicinity of an eigenvalue, i.e. ω = λ, or amplification due to resonance, which is predictable from an
eigenanalysis. Large amplification also arises in the event of pseudoresonance when the condition
number κ = ‖V ‖‖V −1‖ is large due to non-orthogonality of the eigenvectors, a consequence of the
non-normal nature of L and hence H(ω). In the formulation of Equation 25, the resolvent therefore
contains both the amplification mechanisms associated with the eigenvalue spectrum accessed via
eigenanalysis (normal mode linear stability analysis) and the pseudo-resonant amplification that is
possible when the eigenvectors are not orthogonal to each other.

To begin a review of known amplification mechanisms, we first consider flows without streamwise
development where U0 = U0(y) or u = u(y). When an amplification mechanism is purely normal,
the forcing and response modes are identical as seen in Figure 1(a-b). Brandt et al. [39] described
a component-type non-normality (this term originated with Marquet et al. [40] in the context of
forward and adjoint eigenmodes), which distributes energy in different velocity components of the
forcing and response modes. The root of this non-normality is the mean shear term ∂u/∂y in
the LNS operator. Figure 1(c-d) is a cartoon of the lift-up mechanism [41] where a disturbance
concentrated in v leads to a response in u. In the absence of shear, the LNS operator is still not
self-adjoint due to the mean flow advection term resulting in a phase difference between the forcing
and response modes as seen in Figure 1(e-f). When both mean shear and mean flow advection are
nonzero, one observes the Orr mechanism [42] which reorients upstream-leaning forcing modes with
the mean shear such that the response modes are leaning downstream [43] as seen in Figure 1(g-h).

For a flow with streamwise development, Chomaz [26] identified a convective-type non-normality
separating the spatial support of forcing and response modes, with the latter being downstream
of the former. The source of this non-normality is mean flow advection since the adjoint of the
derivative operator introduces a negative sign implying that adjoint perturbations are transported
upstream. Forward perturbations are transported downstream. For absolutely unstable flows, for
which perturbations grow both upstream and downstream of the source, the advection term may no
longer separate the spatial support of the adjoint and forward modes leading to regions of overlap
at resonant frequencies. This region, known as the wavemaker for base flows, is associated with
non-zero values of W, where

W(x0) = ‖ũ(x0)‖‖ṽ(x0)‖, (26)

and x0 denotes a position in space [see derivation of 31]. Meliga et al. [44] identified a wavemaker
in the context of the mean cylinder wake, interpreting it as a sensitivity map of the vortex shedding
frequency and amplitude. In the context of resolvent analysis, Brandt et al. [39] noted that the
overlap of forcing and response modes is a qualitative proxy for sensitivity of the resolvent norm
to base flow modifications. Qadri and Schmid [27] derived an expression for the sensitivity of σ1 to
small localized changes in the governing equations

∇Aσ1 = σ2
1Real(φ̂1,iψ̂

∗
1,j), (27)

where the subscripts i and j are the velocity component of the forcing or response, respectively. In
the event that the resolvent identifies eigenmodes as the most amplified forcing and response, the

wavemaker computed by ‖ψ̂1(x0)‖‖φ̂1(x0)‖ can be interpreted as the degree to which the resolvent
norm is sensitive at a spatial location to modifications of the LNS operator.

The wavemaker approximates regions of the flow which are absolutely unstable or self-sustaining
since perturbations are prevented from convecting due to reverse flow [45]. If the flow is convectively
unstable, there is no region of reverse flow and so u is always positive. In this case, the optimal
response or stability mode will be downstream of the optimal forcing or adjoint mode as depicted
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

FIG. 1. Cartoon of forcing (left) and response (right) modes corresponding to various amplification mech-
anisms. Panels (a, b) are a purely normal mechanism where the modes are identical whereas (c, d) are
a component-type non-normality due to the lift-up mechanism. Panels (e, f) have a π/2 phase shift be-
tween the modes due to the non self-adjoint nature of the LNS operator. When coupled with mean shear,
this results in the Orr mechanism (g, h) where the forcing mode leans upstream against the mean shear
and the response mode leans downstream with the mean shear. Panels (i, j) illustrate a convective-type
non-normality where mean flow advection results in the forcing being upstream of the response. In panels
(k, l) the vertical dashed-dotted lines denote the region where the forcing and response modes overlap
in the streamwise direction. The flow is said to be absolutely unstable in this region and convectively
unstable elsewhere. Positive/negative isocontours are denoted by solid/dotted lines and blue/red colors
indicate streamwise/transverse components, in the x, y directions, respectively. Each mode is nonzero in
one velocity component only.
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in Figure 1(i-j). Huerre and Monkewitz [29] have shown that when a mean profile of hyperbolic
tangent form exhibits greater than 13.6% reverse flow with respect to the free stream, the flow is
absolutely unstable. The streamwise extent of absolute instability and the wavemaker is finite since
flow reversal is confined to a certain portion of the flow as illustrated by the cartoon in Figure
1(k-l). This information is encoded within the advection term u · ∇() through the sign of u.

D. Spectrum and pseudospectrum of the LNS operator

Analyzing the resolvent corresponds to considering the spectrum of the perturbed LNS operator:

Λε(A) = {z ∈ C : z ∈ Λ(A+E) where ‖E‖ ≤ ε}, (28)

where Λε is the pseudospectrum of A under a perturbation magnitude ε > 0 [12, 22, 36]. An
equivalent definition is given by

Λε(A) =
{
z ∈ C : ‖(zI −A)−1‖ ≥ ε−1

}
∪ Λ(A), (29)

where Λ = Λ0 is the spectrum of A. Throughout the paper, we will use Λ to represent the set
of eigenvalues and Λ the diagonal matrix of eigenvalues. If A is normal, Λε can be interpreted as
the set of points away from Λ by only less than or equal to ε on the complex plane [see 36]. If
A is non-normal, this distance may be greater than ε signifying that an eigenvalue is sensitive to
perturbation of the LNS operator.

III. RESOLVENT NORM AND THE SPECTRUM

In this section, the conditions under which analysis of the resolvent is likely to identify stability
modes as the most amplified disturbance are formalized and scalar measures of non-normality are
introduced. We also highlight when the rank-1 approximation is appropriate for amplifications
which are resonant in character. 2-by-2 example operators highlight trends with respect to how
resolvent modes project onto eigenmodes and how the spectrum is related to the resolvent norm.

A. Dyad expansion of the resolvent operator

As is more customary for the eigenvalue problem [25, 37] a dyad expansion of the resolvent R
for a generic, non-singular linear operator Q can be performed,

R = (zI −Q)−1 =

n∑
j=1

1

z − λj
g̃jh̃

∗
j , (30)

where g̃j and h̃j are the jth left and right eigenvectors of Q, respectively. Since the objective
of resolvent analysis is often the identification of the most amplified neutral disturbance, iω is
substituted for z and the eigenvectors of the LNS operator for g̃j and h̃j into Equation 30 to give

H(ω) =

n∑
j=1

1

iω − λj
ũj ṽ

∗
j . (31)
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Thus if the real part of an eigenvalue λp is sufficiently close to zero and the forcing frequency ω is
identical to the imaginary part, then its contribution to the series dominates over the contributions
from all other eigenvalues. The resolvent, furthermore, can be approximated by the forward and
adjoint eigenvectors corresponding to that frequency weighted by the inverse distance between the
eigenvalue and the imaginary axis:

H(ω) ≈ 1

iω − λp
ũpṽ

∗
p . (32)

Equation 32 represents a rank-1 approximation of the resolvent operator using eigenvectors. In the
context of base flows, the resolvent is singular at the critical Reynolds number since the real part of
the least stable eigenvalue is identically zero when it crosses the imaginary axis. In the case of mean
flows, which tend to be marginally stable [e.g. 1, 6, 35], Equation 32 is applicable for eigenvalues
near the imaginary axis. It is important to note that an eigenvalue does not have to be marginally
stable, but it must be the dominant contribution to the series in Equation 31. It is possible to
obtain a rank-1 approximation of the resolvent even when an eigenvalue is highly damped as will
be seen in Section IV.

