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Abstract

We study penetrative convection of a fluid confined between two horizontal plates, the temper-

atures of which are such that a temperature of maximum density lies between them. The range of

Rayleigh numbers studied is Ra =
[

106, 108
]

and the Prandtl numbers are Pr = 1 and 11.6. An

evolution equation for the growth of the convecting region is obtained through an integral energy

balance. We identify a new non-dimensional parameter, Λ, which is the ratio of temperature dif-

ference between the stable and unstable regions of the flow; larger values of Λ denote increased

stability of the upper stable layer. We study the effects of Λ on the flow field using well-resolved

lattice Boltzmann simulations, and show that the characteristics of the flow depend sensitively

upon it. For the range Λ = [0.01, 4], we find that for a fixed Ra the Nusselt number, Nu, increases

with decreasing Λ. We also investigate the effects of Λ on the vertical variation of convective heat

flux and the Brunt-Väisälä frequency. Our results clearly indicate that in the limit Λ → 0 the

problem reduces to that of the classical Rayleigh-Bénard convection.
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I. INTRODUCTION

Penetrative convection refers to situations where a gravitationally unstable layer of fluid

advances into a stable layer of fluid [1, 2]. The motion of the fluid in the unstable layer is

typically driven by a source of heat. Penetrative convection is relevant in both astrophys-

ical and geophysical settings [e.g., 1, 3, 4], with typical examples of the former being the

interaction between convective and radiative zones in stars [5, 6] and of the latter being the

destruction of the near-ground stable layer in the atmosphere due to radiative heating from

the ground [7, 8] and the deepening of the upper ocean mixed layer due to surface cooling

or formation of sea ice [9, 10].

For concreteness we study penetrative convection in water, which has a density maximum

at TM = 4 ◦C. If the upper surface of a column of water is maintained at a temperature

below TM and the lower surface is maintained at a temperature above TM , the layer of fluid

with temperature below TM is stably stratified and the layer with temperature above TM is

unstably stratified. As the value of Ra for the unstable layer increases, convection will be

initiated, which then leads to the entrainment of the fluid from the stable layer and hence

growth of the convecting region.

The first stability analysis of penetrative convection was carried out by Veronis [1], who

considered a column of water the bottom of which is maintained at 0 ◦C and the top of

which is maintained at a temperature greater than 4 ◦C, along with stress-free conditions

for velocity. From a linear stability analysis of the Boussinesq equations he found that as

the temperature of the upper boundary increases, the critical Rayleigh number (Rac) for the

unstable layer decreases from its value for the classical Rayleigh-Bénard problem, reaching

a minimum before attaining an asymptotic value. Veronis [1] argued that this behavior of

Rac is due to three competing factors: (1) The presence of a stable layer relaxes the upper

boundary condition, thereby allowing the flow in the unstable region to reach an “optimum”

state. As the thickness of the stable layer increases with the top-plate temperature, higher

values of the temperature are preferred; (2) The number of cells in the vertical increases

with increasing temperature, with the cell in the stable layer deriving its energy from the

flow in the unstable layer. Hence, to minimize this energy loss, lower values of the top-plate

temperature are preferred; (3) The available potential energy increases up to a top-plate

temperature of 8 ◦C, and does not change with any further increase in the temperature,
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thereby clearly favoring a top-plate temperature of 8 ◦C. A combination of these three fac-

tors results in Rac attaining a minimum at 6.7 ◦C. Veronis [1] also discovered that convection

could set in at subcritical values of Rayleigh number, because any finite-amplitude distur-

bance that mixes water layers above and below the level of maximum density leads to the

creation of a deeper unstable layer, thereby favoring onset of convection.

The first experimental study of penetrative convection was by Townsend [11], who exam-

ined turbulent natural convection over a layer of ice. The bottom surface of the tank was ice

covered and the upper free surface was maintained at a temperature of 25 ◦C. We estimate

that the Ra in his experiments, based on the total depth of the cell, was about 4.36× 108,

which is well into the turbulent regime. His key observations were:

1. The amplitude of temperature fluctuations was largest close to the base of the stable

layer.

2. He released dye into the stable region, some of which was entrained into the convecting

region to reveal the existence of elongated plume structures that extended from the

base of the lower layer to the base of the stable layer.

Townsend [11] attributed the large amplitude of the temperature fluctuations to the genera-

tion of internal gravity waves in the stable layer. These waves were generated at the interface

between stable and unstable regions by the random impingement of plumes originating at

the bottom surface. A systematic measurement of the heat flux could not be made due to

heat loss from the sidewalls.

Deardorff et al. [7] took a different approach to study the dynamics of penetrative convec-

tion. Using water as the working fluid, and a temperature range far from the temperature of

maximum density, their initial condition was one of stable stratification. Convection ensued

once the temperature of the bottom plate was increased. The motivation of this configura-

tion was to understand the lifting of the inversion layer due to heating of the ground, and

thus the central focus was to understand the evolution of the convecting layer. Their theo-

retical model predicted that the thickness of the convecting layer grows diffusively (∝
√
t,

where t is time) when the heat flux from the bottom plate was assumed to be constant.

However, when a constant temperature was imposed at the bottom plate, they derived a

modified evolution equation whose results were in agreement with measurements. The best

fit to their theoretical solution gave the growth of the layer as ∼ t0.41 (Figure 11 of [7]).
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This indicates that the results for constant temperature and constant flux conditions are

not substantially dissimilar, at least for the growth of the layer in this configuration. This

is also supported by the fact that the heat transport in Rayleigh-Bénard convection is the

same for constant temperature and constant flux conditions [12]. Similar theoretical models

have been constructed by Tennekes [8] and Mahrt and Lenschow [13] to study the evolution

of the convective layer. The model of Mahrt and Lenschow [13] is obtained by integrating

the equations of motion in the convecting layer, and it reduces to that of Tennekes [8] when

shear generation by turbulence is neglected.

Penetrative convection is also important in the study of stars. A typical star is comprised

of three regions: an inner radiative zone, an outer convective zone, and the tachocline, which

is a transition layer between the radiative and convective zones, and is stably stratified [14].

Cold plumes from the outer convective zone penetrate the upper layers of the tachocline gen-

erating internal gravity waves, which are thought to play an important role in the turbulent

transport of momentum in the tachocline [5, 15, 16]. Hence, a detailed study of penetrative

convection is necessary for the understanding of the coupling between these different zones

and the effects of that coupling on the magnetic field of the star.

The situation studied here bears resemblance to penetrative convection in an internally

heated fluid, where the fluid, which is bound by horizontal surfaces maintained at equal

temperatures, is non-uniformly [17] or uniformly [18, 19] heated. The presence of the heat

source leads to the generation of an unstable upper layer and a stable bottom layer. The

relevant questions for this setting are [19]: (1) how does the heat flux vary with the strength

of the heat source? and (2) how does the mean temperature of the fluid vary with the

strength of the heat source? An important distinction from our work is that, due to the

asymmetry introduced by the heat source, the heat flux at the top and bottom surfaces

are not equal in the stationary state. Also, the dependence of the heat flux on the heat

source differs in two and three dimensions [19]. Additionally, we note here that Chen and

Whitehead [20] had previously used the idea of non-uniform heating of the fluid layer to

study finite-amplitude motions in the classical Rayleigh-Bénard convection.

By modeling the fluid density with a piecewise linear phenomenological equation of state,

with the same fixed linear increase in the unstable region and an arbitrary variable linear

decrease (characterized by a parameter S = [2−8, 28]) in the stable region, Couston et al. [21]

numerically studied the flow in a similar geometry. Because of the quantitative difference
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between our equation of state and their parameter S, we are not in a position to make a

quantitative comparison to our work. However, we note that in this and a related study

[16, 21] they found (a) the convective region to be similar to that of the classical Rayleigh-

Bénard convection for S ≥ 100 and (b) gravity waves at the density interface, heuristically

as do we under certain conditions.

Both the astrophysical and geophysical settings in which penetrative convection is impor-

tant offer a wide range of complications, such as rotation, not part of our study. However,

in the spirit of the original paper of Veronis [1], we have found further basic fluid mechanical

processes free from the ravages of such complications and these are of interest to study in

their own right.

In this paper we consider penetrative convection in a fluid that has a density maximum

at a temperature between two horizontal plates. We derive an evolution equation for the

thickness of the convecting layer by integrating the heat equation in the unstable layer and

by using a form for the horizontally averaged temperature field based on our previous studies

of turbulent Rayleigh-Bénard convection [22]. We then compare the theory with the results

from high-resolution numerical simulations for large Rayleigh numbers. Finally, we discuss

the effects of boundary conditions on the flow field and on the heat transport.

II. EQUATIONS OF MOTION

Figure 1 is a schematic of the system studied here. The width and depth of the domain

are Lx and Lz, respectively, the depth of the convecting layer is h, the bottom (top) plate is

maintained at a temperature TH (TC), and the fluid has a density maximum at a temperature

TM . The temperatures are such that TC < TM < TH .

The fluid considered here is water, described well with the following equation of state [1]:

ρ = ρ0
[

1− α (T − TM)2
]

, (1)

showing that the fluid has a maximum density ρ0 when T = TM . Making the Boussinesq

approximation, the equations of motion are

∇ · u = 0, (2)

∂u

∂t
+ u · ∇u = − 1

ρ0
∇p+ g α (T − TM)2 k + ν∇2

u, (3)
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FIG. 1. Schematic of the domain for penetrative convection. The purple line indicates the hori-

zontal layer at which the density of the fluid is a maximum.

and

∂T

∂t
+ u · ∇T = κ∇2T. (4)

Here, u(x, t) is the velocity field, p(x, t) is the pressure field, g is acceleration due to gravity,

α is the coefficient of thermal expansion, k is the unit vector along the vertical, ν is kinematic

viscosity, T (x, t) is the temperature field, and κ is the thermal diffusivity of the fluid.

To non-dimensionalize Eqs. (2) – (4), we choose Lz as the length scale, ∆T = TH − TC

as the temperature scale, U0 = κ/Lz as the velocity scale, ρ0 ν κ/Lz as the pressure scale,

and t0 = L2
z/κ as the time scale. We also introduce the non-dimensional temperature θ as

θ =
T − TM

∆T
. (5)

Using these scales, but retaining the pre-scaled notation, save for the temperature field, we

6



obtain

∇ · u = 0, (6)

∂u

∂t
+ u · ∇u = Pr

(

−∇p +Ra θ2 k +∇2
u
)

, (7)

and

∂θ

∂t
+ u · ∇θ = ∇2θ, (8)

where

Ra =
g α (∆T )2 L3

z

ν κ
and Pr =

ν

κ
(9)

are the Rayleigh and Prandtl numbers, respectively. Hence, in non-dimensional units we

have θ(z = 0) = θH , θM = 0, and θ(z = 1) = θC = −θ0, where θ0 > 0.

For velocity, the boundary conditions at the top and bottom surfaces are no-slip and

no-penetration; and we assume periodicity in the horizontal direction.

III. NUMERICAL SCHEME AND VALIDATION

We use the Lattice Boltzmann Method [23–26] to study penetrative convection for large

Rayleigh number. The code developed has been extensively tested against results from

spectral methods for shear and buoyancy driven flows [22, 27, 28]. The buoyancy force is

introduced into the lattice Boltzmann equation using the scheme of Guo et al. [29].

The code has also been validated against the results of Blake et al. [30] for Γ = Lx/Lz = 2,

TH = 8 ◦C, TM = 3.98 ◦C, TC = 0 ◦C, and Pr = 11.6. Figure 2 shows the comparison of

Nu(Ra) with their simulations. Our values of Nu are consistently lower than theirs, which

we attribute to the low resolution of 22× 42 grid points used in their study; our resolution

is an order of magnitude higher along both the horizontal and vertical directions.

We should note here that due to the presence of the stable layer, the time taken to reach

a stationary state is much longer than in the classical Rayleigh-Bénard setting. The steady

state thickness of the convecting layer is reached when the conductive heat flux in the stable

layer is equal to the heat flux from the unstable layer [11, 31].

The results from numerical simulations presented in the following sections were obtained

using Γ ≡ Lx/Lz = 2 and Pr = 1.
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FIG. 2. Comparison of Nu(Ra) for TH = 8 ◦C, TM = 3.98 ◦C, TC = 0 ◦C, and Pr = 11.6

against the results of [30]. The squares denote values of [30] and the circles denote values from our

simulations.

IV. RESULTS

A. Analytical Results

1. Evolution of the Convecting Layer

Here, using Eq. (8), we derive an evolution equation for the depth of the convecting layer,

h(t). The flow is assumed incompressible, and thus Eq. (8) can be written as

∂θ

∂t
+

∂

∂x
(u θ) +

∂

∂z
(w θ) =

∂2θ

∂x2
+

∂2θ

∂z2
. (10)

Integrating along x and assuming periodicity, we find

∂θ

∂t
+

∂

∂z

(

w′ θ′
)

=
∂2θ

∂z2
, (11)

where

Ψ =
1

Lx

∫ Lx

0

Ψdx (12)
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denotes the horizontal mean, and primes denote deviation from the horizontal means. Now,

we integrate Eq. (11) along the vertical in the convecting region to find

∫ h−

0

∂θ

∂t
dz = −

(

w′ θ′ − ∂θ

∂z

)
∣

∣

∣

∣

z=h−

+

(

w′ θ′ − ∂θ

∂z

)
∣

∣

∣

∣

z=0

. (13)

Owing to the no-penetration condition at z = 0, Eq. (13) reduces to

∫ h−

0

∂θ

∂t
dz = −

(

w′ θ′ − ∂θ

∂z

)
∣

∣

∣

∣

z=h−

− ∂θ

∂z

∣

∣

∣

∣

z=0

. (14)

We assume that the dominant mode of heat transport in the stable layer is conduction, and

by demanding the continuity of heat flux at the interface between the stable and unstable

layers [e.g., 32], we have

(

w′ θ′ − ∂θ

∂z

)
∣

∣

∣

∣

z=h−

= − ∂θ

∂z

∣

∣

∣

∣

z=h+

. (15)

Using condition (15) in Eq. (14), we find that

∫ h−

0

∂θ

∂t
dz =

∂θ

∂z

∣

∣

∣

∣

z=h+

− ∂θ

∂z

∣

∣

∣

∣

z=0

. (16)

To evaluate the integral on the left hand side of Eq. (16), we make the following assumptions

about θ(z, t):

1. The convecting layer consists of a well-mixed region that is bounded by boundary

layers on its top and bottom surfaces.

2. The small boundary-layer thicknesses (δ1 and δ2) are assumed to be constants. The

argument being that the boundary layers reach a stationary state much more rapidly

than the well-mixed region.

Figure 3 shows the assumed profile for θ(z, t). Based on this, we write

θ(z, t) =























θ1 = (θmixed − θH)
z
δ1
+ θH ; if 0 ≤ z ≤ δ1,

θ2 = θmixed; if δ1 ≤ z ≤ h− − δ2,

θ3 =
(

h−

−z
δ2

)

θmixed; if h− − δ2 ≤ z ≤ h−.

The integral in Eq. (16) can now be written as

∫ h−

0

∂θ

∂t
dz =

∫ δ1

0

∂θ1
∂t

dz +

∫ h−

−δ2

δ1

∂θ2
∂t

dz +

∫ h−

h−

−δ2

∂θ3
∂t

dz. (17)
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FIG. 3. Figure shows the assumed profile for θ(z, t).

Assuming θmixed to be a constant, the integrals are easily evaluated to yield

∫ h−

0

∂θ

∂t
dz = θmixed

dh

dt
, (18)

and hence, Eq. (16) becomes

θmixed

dh

dt
=

∂θ

∂z

∣

∣

∣

∣

z=h+

− ∂θ

∂z

∣

∣

∣

∣

z=0

. (19)

Moreover, we have
∂θ

∂z

∣

∣

∣

∣

z=h+

=
θC − θM
1− h

= − θ0
1− h

, (20)

and

− ∂θ

∂z

∣

∣

∣

∣

z=0

= − ∂T

∂z

∣

∣

∣

∣

z=0

(

∆T

Lz

)

−1

= − ∂T

∂z

∣

∣

∣

∣

z=0

(

∆T1

h

h

Lz

∆T

∆T1

)

−1

=
Q

h
θH , (21)

where ∆T1 = TH − TM and Q (> 0) is the non-dimensional heat flux delivered to the

convecting region. Hence, we have the following evolution equation for the thickness of the
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convecting region,
dh

dt
= − Λ

γ (1− h)
+

1

γ

Q

h
, (22)

where θmixed = γ θH , with 0 < γ < 1 a constant, and Λ = θ0/θH . We note that in our

approach the evolution equation has been obtained by assuming a profile for the mean tem-

perature based on our quantitative understanding of the flow structure in classical turbulent

Rayleigh-Bénard convection. Any need to parametrize the turbulent heat flux is circum-

vented by the requirement that the heat flux be continuous at the interface between the

stable and unstable layers.

Our analysis also reveals that, in addition to Ra and Pr, there is another governing

parameter in the system, which is given by

Λ =
θM − θC
θH − θM

=
θ0
θH

. (23)

In general, the range of values Λ can take is [0,∞). A large (small) value of Λ indicates

that the stable layer is strongly (weakly) stratified. The characteristics of the flow depend

sensitively on the value of Λ, and hence this is a very important parameter in the description

of penetrative convection.

In Eq. (22), there are different balances between the terms for different times, which

is heuristically like the balances found in double-diffusive [32] and solidification problems

[33, 34]. Let Tt be the time at which the initial transients decay and Tg be the time beyond

which the flow reaches a stationary state. The convective layer evolves in the following three

stages:

1. Transient state: 0 ≤ t ≤ Ti

The dominant balance during this time period is:

dh

dt
= − Λ

γ (1− h)
, (24)

which implies that the convective layer shrinks. This is expected on the grounds that

the flow responds to the bottom heat flux on a time scale of O(Ti), during which the

second term of Eq. (22) is smaller. The value of Ti would depend on Ra and Λ, and

in general can be expected to decrease with increasing Ra and decreasing Λ.

2. Growth: Ti < t ≤ Tg

During this stage we have
dh

dt
=

1

γ

Q

h
, (25)
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which implies that the thickness of the layer increases with time. For Q constant, the

solution to Eq. (25) is

h(t) =

√

h2
0 +

(

2Q

γ

)

t, (26)

where h0 is the thickness at t = 0. Thus, our analysis recovers the result discussed

above that the convective layer grows diffusively for constant heat flux when Ra ≫ 1

[7–9].

3. Steady state: t > Tg

In the final stage, the flow reaches a steady state and Eq. (22) becomes

Λ

γ (1− hs)
=

1

γ

Q

hs

, (27)

where hs is final thickness of the layer, which is

hs =
Q

Λ +Q
. (28)

For a fixed Q, when the upper layer is unstratified (Λ = 0), Eq. (28) gives hs = 1 and

the convective layer occupies the whole domain. In the opposite limit of very strong

stratification of the upper layer (Λ → ∞), we have hs → 0. Both of these limits are

found in our simulations.

We note that the expression for effective Nu (Q in our notation) in the work of Moore

& Weiss (Eq. (15) of [35]) reduces to Eq. (28) after some algebraic manipulation.

B. Numerical Results

1. Thickness of the Convecting Layer

We compute the thickness of the convecting layer, h(t), which is defined as the height at

which θ = 0. Figures 4 and 5 show the evolution of the convecting layer for Ra = 107 and

Λ = 2 and 0.25, respectively. A fit to the region where h(t) increases in time for Λ = 2 in

Figure 4 gives h(t) ∝ t0.23; whereas, for Λ = 0.25 one obtains h(t) ∝ t. This shows that the

growth for the convecting layer is much faster when Λ is small, which arises from two effects.

Firstly, the initial thickness of the convecting layer is larger for Λ = 0.25 than for Λ = 2

(see Figures 4 and 5 for thickness at t = 0). The convective motions are more vigorous in
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FIG. 4. Evolution of the thickness of the convecting layer for Ra = 107 and Λ = 2. The dashed

lines separate the three stages of evolution, as discussed in the main text.
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FIG. 5. Evolution of the thickness of the convecting layer for Ra = 107 and Λ = 0.25.

the former case, leading to faster growth. Secondly, for lower values of Λ, the developing

convecting layer experiences little resistance in entraining fluid from the stable layer, which

again leads to a faster growth.

Once the flow has reached a stationary state, we compute the averaged thickness, hs.
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FIG. 6. The averaged thickness, hs, vs. Λ for Ra = 107. Circles are the values obtained from

simulations, and the solid line is from the theory.

Figure 6 shows hs as a function of Λ for Ra = 107. The agreement between the theory and

simulations is very good for small Λ, but decreases for large Λ. The large Λ behavior arises

from the suppression of convective motions, and hence mixing, in the interior of the unstable

region. This leads to both conduction and convection becoming important throughout the

unstable layer, and hence the temperature profile assumed in the theoretical analysis is no

longer valid for these large Λ.

2. Temperature Field

Figures 7 and 8 show the time evolution of the temperature field for Ra = 107 and Λ = 2

and 0.25. These values of Λ were chosen to clearly reveal the effects of the stable layer

stratification on the flow characteristics. In Figure 7, the plumes that are generated from the

hot bottom plate do not penetrate the stable layer because the strength of the stratification.

The fluid from the stable layer is entrained slowly, and the flow takes a very long time to

reach a stationary state. This is also clearly seen in Figure 4, where the growth of the

convecting layer is subdiffusive. Additionally, we observe internal gravity waves generated

at the interface between the stable and unstable layers, as well as in the interior of the stable
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FIG. 7. Temperature field for Ra = 107 and Λ = 2 at different times: (a) t = 0.016; (b) t = 0.079;

(c) t = 0.16; and (d) t = 0.32. The structure of the flow here is in qualitative agreement with the

experiments of Townsend [11] with Λ ≈ 5. See supplemental movie [36].

layer in Figures 7(b) – 7(d). The structure of the flow here is in qualitative agreement with

the experimental observations of Townsend [11], with Λ ≈ 5.

In contrast to this, the plumes penetrate the stable layer when Λ = 0.25. In fact, the

temperature fields closely resemble those in the Rayleigh-Bénard problem, where the fluid

has a linear equation of state. Hence we intuitively expect that the Rayleigh-Bénard problem

is realized in the limit of Λ → 0. Indeed, the rapid growth of the convecting layer, as seen

in Figure 5, is partly due to the weak stratification of the stable layer.

The effects of Λ can also be discerned by studying the temporally and horizontally av-

eraged temperature profiles. To that end, figures 9 and 10 show θT (z) for Ra = 107 and

Λ = 2 and Λ = 0.25, respectively. The temperature profile for Λ = 2 is more asymmetric

than for Λ = 0.25. The stable layer is much thicker for Λ = 2, which is seen by the linear

profile extending from z = 1 to z = 0.8. However, for Λ = 0.25 the top/bottom symmetry of

the temperature profile closely resembles that from turbulent Rayleigh-Bénard convection,

consistent with the argument that the penetrative convective flow approaches that of the

classical Rayleigh-Bénard problem as Λ → 0. Additionally, Figure 11 shows the averaged

temperature profile for Ra = 107 and Λ = 4, which is in qualitative agreement with the
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FIG. 8. Temperature field for Ra = 107 and Λ = 0.25 at different times: (a) t = 0.016; (b)

t = 0.079; (c) t = 0.16; and (d) t = 0.32. See supplemental movie [36].

experiments of Adrian [31] who had Λ ≈ 5 – 6.

3. Metastability of Plume Patterns

Another interesting consequence of the presence of the stable layer is its effect on the

dynamics of plume generation in the convective layer. In Rayleigh-Bénard convection, the

flow, for a given Ra and Γ, settles into a stationary state with a fixed number of convection

rolls that transport heat from the bottom wall to the top [12]. However, in penetrative

convection, we find that for large Λ and certain Ra, the flow structures enter a metastable

state.

Figures 12 and 13 show the evolution of temperature field for Ra = 5 × 106 and Λ = 4.

Focussing on the number of upwelling plumes, we see that there are four plumes in Figure

12(b) and as h increases this configuration becomes unstable and two of the four plumes

merge in Figure 12(c) forming now a total of three plumes as seen in Figure 12(d).

As h increases further, the new configuration becomes unstable and two of the three

plumes merge, giving rise to a total of two plumes [Figure 13(a)]. With increasing time, two

smaller plumes are generated which then merge with one of the two larger plumes [Figures
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FIG. 9. Mean temperature profile for Ra = 107 and Λ = 2.

13(a) - 13(d)]. This cycle of generation and merger of plumes continues and the flow does

not settle into a stationary state with respect to flow structure. It is interesting to note that

qualitatively similar observations of plume merger and generation were made by Whitehead

and Chen [17] in their study of penetrative convection in internally heated fluid.

These merger events give rise to more energetic plumes that then impinge upon the stable

layer. This is seen in Figure 13(d). However, because of the stability of the upper layer, the

plumes only generate low-frequency oscillations, as seen in Figure 14.

4. Heat Transport

The non-dimensional heat flux, Nu, from the lower surface to the upper surface can be

obtained using

Nu = −
(

∂θT
∂z

)

T

∣

∣

∣

∣

z=0

. (29)

We note here that only the choice of Lz as the characteristic length scale and ∆T = TH −TC

as the characteristic temperature scale gives Nu = 1 when Ra = 0. The simulations were

run for sufficiently long times to obtain converged statistics to compute Nu.

Figure 15 shows the least-squares fits for Nu(Ra, Λ) data for Ra = [106, 108] and Λ =

17
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FIG. 11. Mean temperature profile for Ra = 107 and Λ = 4. This temperature profile is in

qualitative agreement with the measurements of Adrian [31], who had Λ ≈ 5 – 6.
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FIG. 12. Evolution of temperature field for Ra = 5 × 106 and Λ = 4 at times: (a) t = 0; (b)

t = 0.07; (c) t = 0.09; and (d) t = 0.12. See supplemental movie [36].

[0.01, 4]. For each Λ, the relation between Nu and Ra is sought in terms of a power law:

Nu = A × Raβ . Clearly, for a fixed value of Ra, Nu increases with decreasing Λ. This

is due to the fact the stability of the upper layer decreases as Λ decreases, which in turn

leads to more vigorous convective motions in the unstable layer and larger heat transport.

For Λ = 4, there is no appreciable convective motion even when Ra = 106 and the heat

transport in the entire domain is dominated by conduction.

Another quantity that is of interest is the convective heat flux, Qc =
(

w′ θ′
)

T
, and its

variation with height. Deardorff et al. [7] found that Qc remains positive in the convective

region, but becomes negative near the interface due to entrainment of the fluid from the

stable layer. Similar observations have also been made by Adrian [31]. For Ra = 107,

Figures 16 and 17 show how Qc changes as Λ changes from 4 to 0.01, respectively. It

is clear that, for Λ = 0.01, except for the boundary layers, Qc is constant in the unstable

region. Hence, in this case, convective motions transport nearly all the heat. On the other

hand, when Λ = 4 convection is not the dominant mode of transport, even in the unstable

region. This is reflected by the fact that Qc attains a maximum value, equal to Nu for this

case, in only a small region of the flow. Moreover, