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Abstract

Concentration gradients in a fluid adjacent to a reactive surface due to contrast in surface
reactivity generate convective flows. These flows result from contributions by electro and diffusio
osmotic phenomena. In this study we have analayzed reactive patterns that release and consume
protons, analogous to bimetallic catalytic conversion of peroxide. Similar systems have typically
been studied using either scaling analysis to predict trends or costly numerical simulation. Here,
we present a simple analytical model, bridging the gap in quantitative understanding between
scaling relations and simulations, to predict the induced potentials and consequent velocities
in such systems without the use of any fitting parameters. Our model is tested against direct
numerical solutions to the coupled Poisson, Nernst–Planck, and Stokes equations. Predicted slip
velocities from the model and simulations agree to within a factor of ≈ 2 over a multiple order-
of-magnitude change in the input parameters. Our analysis can be used to predict enhancement
of mass transport and the resulting impact on overall catalytic conversion, and is also applicable
to predicting the speed of catalytic nanomotors.
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1 Introduction

The ability of catalytic micropumps to generate motion from chemical energy has opened many
possibilities [1–3]. By generating convection at the microscale, catalytic micropumps can enhance
transport rates to surfaces where diffusion would otherwise be limiting [4]. Due to their use of local
chemical energy, catalytic micropumps don’t suffer from some of the issues associated with other
methods of generating flow at the microscale. Pressure-driven flow is inefficient due to the rapid
increase in hydraulic resistance with decreasing length scale. Meanwhile other electrokinetic methods
such as conventional electroosmotic flow and induced-charge electroosmosis [5, 6] require imposition
of external electric fields or, in the case of alternating-current electroosmosis, electrical connection of
micro-electrodes [7–9].

A number of studies, which we review below, have contributed to identification of mechanisms lead-
ing to electrostatic potential gradients and fluid flow in systems involving surface reactivity contrasts.
However, a quantitative understanding that would directly connect the outcome of induced potentials
and flow fields to the key input parameters is yet to be developed. Typically, numerical simulation has
been used to make quantitative connections, but numerical simulation is a costly approach in terms of
computational time and resources. Ideally, it would be desirable to have an algebraic model predicting
this outcome. As we shall see, flow fields in these systems can have a nonmonotonic dependence on
input and therefore it is crucial to have a model that goes beyond simple scaling relations in large
and small parameter limits. Our study presents such models for a canonical problem, directly relating
input parameters to quantities of interest without using any tuning parameters.

The literature relevant to understanding of catalytic micropumps can be placed into several cate-
gories each of which we expand on below. First, micropumps where surface reactions induce electric
fields which generate electroosmotic flow, the primary focus of this work. Second, micropumps based
on diffusioosmotic mechanisms. Finally, when the reactions occur on a particle, then the same physical
mechanisms will lead to self-phoretic behavior instead of pumping.

Surfaces with nonuniform catalytic reactivity generate flow by multiple mechanisms [10]. One
mechanism, electroosmosis, refers to flows generated when reaction-induced electric fields, driving
current through the fluid, act on surface electric double layers screening the surface charge. This
mechanism has been studied using a silver disc plated on a gold substrate immersed in a hydrogen
peroxide solution [1, 11] as well as for interdigitated gold and platinum electrodes [12]. Ibele et al.
showed that different fuels can generate flow by the same mechanism by developing a system using
hydrazine fuels [13]. Farniya and coworkers developed a technique for inferring chemical reaction
rates and ion impurities in electrocatalytic micropumps by fitting simulations to detailed experiments
measuring proton concentrations with fluorescence microscopy and tracking of particles with positive
and negative surface charges to measure flow velocities and electric fields [14]. In other experiments
it has been shown that separating the electrodes on opposite sides of a membrane [15] and utilizing
the high surface charge of doped silicon provide promising avenues for enhancing the flow rates
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generated by electrocatalytic micropumps [16]. Recent simulations by Esplandiu et al. analyzed
important parameters in self-electroosmotic pumps and suggested that the induced electric fields are
dependent on ionic strength, not total conductivity [17]. However their model assumed that only
protons contribute to the net current and ignored bulk equilibrium reactions.

A second mechanism, diffusioosmosis, refers to flows generated by the presence of species concen-
tration gradients tangent to the surface. When the concentration gradients are caused by nonuniform
reactivity of the surface itself the flows they generate are called self-diffusioosmotic. Such gradi-
ents may generate flows in multiple ways depending on whether the solution is an electrolyte [18] or
not [19]. In electrolyte solutions, gradients of species concentrations generate diffusioosmotic flows
due to the dependence of the pressure difference across the Debye screening layer on solution conduc-
tivity. The surface pressure is proportional to the local conductivity, so concentration gradients along
the surface generate pressure gradients and hence flow. Also, for electrolytes where the positive and
negative species have different diffusivities, concentration gradients cause internal electric fields which
act on the Debye layer to generate flow. Diffusioosmotic flows have been used to develop microflu-
idic pumps [3]. Hong et al. utilized the photocatalytic sensitivity of titanium-dioxide to generate a
diffusioosmotic micropump controllable by light [20]. Niu et al. showed that even in micromolar salt
concentrations, an ion-exchange resin can be used to create a self-diffusioosmotic micropump [21].

Although we are primarily concerned with electrocatalytic micropumps, much research into elec-
trocatalytic conversion of chemical to mechanical energy has focused on reaction induced propulsion of
nano-swimmers i.e. self-electrophoresis and self-diffusiophoresis. The same mechanisms which cause
pumping on a fixed surface lead to swimming of a particle with varying surface reactivity. Such
self-phoretic mechanisms for motion were originally investigated in the context of cell motion [22,23].
Early experiments demonstrating reaction-induced propulsion in non-living systems utilized bimetal-
lic particles in peroxide solutions [24–26]. Various proposed mechanisms explaining their motion were
proposed, and of these self-electrophoresis was found to be dominant [12,27]. Velocities on the order
10 µm/s were reported. Nanomachines such as these have created much excitement due to their
potential to revolutionize fields such as drug delivery and biological sensing [28–31].

A number of theoretical studies have been performed to better understand self-catalytic swim-
ming. Golestanian showed how asymmetric reaction induced concentration gradients result in the
propulsion of particles by self-diffusiophoretic mechanisms [32]. Moran and Posner investigated the
self-electrophoretic mechanism by performing direct numerical simulations of the bulk transport equa-
tions coupled initially to fixed surface fluxes [33] which they refined by considering surface reaction
kinetics [34]. They also analyzed the reduction in swimming speed with background electrolyte con-
centration [35]. However, their model predicted a quadratic relationship between swimming speed
and peroxide concentration unlike the linear dependence observed in experiments. Yariv studied the
problem using matched asymptotic expansions in the limit of thin electrical double layers and long-
slender rods, predicting propulsion in experimentally observed direction [36]. Sabass and Seifert found
that in the presence of background salt, the decrease in pH with increased peroxide concentration
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can alleviate diffusive limitations on proton transport [37]. Self-consistent nonlocal feedback theory,
relating local fluxes to changes in the induced potential field, was developed to further improve under-
standing of electrocatalytic motors [38] and inspiring our analysis. Further theoretical studies have
found that the optimal location for surface reactivity is concentrated at the poles of the swimmer [39],
a geometrical effect which may guide design of micropumps, and that bulk peroxide decomposition
can significantly affect swimming speeds [40].

Here, we investigate the relation between surface reactivity patterns and the fluid flow they gen-
erate. For this, we analyzed the scaling relation of the induced potential (gradient) and velocity with
surface reactivity. The system corresponds to a pattern of catalytic sites with distinct reaction rate
constants (expressed by their corresponding second Damköhler numbers). We provide physical insight
into how the different components of the induced potential lead to a balance of fluxes in the system.
We also derive a simple model capturing the induced potential and flow velocity and compare this
with direct numerical simulations of the governing transport equations.

2 Model Problem

Many combinations of patterned metals and electrolytes lead to reactions which generate the asym-
metric ion concentrations necessary to induce this type of flow [27]. In this work, we focus on elec-
trocatalytic hydrogen peroxide oxidation at Pt next to its reduction on Au surfaces. The oxidation
generates electrons and protons, while the reduction consumes protons and electrons. This asym-
metric surface reaction pair generates and depletes protons near the surface resulting in a reaction
induced charge distribution and electric field. The forces on the fluid caused by the induced electric
field acting on the induced charge distribution gives rise to an electroosmotic flow which is driven by
the electrocatalytic conversion.

Specifically, we model a two-dimensional domain of width λ and height L consisting of an elec-
trolyte between a reactive surface and a reservoir as shown in Figure (1). The domain is periodic in
the tangential x direction, and thus λ represents the period of a repeating patterned surface of which
we simulate one period. This surface is modeled as completely flat, with a step change in surface
reactivity at the intersection of the Au and Pt surface regions. The background electrolyte contains
four species: protons H+, hydroxide ions OH– , hydrogen peroxide H2O2, and molecular oxygen O2.
Peroxide oxidation at the platinum anode is given by

H2O2 −−→ 2 H+ + O2 + 2 e− (1)

and reduction at the gold cathode is given by

H2O2 + 2 H+ + 2 e− −−→ 2 H2O (2)
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Figure 1: (Color online) Schematic showing the model problem. The electrocatalytic surface reaction
pair consists of Gold (Au) and Platinum (Pt) at a periodic width of λ in contact with the electrolyte
containing protons, hydroxide ions, hydrogen peroxide and oxygen.

This choice of reaction mechanism governing the decomposition of H2O2 has been successfully used
in previous studies [17, 33]. However, there remains uncertainty regarding the precise mechanism of
peroxide decomposition at platinum and gold surfaces. Mechanisms other than the one used here
have been proposed [41,42]. Our simulations and model could be modified to account for alternative
mechanisms.

In this work, we only explicitly simulate the concentrations of the two ionic species, protons and
hydroxide ions. We assume that the concentration of peroxide is constant over relevant timescales
so its transport can be ignored. This assumption is justified with scaling arguments in Section
(2.3). Transport of oxygen can be ignored because in the dilute limit oxygen only affects the system
through the anode reactions. However, we assume that the anode reaction only proceeds in the
forward direction in which oxygen does not participate [34].

2.1 Governing Equations

This system is governed by the coupled Poisson-Nernst-Planck (PNP) equations for ion transport and
unsteady Stokes equations of fluid motion along with appropriate surface and bulk reactions. The PNP
equations relate species concentration change to advection, diffusion, reaction, and electromigration
fluxes. Transport of ionic species is coupled through the Poisson equation for the electric potential.
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In dimensionless form they are given by

∂ci
∂t

+∇ · (uci) = Di∇ · (∇ci + zici∇φ) +Ri (3)

−2ε2∇2φ =
∑
i

zici (4)

where ci = c̃i/c0 is the dimensionless concentration of species i which has valence zi and diffusivity

Di = D̃i/D0, where the ˜ represent dimensional quantities when there is a dimensionless counterpart.
c0 and D0 are arbitrary reference values for concentration and diffusivity. In this study we reference
diffusivities to the diffusivity of hydroxide ions D0 = 5.273× 10−9 m2/s [34] and concentrations to the
bulk concentrations of H+ and OH– in pure water, c0 =

√
Kw = 1× 10−7M where Kw is the water

equilibrium constant. φ = φ̃/VT is the electrostatic potential normalized by the thermal voltage
VT = RT/F ≈ 25 mV where R is the ideal gas constant, T the temperature, and F the Faraday
constant. u = ũ/(D0/λ) is the fluid velocity normalized by the diffusion velocity. t = t/t0 where
t0 = λ2/D0 is the diffusion time. The coefficient ε is the dimensionless Debye length ε = λD/λ
where for our case of a symmetric binary electrolyte λD =

√
εVT/2Fc0 where ε is the permittivity of

water. Ri = R̃i/(c0/t0) is a bulk reaction term. For hydrogen peroxide and molecular oxygen, Ri =
0. For protons and hydroxide ions, Ri = Dab (Kw/c

2
0 − c+c−) which enforces water self-ionization.

Dab = kbλ
2c0/D0 is a dimensionless bulk Damköhler number where kb is the bulk water recombination

reaction rate constant and c+ and c− are proton and hydroxide ion concentrations respectively. With
this nondimensionalization, all lengths are normalized by λ and thus the dimensionless width is 1.
We chose an aspect ratio of L/λ = 4, which is large enough that the reservoir boundary conditions
do not affect the simulated flow near the electrodes.

The Stokes equations for momentum conservation along with continuity which enforces the in-
compressibility of water are

1

Sc

∂u

∂t
= −∇p+∇2u− κ

2ε2
ρe∇φ (5)

∇ · u = 0 (6)

Here we have included the electric body force term, and ignored the nonlinear inertial term because it
is small relative to the viscous and electric body force terms as verified in Section 3.1. p = p̃/(µD0/λ

2)
is the pressure, and ρe =

∑
i zici/c0 the charge density. The Schmidt number Sc = µ/ρD0 where µ

is the dynamic viscosity and ρ the density of water, and the electrohydrodynamic coupling constant
κ = εV 2

T /µD0. Note that we do not include any chemiosmotic forces (i.e. forces due to nonionic
solute-wall interactions) because gradients in nonionic solutes (O2 and H2O2) are expected to be very
small. However, the diffusioosmotic forces due to internal electric fields caused by salt concentration
gradients with ions of different diffusivities are naturally included by this formulation.
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2.2 Boundary Conditions

The boundary condition for the Stokes equations at both the electrodes (y = 0) and reservoir (y = 4)
is given by

u = 0 (7)

due to the no-slip and no-penetration conditions at the solid surface along with our assumption of a
stationary reservoir.

The potential boundary condition at the electrodes is given by

φ = 0 (8)

thus representing the constant electric potential of a conductive metal surface which we have arbitrarily
set to zero as a reference. Because we resolve the Debye layer in our simulation domain, the zeta
potential does not directly enter this boundary condition. Due to the thinness of the Stern layer
to the Debye length for the dilute conditions studied, we omit a Stern layer correction [17, 34]. We
have ignored other mechanisms which would induce a zeta potential [43] in order to focus on the
reaction-induced potential as has been done previously [34]. Inclusion of a fixed zeta potential at each
electrode would be a useful extension of the model. The potential boundary condition at the reservoir
is

∂φ

∂y
= 0 (9)

or zero normal electric field. As with the reservoir boundary condition for the momentum equations,
this condition is valid for sufficiently large L/λ such that, in the absence of external electric fields,
electric fields induced by the reactions decay before the reservoir. In other words, for this boundary
condition to be valid, we expect that the potential at the reservoir should be approximately constant.
The use of a Neumann boundary condition, instead of Dirichlet, at the reservoir allows the potential
difference between the surface and reservoir to adjust as the simulation evolves until it reaches a
steady-state at which all fluxes are in balance as described in Section 3.1.

For species transport, anions do not participate in either of the surface reactions, so a no-flux
boundary condition is enforced on the entire surface. This reduces to

∂c−
∂y
− c−

∂φ

∂y
= 0 (10)

For cations, different boundary conditions are used for the platinum and gold portions of the
surface. Both are derived by matching the combined electromigration and diffusion fluxes with the
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surface reaction flux. The platinum (−1/2 < x < 0) and gold (0 < x < 1/2) boundary conditions
respectively are

−D+

(
∂c+

∂y
+ c+

∂φ

∂y

)
= D+Daa (11)

−D+

(
∂c+

∂y
+ c+

∂φ

∂y

)
= −D+Dacc

2
+ (12)

where Daa = k0, anodeλc̃H2O2/D̃+c0 is the anode Damköhler number and Dac = kr, cathodeλc̃H2O2c0/D̃+

is the cathode Damköhler number defining the dimensionless anode and cathode reaction rates. These
Damköhler numbers represent ratios of reaction timescales to diffusive transport timescales, and hence
by varying them we can consider regimes with different limiting mechanisms where reaction at one
electrode versus the other controls the process. Both of these boundary conditions assume that the
reactions proceed only in the forward direction and that the Stern layer potential drops are sufficiently
small that reaction rate coefficients can be treated as constants.

The reservoir boundary condition for both species is simply a Dirichlet condition at the reservoir
concentration

c+ = c− = 1 (13)

The left and right boundary are treated as periodic boundaries.

2.3 Validity Regime of Two-Species Approximation

Our assumption that we can treat the concentration of H2O2 as a constant is valid so long as the
timescale associated with changes in the concentration of H2O2 is much longer than dynamically
relevant timescales of the system. To estimate this timescale, we start with the balance of reactive
and diffusive fluxes at the anode surface. The scaling of these fluxes can be written in dimensionless
form as

jreac ∼
DaaD+cH2O2

cH2O2, 0

(14)

jdiff ∼
DH2O2∆cH2O2

l
(15)

where l is a characteristic length scale over which the concentration of H2O2 changes by ∆cH2O2 ,
and cH2O2, 0 is its initial concentration. As a conservative choice for l, we choose the diffusion length
l ∼
√
DH2O2t. This choice is conservative because additional mixing from the induced flow would only

8



shorten the length scale. Substituting this value for l into (15), equating the two fluxes, and solving
for t gives a scaling for the time associated with a given change in H2O2 concentration

tH2O2 ∼
(

∆cH2O2

cH2O2

)2 DH2O2c
2
H2O2, 0

Da2
aD

2
+

(16)

In the cases investigated in the this study, over dynamically relevant times, which will be at worst t ∼ 1
(the diffusion time across the domain), ∆cH2O2/cH2O2 is small. Therefore, in effectively unbounded
domains such as the current study, it is justifiable to ignore changes in H2O2 concentration over
intermediate timescales which are long relative to system dynamics but short relative to timescales
for depletion of H2O2 at the surface. For longer term behavior, one may adopt our solution as a
quasi-steady solution in which the bulk concentration of H2O2 is adjusted gradually with time. In
this case (16) would imply that the length scale of depletion of H2O2 would be much longer than
λ while varying slowly in time. Another possibility is the presence of an effective reservoir H2O2

concentration, due to either bulk mixing or for nano-motors the motion of the swimmer itself, in
which case a suitable H2O2 concentration may be assumed.

2.4 Computational Framework

We solve the governing equations using a custom written OpenMP parallel c++ code described
thoroughly and compared against a commercial solver in [44]. The code uses second order staggered
finite differences to discretize the governing equations where species concentrations, electric potential
and pressure fields are stored at cell centers while velocities and fluxes are stored at cell faces. The
linear Poisson and Poisson-like equations for pressure, electric potential, and momentum are solved
using a pseudo-spectral method where fourier transforms are performed in the tangential x direction
and leaving a tridiagonal system to be solved at each wavenumber in the electrode-normal. Time
integration is done with a semi-implicit method which iteratively solves the transport, momentum,
and potential equations in a decoupled manner until the full implicit solution for the next timestep is
reached. The species transport equations are solved implicitly during each iteration only in the stiff
electrode-normal direction. Verification of the accuracy and convergence of the code was performed
using the method of manufactured solutions [45]. This code and its variants have been successfully
used in previous studies for prediction of chaotic electroconvection [46, 47], induced-charge electro-
osmosis [48], and flow over patterned membranes [49]. Mesh convergence testing was performed to
ensure that a sufficiently fine mesh was used to resolve the results shown.
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3 Results and Analysis

A number of dimensionless parameters are present in the above equations. We summarize these
along with the values used in our simulations in table 1. In this work, most of the parameters are
held constant while two parameters, the surface Damköhler numbers are varied. For reference to a
physical system, the value ε = 4× 10−3 is representative of a .25mm pattern length λ and pure water
reservoir concentration of c0 = 1× 10−7M. Qualitative steady-state fields of concentration, charge
density, electric potential and electric field lines, and velocity magnitude with flow streamlines for
nominal Damköhler numbers of Daa = 1.48 and Dac = 2.68 are shown in figure 2. These Damköhler
numbers come from rate constants ko, anode = 5.5× 10−9m/s and kr, cathode = 1 m7s−1mol−2 [34] and
peroxide concentration cH2O2 = 1× 10−3M.

Parameter Description Formula Value(s)

ε dimensionless Debye length λD/λ 4× 10−3

Sc Schmidt number µ/ρD0 1000
κ Electrohydrodynamic coupling constant εV 2

T /µD0 .094
domain aspect ratio L/λ 4

D+ H+ diffusivity D̃+/D0 1.7658

D− OH– diffusivity D̃−/D0 1
Dab bulk Damköhler number kbλ

2c0/D0 9.38× 104

Daa anode Damköhler number ko, anodeλcH2O2/D+c0 2.5× 10−3 – 2.5× 102

Dac cathode Damköhler number kr, cathodeλc0cH2O2/D+ 2.5× 10−3 – 2.5× 102

Table 1: Dimensionless governing parameters

Evident from the concentration field in figure 2a is that, outside of the double layer, the concentra-
tion of H+, and also OH– from electroneutrality, is equal to c0. The combination of water equilibrium
and electroneutrality prevent concentration gradients from forming in the bulk. This would change if
other ionic species were present. Note the expanded y scale in figure 2a and b.

The charge density field along with electric field lines are shown in figure 2b. Notable from the
electric field lines are a small region near the anode around y = .002 and a larger region above the
cathode around y = .018 where field lines intersect. These correspond to regions where bulk charge
is present causing the electric field to not be divergence free. However, the charge at these locations
is too small to be seen because we have chosen the color scale based on the largest charge density
magnitude in the domain. Similar features have been observed previously [34]. These locations where
field lines converge result from a superposition of field lines in the bulk which point from the anode to
the cathode transporting the current and field lines associated with the double layer whose direction
is determined by the local zeta potential. When these types of field lines point in opposite directions,
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then there can be a location at which the direction of the overall electric field switches and hence
field lines intersect. In this case, the zeta potential is positive over most of the surface with field lines
pointing away from the surface and necessitating the change in direction above the cathode. However,
there is a small region near the center of the anode where the zeta potential switches sign leading to
field lines near the surface pointing toward the anode which must change direction.

The electric field lines in the bulk can be seen more clearly in figure 2c along with the associated
electric potential. These electric field lines act on the charged Debye layer to generate the flow field
shown in figure 2d consisting of a pair of counter-rotating vortices.

Figure 2: (Color online) Field quantities for Daa = 1.48, Dac = 2.68. (a) H+ concentration field. (b)
ρe field with electric field lines. (c) φ field with electric field lines. (d) velocity magnitude field with
streamlines.

One quantity of interest is the induced potential and particularly the induced potential difference
between the surface and far field which we label φ∞. Figure 3 shows induced electric potential and
associated electric field lines for different values of the anode Damköhler number. The color scales in
the plots have been set to emphasize variations about φ∞ for each case and do not necessarily contain
the zero potential of the surface. One consequence of this choice is the potential field within the double
layer saturates in 3a and 3c leading to a sharp change in the color. As the ratio of Damköhler numbers
changes, the sign of the induced net electric potential changes, and two patterns in the potential field
are evident. First there is a 1D component associated with the net induced potential drop strongly
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visible within the double layer very near the surface and varying only in the y direction. There is also
evident a component of the potential associated with the outer nearly semi-circular electric field lines
which doesn’t appear to be significantly affected by the changes in Daa. The superposition of these
two components determines the local zeta potential.

Figure 3: (Color online) Electrostatic potential fields with electric field lines plotted for several values
of the Damköhler numbers. (a) Daa = 2.5, Dac = .25 (b) Daa = .25, Dac = .25 (c) Daa = .025,
Dac = .25

3.1 An Approximate Model

In this section we develop an approximate model, shown schematically in figure 4, to understand the
results of our numerical simulations. Our model utilizes balances of fluxes along with the approx-
imation that current travels along semi-circular electric field lines outside of the double layer. We
also take inspiration from asymptotic modeling, e.g. [9, 50], in which an “inner” solution within the
thin charged double layer is matched with an “outer” solution valid in the electroneutral bulk. This
means that our model requires ε � 1. We calculate several important quantities which we compare
against the results of our numerical simulations. One quantity is the induced potential difference
between the surface and bulk φ∞ = φ(y → ∞). A second is the reaction-induced zeta potential
ζ(x) = −(φ∞+ φtan(x)) where φtan(x) describes the variation along the electrode surface just outside
of the double layer, analogous to the matching location between asymptotic inner and outer solutions,
of the electric potential and hence the tangential electric field responsible for inducing a slip velocity
is Etan = dζ

dx
= −dφtan

dx
. These allow us to use the Helmholtz-Smoluchowski equation to calculate a

third quantity, the slip velocity uslip.
We start with a balance which helps explain the behavior of φ∞. At steady state, the total reactive

currents at the anode and cathode must balance. At the anode, the reaction rate in our model is
determined solely by the constant concentration of H2O2. This means that the system must adjust
the reaction rate at the cathode to conserve current. The only way that this adjustment can occur is
by changing the surface H+ concentration to an appropriate average value via an induced potential
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Figure 4: (Color online) Schematic showing conceptually our approximate model, and how we evaluate
it against the numerical simulations. The zeta potential just outside the double layer here shown as
positively charged. ζ(x) is calculated as a sum of two terms, the far-field potential φ∞ and a component
which varies along the surface φtan(x). Current in the bulk travels along semi-circular lines which act
as resistors. The model-predicted slip velocity uslip and tangential electric field Etan are compared
against the maximum x velocity and x electric field along the line x = 0.

φ∞. We label this estimate of the induced potential φ∞, 0 because we will later calculate φ∞ in a more
complete way accounting for transport between anode and cathode, and φ∞, 0 will show up as the
first term in that equation. For now, however, we will consider only the ability of a spatially uniform
induced zeta potential to lead to a balance of anode and cathode reaction rates. When c+ obeys a
Boltzmann distribution within the double layer, valid for small currents, and is equal to the reservoir
concentration outside of the double layer then

j+
Pt = D+Daa (17)

j+
Au =

(
eφ∞, 0

)2
D+Dac (18)

where j+
i is the magnitude of the local reactive surface flux. Because we have (temporarily) assumed

a spatially uniform induced potential and the anode and cathode are of equal size, integrating the
reactive flux over each surface amounts to setting these fluxes equal. Doing this and solving for φ∞, 0
gives

φ∞, 0 = 1/2 ln (Daa/Dac) (19)

Physically, the dependence of φ∞, 0 on the ratio of Damköhler numbers can be interpreted as the
potential adjusting to either increase or decrease the surface concentration of H+ in such a way as to
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balance the reaction rates at the electrodes. This leads to a dependence on the ratio of reaction rate
constants and the bulk H+ concentration, but not on the H2O2 concentration.

In order to understand the tangential component of the electric field we look at the transport of
ions from anode to cathode. In the absence of significant bulk charge, as is evident in figure 2(b),
current is carried predominantly in an Ohmic manner. Equating scaling of electromigration current
and the cathodic current gives

Etan ∼ Daa (20)

In addition to governing transport of cations from anode to cathode, this component of the electric
field will also affect the average zeta potential of the cathode. In other words, even if Daa = Dac and
thus φ∞, 0 = 0, the fact that the potential at the anode outside of the double layer must be higher
than the potential at the cathode to drive transport from one to the other means that φ∞ must be
induced to equalize the average reaction rates. This contribution to the net potential will scale as the
electric field multiplied by the length scale over which it acts.

We estimate the coefficients associated with this scaling and account for the quadratic dependence
of the reaction rate on the H+ concentration at the cathode by starting with the equation for bulk
charge transport

∇ · (σE) = 0 (21)

where σ = D+c+ + D−c− the conductivity and E the electric field. This equation, a formulation of
Ohm’s law, is asymptotically valid in the electroneutral bulk for small ε. We then, using a heuristic
model based on Ramos’ work [8] on Alternating Current Electro-Osmosis, assume that the outer
electric field lines are semi-circular. This gives a bulk current of

i = σE (22)

= (D+ +D−)
φtan(−x)− φtan(x)

πx
(23)

where E is magnitude of the electric field along the field line starting at −x just outside the electric
double layer and ending at x and i the current density along it. We have also assumed c+ = c− = 1
outside the double layer. The value of E for each field line comes from the difference between the
potential at the ends of the field line divided by its length. (23) is valid in the range 0 < x < 1/4
where current lines travel from the anode to the right to the cathode without passing through the
periodic boundary. We restrict our analysis to this region for simplicity and without loss of generality
because the problem is symmetric about the center of each electrode. We will use (17) along with (23)
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to predict an i which is constant along the surface. While this is not generally true at the cathode
where i depends on c+ and therefore is a function x, this model provides a useful approximation

φtan (x) =
−Daaπx

2 (1 +D−/D+)
(24)

Now that we have an estimate for the tangential variation of the electric potential, we can calculate
an estimate of φ∞ which accounts for it. Previously, to find φ∞, 0, we assumed that the potential drop
across the double layer, and hence the surface concentration and reaction flux were independent of x.
We now relax this assumption and include the combined potential difference across the double layer

ζ(x) = φ(x, y = 0)− φ(x, 1� y � ε) (25)

= − (φ∞ + φtan) (26)

This definition of ζ (25) comes from the local zeta potential representing the potential difference
between the surface and a location far from the thin double layer based on inner scales y � ε, but
still close to the surface relative to outer scales 1� y. In other words, the potential difference between
the surface and matching location between inner and outer solutions. The negative sign in (26) comes
from our choice to reference potentials to the surface as given by the boundary condition of φ in (8)
meaning that φ(x, y = 0) = 0.

At steady-state, the surface reactions constitute the only species transport into or out of the
domain. Setting the total flux at the cathode equal to that at the anode by integrating over the
surface gives ∫ 1/4

0

j+(x, y = 0)dx = −
∫ 0

−1/4

j+(x, y = 0)dx (27)∫ 1/4

0

(
e−ζ
)2
D+Dacdx =

λ

4
D+Daa (28)

where we have restricted our integral to be over the half of the cathode where (24) gives an estimate for
the contribution of transport to the potential difference across the double layer. In (28) we have again
assumed that the concentration of c+ is uniform and equal to the reservoir concentration outside
of the double layer and Boltzmann distributed within it. Because we have included only H+ and
OH– in the model, the combination of bulk water equilibrium and electroneutrality will prevent bulk
concentration gradients. However, when additional species are present, pH gradients will arise [14],
and the variation in c+ outside of the double layer will need to be accounted for. The domain is
symmetric about the center of the anode and cathode, so the current through the other half of the
cathode (1/4 < x < 1/2) will come from the other half of the anode (−1/2 < x < −1/4). Solving for
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φ∞ gives

φ∞ = φ∞, 0 +
1

2
ln

(
βDaa

1− exp (−βDaa)

)
(29)

where β = π/4 (1 +D−/D+). In order to evaluate these models and scalings, we performed simula-
tions over a broad range of anode and cathode Damköhler numbers. Figure 5 shows a comparison
between φ∞ from those simulations and the results of our model.
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Figure 5: (Color online) Scaling of φ∞ and comparison of simulation with model (29). (a) Scaling
with Damköhler ratio showing the predicted logarithmic scaling when Daa is small. (b) Scaling with
Daa for two fixed values of Daa/Dac.

In figure 5a cases where one of the Damköhler numbers is fixed and the other varied are shown,
and very good agreement is observed over the entire range studied. Experimentally varying this ratio
would be difficult because it depends on the ratio of reaction rate coefficients, however some variation
may be possible by choosing different electrode materials. Figure 5b shows cases where the ratio of
the Damköhler numbers is fixed and their magnitude is varied together representative of varying the
concentration of H2O2. Over most of the parameter space good agreement is observed except when
Daa becomes very large O(100) and the model assumptions used to determine the component of φ∞
caused by tangential transport break down. Additionally, atDaa = 2.5 and a ratio ofDaa/Dac = .552,
some error is apparent because φ∞ changes sign near this point making the result on the log-scale
highly sensitive to the exact Damköhler number at which this sign change occurs and appear as a
sharp feature. Both of these plots demonstrate that despite the many assumptions in the model, it is
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able to accurately capture not merely the scaling, but the induced net potential in a broad parameter
space.

To evaluate our predicted linear scaling of the tangential electric field with Daa, figure 6 shows a
comparison of our model

Etan = −dφtan

dx
(30)

= 2βDaa (31)

with Etan from the simulations defined as max (Ex(x = 0, y)). We again see that the scaling is quite
accurate over the entire range simulated with the predicted linear behavior when Daa is varied and
almost no change when Dac is varied while Daa is held constant. Additionally, our simple model is
able to estimate the magnitude of the tangential electric field to within an O(1) constant over the
entire range.

Our model for the electric field (31) predicts that it should depend on the diffusivities of both
species. In contrast, previous studies [17] found that it should depend only on the ionic strength and
H+ diffusivity. They argue that the conductivity shouldn’t be important because only H+ ions carry
net current. However, when bulk water equilibrium reactions are accounted for, current in the bulk
can be carried by OH– ions which are generated by water splitting near the cathode and recombine
with H+ ions near the anode leading to a dependence of the electric field on their diffusivity.
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Figure 6: (Color online) Scaling of tangential electric field with Damköhler numbers. (a) shows that
as predicted Etan scales linearly with Daa. (b) shows the independence of Etan from Dac.
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The velocity of the flow induced by the micropump provides a useful measure of the ability of the
reaction-induced convection to provide additional transport on top of diffusion. From a balance of the
electric body force and diffusive terms in the momentum equations, the velocity should scale as the
product of ζ and Etan. For our model, we use the Helmholtz-Smoluchowski formula for electroosmotic
flow past a flat charged surface, uslip = −εEζ/µ valid for slip associated with thin equilibrium double
layers. Corrections for quasi- and non-equilibrium double layers, due to passage of current, also exist
and could be included [51]. In our dimensionless formulation, this gives

uslip(x) =− κEtanζ(x) (32)

=κβDaa

(
ln
Daa
Dac

+ ln
βDaa

1− exp (−βDaa)
− 2βDaax

)
(33)

We evaluate this predicted slip velocity by comparing the predicted velocity at x = 0 with the slip
velocity from our simulations max (ux(x = 0, y)) in figure 7. When φ∞, 0 is dominant, our model
predicts that the velocity should be proportional to the quantity Daa ln (Daa/Dac). From figure 7a
we see that the velocity does indeed scale with this quantity and that our model predicts the maximum
simulated velocity to within an O(1) in all cases. In figure 7b a comparison is shown for the case
where Daa/Dac = 1 and hence φ∞, 0 = 0. Again for this case agreement to within an O(1) constant
is seen over many orders of magnitude change in the Damköhler number. Visually sharp features in
figure 7a correspond to changes in the sign of the velocity, similar to those observed figure 5. We can
also see from this figure that our earlier assumption that the nonlinear inertial term u · ∇u/Sc is
small relative to the other terms in the momentum is reasonable by comparing the inertial and viscous
terms. The largest velocities here are u ∼ O(102), with the smallest length scale l ∼ ε O(10−3). This
means that the inertial term, which scales as (1/Sc)u2/l, can be at most O(104) while the viscous
term, which scales as u/l2 will be O(108), a difference of four orders of magnitude.

4 Discussion and Conclusions

In this work we have modeled the reaction-induced electroconvection generated by the electrochemical
decomposition of hydrogen peroxide on platinum and gold surfaces. Based on observations from our
direct numerical simulations, we have developed a simple model without any tuning parameters which
is able to predict both the induced electric potentials and flow velocity magnitudes to within a factor
of ≈ 2 over a broad range of Damköhler numbers. This model can be used to aid in experimental
design of systems using this reaction induced flow to provide additional near-surface mixing. It can
also be modified to provide estimations for systems which involve other electrochemical reactions.

Although the developed model agrees well with simulations over the parameter space investigated,
one important question which remains to be addressed in future studies is the effect of additional
charged species on the system. Our model and simulations assume ideal water while in experimental
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Figure 7: (Color online) Comparison of maximum tangential velocity predicted by our model (dashed
lines) with simulations (symbols). (a) comparison for Daa/Dac 6= 1. (b) comparison for Daa/Dac = 1.

systems there will always be other ionic species due to either contaminants or their being added to
induce other electrochemical reactions. The combination of the ideal water model and bulk elec-
troneutrality mean that significant bulk pH and salt concentration gradients can not develop in our
simulations and that double layers must remain in equilibrium.
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