This rank-1 approximation fails when there is not sufficient separation of eigenvalues at the
frequency of interest. If there are several eigenvalues in the vicinity of the imaginary axis at a
frequency ω, then the resolvent operator can no longer be approximated by just one outer product
in Equation 32. Equating the two low-rank approximations of the resolvent operator in terms of
eigenvectors (Equation 32) and resolvent modes (Equation 23) implies the following:

σ1ψ̂1φ̂
∗
1 ≈

1

iω − λr
ũrṽ

∗
r =⇒ ψ̂1 ∝ ũr, φ̂1 ∝ ṽr, (33)

since

ψ̂1 ≈
1

σ1(iω − λr)
ũrṽ

∗
r φ̂1 = βũr, (34)

where β is a complex constant. The leading resolvent response and forcing modes are proportional
to the forward and adjoint eigenmodes, respectively, and this holds for any base or mean flow as
long as only one eigenvalue leads to amplification. The similarity between the resolvent forcing and
adjoint stability modes draws out how the resolvent operator contains sensitivity information, as
described by, [e.g. 27]. The development is less amenable for pseudoresonant mechanisms where
the proximity of an eigenvalue to the imaginary axis does not necessarily govern the behavior of
the resolvent. It is argued in Section III E that pseudoresonant mechanisms generally correspond
to a low-rank operator.

B. The relationship between spectral radius and spectral norm for approximately low-rank
operators

For a nonsingular linear operator Q, we now seek to find an explicit relationship between the
spectrum of Q and the spectral norm of its resolvent R(z) = (zI − Q)−1. We are particularly
interested in cases where R(z) is approximately low-rank (i.e., a small number of leading singular
values are much larger than the others).
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The spectral radius ρ of an operator Q can be defined through the eigendecomposition V ΛV −1

ρ(Q) = max
λj∈Λ

(|λj |). (35)

The spectral radius of the corresponding resolvent operator is

ρ(R(z)) = max
λj∈Λ

(|z − λj |−1) =

[
min
λj∈Λ

(|z − λj |)
]−1

. (36)

Note that, with this definition, Equation 25 may be expressed as

ρ(R) ≤ σ1 ≤ κρ(R).

For non-normal operators with large condition numbers, the upper and lower bounds span a large
range, and thus do not give much insight into the size of the resolvent norm, σ1. To estimate the
resolvent norm in terms of the spectral radius, we will make use of the relationship [46]

ρ(R) = lim
n→∞

‖Rn‖1/n. (37)

Suppose now that the largest singular value of resolvent operator (for a given z) is much larger
than the rest, such that

R(z) = ΨΣΦ∗ ≈ ΨΣ1Φ
∗,

where Σ1 is Σ with all but the first singular value set to zero.
Suppose in addition that this truncation is also accurate for powers of R, i.e., that we have

Rn ≈ (ΨΣ1Φ
∗)n. (38)

Defining the quantity

rij =
φ̂∗i ψ̂j

φ̂∗j ψ̂j
,

we then have

(Φ∗ΨΣ1)
n

= σn1 (φ̂∗1ψ̂1)n

r11 0 · · · 0
r21 0 · · · 0
...

...
. . .

...

 .

We may now estimate the norm of powers of the resolvent as

‖Rn‖ = ‖Φ∗RnΦ‖ ≈ ‖ (Φ∗ΨΣ1)
n ‖ = σn1 |φ̂∗1ψ̂1|n−1‖r‖,

where r = [r11 r21 · · · ]T , and we have used the fact that Φ is unitary. Consequently, assuming
that Equation 38 holds, Equation 37 results in the estimate

ρ(R) ≈ σ1|φ̂∗1ψ̂1|. (39)
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In other words, we may estimate that the resolvent norm is larger than the lower bound in Equation

25 by a factor of |φ̂∗1ψ̂1|−1. This analysis relied on the rather restrictive assumption that only the
leading singular value was large. If there is a pair of large singular values, as is often the case
in channel flows (owing to spatial symmetry across the mid-plane of the channel) then we may
generalize the argument as follows. Suppose that σ1 and σ2 are of comparable size, and that all

other singular values are negligibly small. If we further assume that |φ̂∗1ψ̂2|, |φ̂∗2ψ̂1| ≈ 0, then we
find that

(Φ∗ΨΣ)
n ≈

σ1φ̂
∗
1ψ̂1 σ2φ̂

∗
1ψ̂2 0 · · · 0

σ1φ̂
∗
2ψ̂1 σ2φ̂

∗
2ψ̂2 0 · · · 0

...
...

...
. . .

...


n

≈ σn1 |φ̂∗1ψ̂1|n−1

r11 0 · · · 0
r21 0 · · · 0
...

...
. . .

...

+ σn2 |φ̂∗2ψ̂2|n−1

0 r12 0 · · · 0
0 r22 0 · · · 0
...

...
...

. . .
...

 ,

which, following the same approach as before, gives

ρ(R) ≈ max{σ1|φ̂∗1ψ̂1|, σ2|φ̂∗2ψ̂2|}. (40)

Thus the inverse of |φ̂∗1ψ̂1| can be interpreted as the contribution of non-normality to the resolvent
norm. We can also identify the product σ1|iω − λ| as a quantification of non-normality since
|iω − λ|−1 represents the resonance contribution to the resolvent norm. However, since highly
amplified modes may occur at non-resonant frequencies, the contribution from |iω − λ| is typically
overestimated as it is likely for a pseudoeigenvalue to reside much closer to the imaginary axis
than the nearest eigenvalue of the unperturbed spectrum. Other scalar measures of non-normality
have been proposed, e.g. by Trefethen and Embree [47] but are not investigated here. As will be
seen in Sections IV and V, these two predictions tend to agree in cases where amplification can be
attributed to a single eigenvalue and mean stability analysis is valid.

C. Asymptotic limits of the influence of the lift-up mechanism

We specialize now to operators with similar behavior to the LNS system and consider the associ-
ated features of eigenvector and singular value decompositions. We choose a model operator with
characteristics similar to the LNS, in the vein of that explored by Gebhardt and Grossmann [48].
The LNS for the two-dimensional velocity field associated with a one-dimensional base or mean
flow variation takes a similar form to M , where

M =

(
m1 d
0 m2

)
. (41)

By selecting a one-dimensional operator, we have elected to neglect spatial (streamwise and span-
wise) dependence of the base flow and therefore the modes themselves here. Nevertheless, the
impact of the various types of term in the LNS operator on the resolvent modes can be modeled.
Here Real(mj) < 0 is analogous to the stabilizing role of viscosity through the Re−1∇2() term and
Imag(mj) represents mean flow advection through the −u · ∇() term. d is real and is analogous
to mean shear () · ∇u, which here is equal to the gradient in the 2-direction of mean flow in the
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1-direction. Thus in this simple 2-by-2 example, d models the lift-up mechanism [41] by coupling
forcing in the n2-direction (second component of the vector) with a response in the n1-direction
(first component of the vector).

The resolvent of M is:

H(ω) =

(
−1/(m1 − iω) d/[(m1 − iω)(m2 − iω)]

0 −1/(m2 − iω)

)
. (42)

In order to isolate the effect of lift-up introduced via the off-diagonal term in Equation 43, the eigen-
values are assumed to be real and we limit the immediate development to stationary disturbances
(ω = 0) to eliminate the remaining imaginary terms, such that

H(ω = 0) =

(
−1/(m1) d/[(m1m2)]

0 −1/(m2)

)
. (43)

For the limiting case of d = 0, i.e. no lift-up, M and its resolvent are self-adjoint and therefore
normal. If the least stable eigenvalue has real part close to zero which would occur, say, if m1 → 0,
the singular value decomposition can be simplified to

lim
m1→0

SVD(H(ω = 0)) =

(
1 0
0 1

)(
σ1 0
0 σ2

)(
1 0
0 1

)
, (44)

where σ1/σ2 → ∞, i.e. the resolvent is low-rank and the response can be well predicted from the

leading singular vectors ψ̂1 and φ̂1. For a normal operator, these are identical to each other, ψ̂1 =

φ̂1 = [1 0]T , and identical to the corresponding eigenvectors as seen in Figure 1(a-b). The inner

product |φ̂∗1ψ̂1| quantifies the componentwise correspondence between the forcing and response
modes which, in this limit, is equal to unity. In the limit d→∞

lim
d→∞

SVD(H(ω = 0)) =

(
1− γ −δ
δ 1− γ

)(
σ1 0
0 σ2

)(
δ γ − 1

1− γ δ

)
, (45)

where σ1/σ2 → ∞ and δ, γ → 0. The constants δ and γ are real and positive. The resolvent

operator is still low-rank in this limit, but ψ̂1 and φ̂1 are now orthogonal to each other and thus

|φ̂∗1ψ̂1| → 0. The perturbation energy in the optimal forcing mode is concentrated in the second
component of the vector while the perturbation energy in the optimal response mode is concentrated
in the first component, as sketched in Figure 1(c-d).

The analogous eigenvalue decomposition of (non-normal) M is

lim
d→∞

EIG(M) =

(
1 1
0 α

)(
m1 0
0 m2

)(
1 −1/α
0 1/α

)
, (46)

where α→ 0 is a positive, real constant. Unlike the resolvent response modes which are orthogonal
to one another, the eigenvectors are non-orthogonal, such that κ → ∞. In this case, the stability
and resolvent modes are different and it is not clear from the eigenmode decomposition that the
resolvent operator is low-rank. Since the eigenvectors are nearly parallel, they both project equally
well onto the optimal resolvent response mode. The same can be said for the projection of the
adjoint modes, which are also nearly parallel, onto the optimal resolvent forcing mode. As will
be seen for the example operators below, it is desirable for the most amplified resolvent mode to
project onto as many eigenmodes as possible, just as they do for this limiting case, to maximize
the resolvent norm. It is much more efficient, consequently, to use resolvent modes as a basis for
low-order models as opposed to eigenmodes.
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(a) (b) (c) (d)

FIG. 2. Comparison of the pseudospectra and resolvent norm for the operators given in Equations 47
and 48, which have the same eigenvalues. (a, b) normal operator S, (c, d) non-normal operator P . The
eigenvalues, i.e. the eigenspectrum, are marked by red crosses and color contours outline the bounds of the
perturbed spectrum for constant perturbation magnitudes in (a, c). The dashed contours in (a) reflect that
the pseudospectra are circles centered on the eigenvalues, which is not true for the non-normal operator
in (c). The resolvent norm in each case (b, d) reflects the value of these contours along the imaginary
axis. Red, dashed horizontal lines indicate the resonant frequencies of the operator, i.e. the frequencies
corresponding to the eigenvalues, while the blue, solid horizontal line represents the most highly amplified
frequency in the non-normal case.

D. Resonance curve and resolvent norm

To demonstrate the amplification characteristics of the resolvent for normal and non-normal
operators, we sketch in Figure 2 the pseudospectra for simple example operators,

S =

(
−1.5 + 1.1i 0

0 −1.9− 2.2i

)
, (47)

P =

(
−1.5 + 1.1i 5

0 −1.9− 2.2i

)
, (48)

where S is a normal operator containing only the eigenvalues of the non-normal operator P . Level
curves of ε for operators S and P satisfy

Λε(S) = {z ∈ C : ‖(zI − S)−1‖ ≥ ε−1}, (49)

and

Λε(P ) = {z ∈ C : ‖(zI − P )−1‖ ≥ ε−1}, (50)

respectively.
For a normal operator such as S, κ = 1 and the level curves of ε are proportional to the distance

from the closest eigenvalue. The resolvent norm for a particular ω is inversely proportional to the
distance from iω to the nearest eigenvalue. This is what we shall refer to as the resonance curve.
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The spectrum and pseudospectra of S are shown in Figure 2(a); there are two stable eigenvalues
denoted by red crosses, and the pseudospectra consist of circular contours centered on the two
eigenvalues. Since both eigenvalues are significantly damped, amplification due to resonance is not
possible and the magnitude of the resolvent norm is less than one (Figure 2(b)). Moreover, the
eigenvalue and singular value decompositions of S yield parallel basis functions, and the singular
values are simply the magnitude of the eigenvalues.

Operator P , however, is non-normal due to the non-zero off-diagonal term and, with reference
to Equation 25, κ > 1. The shifts of the eigenvalues of the perturbed operator are not proportional
to ε, as indicated by the pseudospectrum isocontours in Figure 2(c), and the resolvent norm of
Figure 2(d) is appreciably larger than that of the normal case in Figure 2(a), with values exceeding
one. Furthermore, the maximum value of the resolvent norm occurs at a non-resonant frequency,
ω = 0.66. Amplification is possible for a linearly stable operator due to pseudoresonance under
forcing at any frequency for which ‖H(ω)‖ > 1. It is important to add that even when the
primary contribution to amplification is a normal mechanism, non-normality can still contribute
to exacerbate the response. For example, the amplification at the frequencies of the eigenvalues in
Figure 2 is higher for operator P than it is for the purely normal operator S. That being the case,
the right-hand side of Equation 25 may be large due to one or both terms in the product.

E. Projection of resolvent modes onto eigenmodes

The projections of the first resolvent mode ψ̂1 onto the eigenvectors of operators P and S are

plotted in Figure 3 for various ω. For S, the values are either one or zero meaning that ψ̂1 is one of
the operator’s eigenvectors, even at non-resonant frequencies. The eigenvector it chooses is simply
whichever eigenvalue is closest to z = iω for a given ω. The projections for operator P are far more

interesting. There is a nontrivial projection of ψ̂1 onto both eigenvectors for every ω, hence why the

resolvent norm in Figure 2 is higher for operator P at every frequency. The maximum |ψ̂∗1ũ1| and

|ψ̂∗1ũ2| occur at λ1 and λ2, respectively, which is to be expected since the forcing is at the frequency
of these eigenvalues. The projections at the most amplified frequency (ω = 0.66) are both high,
which can be seen by their product. The frequency where the product peaks, however, does not
match the most amplified frequency since Real(λ1) < Real(λ2), hence the resolvent’s preference
for choosing a frequency closer to λ1.

Since both eigenvectors are needed to capture the behavior of operator P but only one resolvent
mode is needed, it can be concluded that resolvent modes are a more efficient basis for capturing
the dominant input-output behavior of the operator. It can also be inferred that the projection of

ψ̂2 onto the eigenvectors is relatively small since it is orthogonal to ψ̂1. It is no surprise, therefore,
that the resolvent operator tends to be low-rank at pseudo-resonant frequencies since the optimal
resolvent response mode projects onto many eigenvectors. This forces suboptimal resolvent modes
to be nearly orthogonal to many eigenvectors of the LNS operator and so their contribution to the
input-output behavior is negligible.

Having examined the implications of the structure of the operator on amplification and forcing
and response modes, we now consider two real example flows. Low Reynolds number cylinder flow
is used to investigate the choice of base or mean flow as the linear stability threshold is crossed
(Section IV). A canonical wall turbulence configuration is employed to identify the influence of the
various terms in the resolvent on the resulting SVD (Section V).
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ũ1|

|ψ̂∗

1
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FIG. 3. Projection of the first resolvent mode ψ̂1 onto the eigenvectors ũ1 (brown dashed-dotted line) and
ũ2 (green dotted line) of S(a) and P (b). The product of these projections is the black, long dashed line.
Red, dashed horizontal lines indicate the resonant frequencies of the operators and the blue, solid horizontal
line represents the most highly amplified frequency in the non-normal case.

IV. APPLICATION TO CYLINDER FLOW

We apply a global resolvent analysis to the base and mean velocity profiles for cylinder flows
under the critical Reynolds number Rec ≤ 47 [7–9], as well as mean flows of the 2D laminar vortex
shedding regime where Re ≤ 189 [49]. Cylinder flow is a particularly suitable choice to investigate
trends associated with the wavemaker since it exhibits a region of absolute instability.

A. Numerical methods

The relevant procedures for computing the two-dimensional base and mean flows, U0 and u, are
detailed here before applying the analysis tools.

The NSE (Equation 1) are non-dimensionalized by the cylinder diameter D and inlet velocity
U∞ which are both set to unity. For the base flow calculation, a uniform inlet velocity con-
dition is prescribed while no-slip Dirichlet boundary conditions are applied to the cylinder sur-
face, symmetric conditions to the upper and lower boundaries, and advective conditions to the
outlet. The nonlinear equations for U0 are solved using a Newton method on a finite-element
mesh generated by FreeFem++ (see [50]). Taylor-Hood finite elements (P1b, P1b, P1 for U0,
V0, and P0 respectively) are used for spatial discretizations. The computational domain Ω spans
−30 ≤ x/D ≤ 60,−25 ≤ y/D ≤ 25 with the cylinder centered at the origin and the mesh is made
up of 104,214 triangles resulting in 365,358 degrees of freedom for velocity and pressure.

A DNS of the cylinder flow is also performed to obtain the mean flow profile using FreeFem++
with the same boundary conditions and mesh. A second-order semi-implicit time discretization is
employed with a non-dimensional time step ∆t = 0.02. Beyond Rec, the simulated flow settles into
regular vortex shedding at a fixed amplitude A and temporal frequency ωs where the subscript s
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denotes shedding. The mean flow u is computed by time-averaging the DNS state vector over 25
complete shedding cycles. The linear operators are formed in FreeFem++ and the only boundary
condition which differs with respect to the base flow calculation is at the inlet where homogeneous
boundary conditions are enforced so that the perturbations vanish at infinity. The eigenvalues are
computed using a shift-and-invert strategy, the details of which are discussed in Nayar and Ortega
[51]. The generalized eigenvalue problem is then solved with the Implicitly Restarted Arnoldi
method using the ARPACK library developed by Lehoucq and Sorensen [52].

The singular values of the resolvent operator are computed in a manner outlined by Sipp and
Marquet [53]; a brief summary of the procedure is presented here. The singular value problem is
reformulated as the following eigenvalue problem:

H(ω)∗H(ω)φ̂i = σ2
i φ̂i, (51)

where φ̂i is the ith right singular vector corresponding to the singular value σi of H(ω). The
largest eigenvalues of the Hermitian operator H(ω)∗H(ω) are computed using the ARPACK library
and the parallel MUMPS solver developed by [54]. The response modes are then computed from
Equation 16.

B. Base flow velocity profile

A resolvent analysis is performed on the cylinder base flow for various Reynolds numbers over
a range of ω. Contours of the pseudospectrum for Re = 47 are overlaid onto the spectrum, which
is in agreement with Sipp and Lebedev [10] to within the sensitivity to the mesh geometry, in
Figure 4(a). The variation of the resolvent norm along the imaginary axis, i.e. σ1, is plotted
alongside the second singular value of the resolvent, σ2, and the resonance curve in Figure 4(b).
There is a frequency ωmax where the first singular value is several orders of magnitude larger than
all the others (only two are shown for clarity). The least stable eigenvalue, whose imaginary part is
ωmax, dominates the behavior of the resolvent norm and its influence spans from 0 < ω < 1.1. For
the cylinder base flow at Re = 47, ωmax = 0.742 corresponds to the true ωs at the onset of vortex
shedding. The amplification is significantly lower for all other frequencies, including harmonics,
and the resolvent is not low-rank since the eigenvalues are not separated for ω > 1.1. This lack of
a low-rank behavior has also been observed, for example, in jet flow by Schmidt et al. [21].

The previous observations reinforce why stability analysis about the base flow can predict Rec.
Only one structure at the globally most amplified frequency is prone to significant amplification at
subcritical Reynolds numbers and it is the first to become unstable. This is characteristic of an
absolute instability mechanism in which frequency selection is not influenced by background noise.
The stability modes and resolvent modes are nearly identical as seen in Figure 5. The effect of lift-up
is weak since the energy is fairly evenly distributed in the u− and v−components of both the forcing
and response modes in Figure 5. Mean flow advection, on the other hand, plays a significant role in
the spatial support of the forcing and response modes which are located upstream and downstream
of the cylinder. Chomaz [26] made an analogous observation for the forward and adjoint eigenmodes
and attributed this to convective non-normality. Since the resolvent operator is low-rank, computing

|φ̂∗1ψ̂1|−1 is a good estimate of the non-normal amplification experienced by the flow. We obtain

a value of ‖φ̂∗1ψ̂1‖−1 = 79.4 which is in good agreement with σ1(ωmax)|iωmax − λls| = 79.3 (see
Table II). This accounts for the large gap between the peaks of the resolvent norm and resonance
curve in Figure 4(b).

The least stable global mode and its adjoint counterpart are computed for various Reynolds num-
bers near and below Rec to illustrate the cylinder transition from convective to absolute instability.
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(a) (b)

FIG. 4. (a) Spectrum (red dots) and pseudospectrum (filled contours, ε increasing as colors change from
dark to light) of the LNS operator for the cylinder base flow at Re = 47. (b) The resolvent norm, σ1 (solid
line), i.e. the value of ε−1 along the imaginary axis, second largest singular value σ2 (dash-dotted line) and
inverse distance from the imaginary axis to the nearest eigenvalue (dotted red line).

Figure 6 juxtaposes the v-component of the adjoint mode, forward mode, and wavemaker. The for-
ward mode has unit magnitude while the adjoint has been normalized with respect to the forward
mode such that their inner product is unity. A wavemaker first appears for Re = 25, the Reynolds
number at which Monkewitz [30] determined the cylinder wake is absolutely unstable. There is no
wavemaker for lower Reynolds numbers due to the downstream location of the forward eigenmode
which is a consequence of mean flow advection; the strength of the reverse flow is not sufficient
to produce an overlap region. For the lowest two Reynolds numbers considered in Figure 6, the
contour levels of the forward eigenmode immediately behind the cylinder are three orders of magni-
tude smaller than their higher Reynolds number counterparts. The downstream location where the
contour levels are significant does not appear within the plotted domain. As the Reynolds number
increases, the velocity deficit grows and the reverse flow directly behind the cylinder strengthens.
The forward eigenmode gradually appears closer to the cylinder until there is a nontrivial overlap
between it and its adjoint counterpart.

Beyond the critical Reynolds number, the region of the flow which is absolutely unstable is
sufficiently long for the flow to become globally unstable. Perturbations grow exponentially in time
until they are saturated by nonlinearities. The resulting velocity fluctuations are dominated by
the vortex shedding. Once the flow has reached a limit cycle, the shedding frequency is different
from that predicted by resolvent analysis of the base flow since the frequency of the least stable
perturbations is altered during the saturation process. Additionally, the mean recirculation region
behind the cylinder is shorter than its base flow counterpart in the streamwise direction.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 5. Comparison of stability modes (left) with resolvent modes (right) at the critical Reynolds number
Rec = 47 and a temporal frequency of ω = 0.742. Panels (a, b) are the streamwise component of the
forward or response mode, (c, d) are the transverse component of the forward or response mode, (e, f) are
the streamwise component of the adjoint or forcing mode, and (g, h) are the transverse component of the
adjoint or forcing mode. The eigenmodes and resolvent mode shapes are essentially indistinguishable for
this flow.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

FIG. 6. Contours of the transverse velocity for the leading adjoint modes ṽ† (left) and forward modes
ṽ (middle) of the base flow. The Reynolds numbers (Re =15; 25; 35; 45; and 50) increase from top to
bottom. The wavemaker W (right) is computed using the forward and adjoint modes. Contour levels
are not identical for the adjoint modes which are normalized based on the forward modes. Note that the
streamwise velocity component has not been plotted even though the wavemaker depends on this quantity.
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(a) (b)

FIG. 7. (a) Spectrum (red dots) and pseudospectrum (filled contours, ε increasing as colors change from
dark to light) of the LNS operator for the cylinder mean flow at Re = 100. (b) The resolvent norm, σ1

(solid line), i.e. the value of ε−1 along the imaginary axis, second largest singular value σ2 (dash-dotted
line) and inverse distance from the imaginary axis to the nearest eigenvalue (dotted red line).

C. Mean velocity profile

The focus of resolvent analysis typically shifts when using the mean velocity profile rather than
the base flow. The goal becomes identification of the energetically important structures and their
frequencies in the unsteady flow rather than prediction of the external forcing and structure which
appears when the flow becomes unsteady.

Contours of the pseudospectrum corresponding to the mean flow in the 2D laminar shedding
regime are overlaid with the spectrum of the mean flow at Re = 100 in Figure 7. The resolvent
norm along the imaginary axis is plotted alongside the second largest singular value and resonance
curve. Similar to the base flow, there is only one frequency at which there is a resonant peak.
Unlike the base flow case, the most amplified frequency at supercritical Reynolds numbers correctly
predicts the shedding frequency as seen in Figure 8. While the resolvent norm always peaks at
a distinct frequency for all cases, the growth rate of the least stable eigenvalue of the base flow
continues to grow while the frequency remains roughly constant. Figure 8 shows that the largest
peak occurs at the stability limit, Rec. The maximum amplification, which is proportional to the
inverse distance between the eigenvalue and the imaginary axis, indicates the progression of the
least stable pole across the complex plane and over the imaginary axis. The resolvent norm has
not been plotted for supercritical base flows since the resolvent attempts to quantify the size of
perturbation necessary for the spectrum to cross the neutral axis. For the base flow at the critical
Reynolds number Rec and mean flows where Re > Rec, the size of this perturbation is very small
leading to very highly amplified disturbances.

The peak resolvent norm for the mean flows has no discernible pattern in Figure 8 since the real
part of the eigenvalue is approximately zero. It is very sensitive, therefore, to the spatial resolution
and temporal convergence of the mean flow in addition to the discretization of ω. Nevertheless,
proportionality between the resolvent and stability mode shapes can be expected. Substituting iωs
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(a) (b)

FIG. 8. (a) The resolvent norm for the critical (solid red line) and subcritical (solid black lines) base flows.
(b) The resolvent norm for supercritical mean flows.

for λ into Equation 31, since the real part of the marginally stable mode is nearly zero, yields

H(ωs) ≈ ũsṽ∗s ≈ ψ̂sφ̂∗s. (52)

The sum in Equation 31 is dominated by the contribution from the marginally stable mode so
the resolvent operator can be approximated by the outer product of the marginally stable mode
and its adjoint counterpart or the optimal resolvent response and forcing modes at ωs. Similar to

the base flow case, we can quantify |φ̂∗1ψ̂1|−1 = 26.9 and this agrees fairly well with the ratio of
σ1(ωs)|iωs − λs| = 28.9 (see Table II).

Rather than comparing the stability and resolvent mode shapes as shown in Figure 5, the contri-
bution of the fluctuating feedback force to the wavemaker [see 44] for Re = 100 is computed using
stability and resolvent modes in Figure 9(a,b), respectively. Figure 9(a) is in good agreement with
Meliga et al. [44] and the agreement between Figure 9(a,b) is excellent, implying that the underlying
modes are indeed proportional to each other. Streamlines from the mean flow are superimposed to
observe how the wavemaker is related to the mean recirculation bubble, the size of which depends
on Reynolds number. The length of the recirculation bubble scales with the streamwise extent of
the wavemaker region for any Reynolds number for either the mean flow as seen in Figure 9(a,b)
or base flow as seen in Figure 9(c,d). The wavemaker regions associated with the base profile are
shown in Figures 9(c) and (d) for Re = 47 and Re = 100, respectively. Figures 9(a) and (d) com-
pare the mean and base wavemakers at Re = 100, the main difference being that as the Reynolds
number increases, both the mean recirculation bubble [55] and wavemaker region shrink. For the
unstable base flows, increasing the Reynolds number will also increase the streamwise length of the
recirculation bubble and wavemaker region as seen in Figures 9(c,d).
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(a) (b)

(c) (d)

FIG. 9. Wavemakers for mean flow at Re = 100 computed from stability modes (a) and resolvent modes
(b). Wavemakers for the base flow at Re = 47 (c) and Re = 100 (d). Blue lines superimpose the mean flow
streamlines which delineate the mean recirculation bubble.

V. APPLICATION TO WALL TURBULENCE

We now consider turbulent channel flow in the context of the discussion from Section III. Unlike
the cylinder flow, which is an oscillator with intrinsic dynamics that are insensitive to background
noise, this flow is an example of a noise-amplifier; as such, pseudoresonance plays a big role and
leads to significant amplification at non-resonant frequencies. Due to its geometric simplicity, we
choose channel flow at Reτ = 2000 which has a parallel mean velocity profile u = u(y).

A. Numerical Methods

We again consider the non-dimensional, incompressible NSE where the channel half-height h
and the friction velocity uτ =

√
τw/ρ (where τw is the wall shear stress, ρ is the density) are the

characteristic scales to obtain

∂tu+ u · ∇u = −∇p+Reτ
−1∇2u (53a)

∇ · u = 0, (53b)

where Reτ = huτ/ν and ν is the kinematic viscosity. The streamwise direction and spanwise
directions are periodic, and the wall-normal domain extends from y/h = −1 to y/h = 1 with no-
slip and no-penetration conditions imposed at the wall. The velocity field is Reynolds decomposed
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into the sum of a spatio-temporal mean and fluctuations,

u(x, y, z, t) = u(y) + u′(x, y, z, t). (54)

Here we assume the mean velocity profile is known a priori from an eddy viscosity model [35]
as discussed in [38]. We express the fluctuations as Fourier modes in the streamwise/spanwise
directions and in time,

û(kx, kz, ω; y) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

u′(x, y, z, t)e−i(kxx+kzz−ωt)dxdzdt, (55)

where kx is the streamwise wavenumber, kz is the spanwise wavenumber, and ω is the radial
frequency. Upon elimination of the pressure term, we can express the governing equations in terms
of the fluctuating vertical velocity v̂ and normal vorticity η̂ = ikzû− ikxŵ,

−iω
(
v̂
η̂

)
+

(
k2 −D2 0

0 1

)−1( LOS 0
ikzu

′ LSQ

)(
v̂
η̂

)
= Jf̂ , (56)

where the Orr-Sommerfeld (OS) and Squire (SQ) operators are given by

LOS = ikxu(k2 −D2) + ikxu
′′ +

1

Reτ
(k2 −D2)2, (57)

LSQ = ikxu+
1

Reτ
(k2 −D2), (58)

and

J =

(
k2 −D2 0

0 1

)−1( −ikxD −k2 −ikzD
ikz 0 −ikx

)
, (59)

f̂ =

 f̂u
f̂v
f̂w

 = −〈u′ · ∇u′〉k. (60)

HereD = ∂
∂y , k2 = k2x+k2z , and 〈 〉k denotes the Fourier component associated with the wavenumber

vector k = (kx, kz, ω). The wall-normal operators are discretized numerically with Chebyshev
collocation points using the suite developed by [56]. We can recast Equation 56 into the following
input/output form  û

v̂
ŵ

 = H(kx, kz, ω)

 f̂u
f̂v
f̂w

 , (61)

where the resolvent operator H is given by

H(kx, kz, ω) = K(−iω +L)−1J , (62)

where

L = G−1L, (63)
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(a) (b)

FIG. 10. (a) Turbulent mean velocity profile for channel flow at Reτ = 2000 plotted in inner units alongside
(b) the mean shear.

G =

(
k2 −D2 0

0 1

)
, (64)

L =

(
LOS 0
ikzu

′ LSQ

)
, (65)

K =
1

k2

 ikxD −ikz
k2 0
ikzD ikx

 . (66)

As before, we can decompose the resolvent operator via the SVD as

H(kx, kz, ω) = Ψ(kx, kz, ω)Σ(kx, kz, ω)Φ∗(kx, kz, ω) (67)

The off-diagonal term in L is proportional to the mean shear u′ which is maximum at the wall.
It remains large in the inner region before it begins to decline in the log region. Similar to the
model LNS operator in Section III, mean shear is the primary source of non-normality leading
to significant amplification. Its spatial variation is important since it has been shown [17] that
a critical-layer mechanism tends to localize activity at the wall-normal location where the phase
speed of the disturbance is equal to the local mean velocity. This is explored further by considering
three particular wavenumber triplets that are representative of the near-wall cycle, a very large-scale
motion (VLSM), and a stationary disturbance. The roles of normal and non-normal mechanisms are
studied by analyzing the mode shapes of the leading resolvent response modes, the pseudospectrum
of the LNS operator, and the resolvent norm compared with the resonance curve.

B. Near-wall cycle

The first wavenumber combination considered is (kx, kz, c
+) = (4π, 40π, 14) which is represen-

tative of the near-wall cycle [17]. Here the wavespeed is given by c+ = ω/kx. This choice of
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(a) (b)

FIG. 11. Velocity amplitudes for the optimal forcing mode φ̂1 in (a) and optimal response mode ψ̂1 in (b)
corresponding to the wavenumber triplet of (kx, kz, c

+) = (4π, 40π, 14).

wavespeed, which is slightly larger than the typically quoted value of c+ = 10 for the near-wall
cycle, corresponds to the largest resolvent norm. However, it should be noted that the ensuing
arguments are insensitive to this small discrepancy, with the main quantitative difference arising
in the wall-normal location where the modes are localized. Figure 10 shows that the mean shear is
very large at the wall-normal height where the wavespeed matches the local mean, resulting in the
off-diagonal terms of the resolvent operator being large. This is similar to the model LNS operator
in Equation 45 where the influence of non-normality concentrates energy in different velocity com-

ponents for ψ̂1 and φ̂1. The optimal resolvent forcing and response modes are plotted in Figure 11
to illustrate that the forcing is primarily concentrated in v and w while the response is mostly in u.

The strength of mean shear suggests that pseudoresonance is the primary driver of the near-wall
cycle mode. The spectrum as well as contours of the pseudospectrum are plotted in Figure 12 for
various ε. Figure 12 also includes the resolvent norm and resonance curve. The ratio of the resolvent
norm to the contribution from resonance is 19.6, which is of the same order of magnitude as the value

predicted by |φ̂∗1ψ̂1|−1 = 4.81 (see Table II). Nevertheless, it is clear from this discrepancy that
amplification cannot be attributed to one particular eigenvalue and that there is no eigenvector
which is proportional to the resolvent mode. Using the expression σ1|iω − λ| to quantify non-
normality is problematic since there is no unique λ which is responsible for amplification.

The ω corresponding to c+ = 14 is indicated by the horizontal, dashed blue line. At this frequency,
the resolvent norm is significantly larger than the resonance term suggesting that amplification is
due to non-normal mechanisms. This observation is confirmed by the spectrum where the least
damped eigenvalues are clustered around higher frequencies and contribute to the resolvent norm
for ω > 300. It is also worth noting that the eigenvalues are significantly damped, which results
in the leading singular values being on the order of unity. While these are not large, the rank-1
approximation is still valid since the first pair of singular values is approximately one order of
magnitude larger than the others as seen in Figure 13.
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FIG. 12. The eigenvalues of the operator L(kx = 4π, kz = 40π) in red circles overlaid with contours of
the pseudospectrum (left). The resolvent norm is plotted in the solid black line along with the inverse
distance from the imaginary axis to the nearest eigenvalue which is the red dotted line (right). The spatial
wavenumbers correspond to the near-wall cycle, and the horizontal, dashed blue line represents the ω with
the largest resolvent norm, which corresponds to a phase speed of c+ ≈ 14.

FIG. 13. First 20 singular values of the resolvent operator for (kx, kz, c
+) = (4π, 40π, 14).

C. VLSM

Further from the wall, the mean shear drops several orders of magnitude (see Figure 10) and the
effect of viscosity decreases. A wavenumber triplet which is representative of a VLSM is considered.
The mode shapes for (kx, kz, c

+) = (π/9, 2π/3, 22) are plotted in Figure 14. The forcing is domi-
nated by the w-component while the response is dominated by the u-component. The v-component
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(a) (b)

FIG. 14. Velocity amplitudes for the optimal forcing mode φ̂1 in (a) and optimal response mode ψ̂1 in (b)
corresponding to the wavenumber triplet of (kx, kz, c

+) = (π/9, 2π/3, 22).

of the forcing, notably, is less significant than the near-wall cycle mode implying that the role of
lift-up is not as pronounced for this mode.

The spectrum associated with the streamwise and spanwise wavenumbers of the VLSM is plotted
along with the pseudospectrum of the LNS operator in Figure 15. The results are drastically
different from the near-wall cycle case as the resonant forcing of eigenvalues is greater than one so
amplification is due to both terms on the right-hand side of Equation 25. Notably, the spectrum
in Figure 15 resembles that of the base flow at Re = 10, 000 for kx = 1, kz = 0 as there are three
distinct branches. As observed by Reddy et al. [22] and Schmid and Henningson [13], the eigenvalues
at the intersection of the branches are the most sensitive to perturbations and result in very large

non-normal amplification. The product σ1|iω − λ| = 146 while ‖φ̂∗1ψ̂1‖−1 = 34.9 (see Table II),
suggesting that the nonorthogonality of many eigenfunctions leads to high pseudoresonance. Similar
to the near-wall cycle case, there are no eigenvalues which exactly match the wave speed associated
with the VLSM. The eigenvalue close to the dotted blue line in Figure 15, however, does seem to
impact the resolvent norm which has an extra bump near its maximum value. This is also reflected
in the red dotted line since the eigenvalue protrudes from the distinct Y-shape of the spectrum.
The maximum singular values are on the order of 103 and the resolvent operator is very low-rank
as seen in Figure 16.

D. Stationary disturbances

Finally, we consider stationary disturbances which tend to be the most amplified by the resolvent
operator with singular values exceeding 104. The specific wavenumber triplet selected for this study
is (kx, kz, ω) = (0, 2π/3, 0). The roots behind such large amplification can be traced back to the
model operator in Equation 45. In this example, the ∂u/∂y → ∞ resulting in a low-rank system
which concentrated all the forcing energy in the second velocity component and the response energy
in the first velocity component. When kx = ω = 0, all of the diagonal terms of the resolvent become
order ε small since imaginary terms are eliminated and D scales with Re−1. Thus, when the LNS
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FIG. 15. The eigenvalues of the operator L(kx = π/9, kz = 2π/3) in red circles overlaid with contours
of the pseudospectrum (left). The resolvent norm is plotted in the solid black line along with the inverse
distance from the imaginary axis to the nearest eigenvalue which is the red dotted line (right). The spatial
wavenumbers correspond to the VLSM mode, and the horizontal, dashed blue line represents the ω with
the largest resolvent norm, which corresponds to a phase speed of c+ ≈ 22.

FIG. 16. First 20 singular values of the resolvent operator for (kx, kz, c
+) = (π/9, 2π/3, 22).

operator is inverted, the determinant, which is the product of the diagonal terms, is very small.
The energy for the forcing is almost totally in the wall-normal and spanwise components as seen in
Figure 17 while the response is almost totally in the streamwise component.

Similar to the near-wall cycle and VLSM modes, the spectrum and contours of the pseudospec-
trum are presented in Figure 18 alongside the resolvent norm and contribution from resonance. All
of the eigenvalues are real since the imaginary terms are eliminated from the resolvent operator
when kx = 0. Another implication of eliminating mean flow advection, as mentioned by [57], is
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(a) (b)

FIG. 17. Velocity amplitudes for the optimal forcing mode φ̂1 in (a) and optimal response mode ψ̂1 in (b)
corresponding to the wavenumber triplet of (kx, kz, ω) = (0, 2π/3, 0).

FIG. 18. The eigenvalues of the operator L(kx = 0, kz = 2π/3) in red circles overlaid with contours of the
pseudospectrum (left). The resolvent norm is plotted in the solid black line along with the inverse distance
from the imaginary axis to the nearest eigenvalue which is the red dotted line (right). The horizontal,
dashed blue line represents the ω corresponding to the phase speed of c+ = 0.

that the Orr mechanism is absent from this mode. Stationary disturbances are highly amplified
and the singular values are plotted in Figure 19. The rank-1 approximation is quite applicable for
this particular mode as the leading pair of singular values is on the order of 105. Moreover, the

contribution from non-normality is well approximated by |φ̂∗1ψ̂1|−1 = 250 which agrees quite well
with σ1|iω−λ| = 278. Such agreement can be attributed to the eigenvalue closest to the imaginary
axis which has an imaginary component that agrees with the most amplified frequency. Unlike the
cylinder case where there exists a convective-type non-normality, the kx = 0 modes are an example



32

FIG. 19. First 20 singular values of the resolvent operator for (kx, kz, ω) = (0, 2π/3, 0).

of the component-type non-normality and so |φ̂∗1ψ̂1| is small since the velocity for the forcing mode
is almost completely concentrated in the wall-normal plane while the velocity for the response mode
is nearly all in the streamwise direction.

E. Influence of spatial wavenumber and wave speed

Based on the findings of this study and observations from [58], it is possible to categorize ampli-
fication mechanisms in wall-bounded turbulence as either normal or non-normal depending on the
wavenumber vector k selected. When kx is small, the influence of both mean flow advection and
viscosity is diminished resulting in a non-normal system where there is high amplification. Low-
order modes (those corresponding to the largest singular values), experience high amplification
due to both normality and non-normality. Higher-order modes also experience amplification due
to non-normality. At higher kx, only low-order modes are amplified as long as they are localized
near the critical layer. Higher-order modes experience low amplification which is proportional to
viscosity. The wall-normal height, furthermore, has implications on the type of amplification as it
influences the choice of wave speed c, or ω, as well as the influence of mean shear ∂u/∂y. Closer
to the wall, the mean shear is highest while in the log region, mean shear still plays an important
role resulting in preferential amplification of long streamwise structures.

VI. DISCUSSION AND CONCLUSIONS

We have juxtaposed stability and resolvent analyses and highlighted the types of amplification
mechanisms they are likely to identify for flows in which linear mechanisms are important. The two
can be formally related through a dyad expansion of the resolvent operator. When the resolvent
identifies eigenmodes as the most amplified disturbance, the forward eigenmodes are proportional to
the resolvent response modes and the adjoint eigenmodes are proportional to the resolvent forcing
modes which, consequently, contain sensitivity information. This formulation also elucidates how
to interpret the real part of eigenvalues belonging to the mean LNS operator. It plays a role in
the degree to which a disturbance is amplified by the resolvent and it separates eigenvalues in the
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k or ω σ1 |iω − λ|−1 σ1|iω − λ| |φ̂∗1ψ̂1|−1

Cylinder Base ω = 0.743 5.78e04 729 79.3 79.4

Cylinder Mean ω = 1.02 1.65e04 570 28.9 26.9

Near-wall cycle (kx, kz, c
+) = (4π, 40π, 14) 0.502 2.56e-02 19.6 4.81

VLSM (kx, kz, c
+) = (π/9, 2π/3, 22) 479 3.28 146 34.9

Stationary Disturbance (kx, kz, ω) = (0, 2π/3, 0) 8.14e04 293 278 250

TABLE II. Quantification of non-normality for the most amplified modes in cylinder and turbulent channel
flows.

spectrum leading to low-rank behavior. This is particularly evident in cylinder flow where the
eigenvalue corresponding to the shedding mode is isolated from the other eigenvalues and is so close
to the imaginary axis that it dominates the resolvent norm for a broad range of frequencies.

We have split the contributions to the resolvent norm into a resonance part and a non-normal
part. The distance between the eigenvalue and a particular point on the imaginary axis quantifies
the resonant contribution and its product with the resolvent norm is one scalar measure of non-
normality. Non-normal amplification can also be computed by the inverse of the inner product

between the most amplified resolvent forcing and response modes, i.e. |φ̂∗1ψ̂1|−1. If the two scalar
measures of non-normality agree, it implies that amplification is due to a discrete eigenvalue and

mean stability analysis is valid; otherwise, the amplification is due to pseudoresonance and |φ̂∗1ψ̂1|−1
is the best measure of non-normality. This also suggests that to maximize the resolvent norm, it is
desirable to minimize the overlap of the forcing and response modes which biases the resolvent in
favor of selecting amplification mechanisms which are as non-normal as possible.

Contours of the pseudo-spectrum have been overlaid with the spectrum for the mean LNS operator
associated with cylinder and turbulent channel flow. It can be seen that the spectrum is very
sensitive to perturbations in the latter flow due to high shear which suggests that the least stable
eigenvalues of the mean operator viewed in isolation are less informative than they are for the two-
dimensional case. Moreover, the mode shapes and characteristics of the pseudospectrum can be
predicted from the mean profile or wavenumber triad selected as they have implications on which
terms in the LNS operator are most important.

These findings are applicable to both base and mean velocity profiles, but there is an important
distinction. For a base flow, the input forcing must be provided by an external source. Therefore,
the most amplified structure is of interest as it is likely to be present in the flow when it becomes
unsteady. For a mean flow, the nonlinear term is the source of intrinsic forcing so the goal is
to predict the structure of the unsteady flow [36]. In many cases, the most amplified response
is normal in character and accounts for a significant amount of the kinetic energy of the velocity
fluctuations [e.g. 5, 59]. There are circumstances, however, where it does not give the complete
picture as the rank-1 approximation is no longer valid and suboptimal modes need to be considered.
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Cylinder flow is a case where resonance is the root of amplification leading to similarity of stability
and resolvent modes. In both the base flow and mean flow cases, amplification occurs at a single
frequency corresponding to the imaginary part of the least stable eigenvalue. The resolvent modes
can be used to identify the wavemaker, which does not exist at very low Reynolds numbers when
the flow is only convectively unstable. The cylinder exemplifies a convective-type non-normality
where mean flow advection separates the spatial support of the forcing mode to be upstream of the

response mode as long as u > 0. Non-normality quantified by |φ̂∗1ψ̂1|−1 agrees well with σ1|iω− λ|
for both the base and mean flows.

It is important to note that only resonant mechanisms are active in cylinder flow whereas in
more complicated flows such as wall-bounded turbulence, both resonant and pseudoresonant mech-
anisms are relevant. Three wavenumber triplets, representative of the near-wall cycle, VLSM’s,
and stationary disturbances, highlight the competing influences of viscous dissipation, mean flow
advection, and mean shear on not only the most amplified modes but also the spectrum and pseu-
dospectrum. The importance of each term depends significantly on the wall-normal height where
the perturbations are localized. In the inner region where there is very high mean shear and vis-
cosity is most important, amplification is primarily due to pseudoresonant mechanisms. Forcing in
the spanwise/wall-normal plane leads to a large response in the streamwise direction as seen for the
near-wall cycle mode. The eigenvalues are highly damped yet the resolvent norm is on the order of
unity due to the high sensitivity of the spectrum to perturbations. In the log region, mean shear
and consequently lift-up are weaker yet the declining importance of viscosity results in eigenvalues
which are closer to the imaginary axis. The most amplified disturbance for wavenumbers corre-
sponding to the VLSM, nevertheless, is primarily due to pseudoresonance. Consequently, there is

poor agreement between non-normality quantified by |φ̂∗1ψ̂1|−1 and σ1|iω − λ| as it is clear that
amplification can no longer be attributed to a single eigenvalue. Mean flow advection results in the
Orr mechanism [see 33] and hence less overlap between the forcing and response modes.

Stationary disturbances are the globally most amplified disturbances by effectively leverag-
ing mean shear. The perturbation energy is almost exclusively concentrated in the v− and
w-components of the forcing mode and in the u-component of the response mode. Assuming
streamwise constant disturbances eliminates the mean flow advection term from the resolvent op-
erator and hence suppresses the Orr mechanism. All of the non-normality, consequently, can be
classified as a component-type non-normality, in contrast to the cylinder flow, and the eigenvalues

of the LNS operator are real. Non-normality quantified by |φ̂∗1ψ̂1|−1 agrees well with σ1|iω − λ|
since amplification can be attributed to the eigenvalue closest to the imaginary axis. Finally, the
distribution of energy among various velocity components may be useful when considering how
the nonlinear term, which can be computed from resolvent response modes [60], projects onto the
optimal resolvent forcing modes.

We now lastly discuss the potential application of resolvent-based modal expansions for purposes
of reduced-order modeling and control, particularly in relation to the placement of sensors and
actuators. The resolvent response modes are outputs which are highly amplified by the linear
dynamics of the NSE, and so sensors could be placed where these are likely to be strong. The
resolvent forcing modes are the ‘trigger’ or input which leads to high amplification, and so the
actuators could be placed to manipulate the flow in such a way that suppresses these disturbances.
In cases where there is large spatial separation between resolvent forcing and response modes, it is
possible that improved performance could be attained by sensing and actuating within a wavemaker
region [e.g. 31, 61], which, as discussed in Section IV, may also be obtained from resolvent analysis.
While the resolvent decomposition shows potential for control applications [62], further refinements
could seek to balance the observability and controllability of the reduced-order model [63–65],
subject to known sensor and actuator locations, and information about the nature of the nonlinear
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forcing [66].
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[11] V. Mantič-Lugo, C. Arratia, and F. Gallaire, “Self-consistent mean flow description of the nonlinear
saturation of the vortex shedding in the cylinder wake,” Phys. Rev. Lett. 113 (2014).

[12] L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A. Driscoll, “Hydrodynamic stability without
eigenvalues,” Science 261, 578–584 (1993).

[13] P. J. Schmid and D. S. Henningson, Stability and transition in shear flows (Springer, 2001).
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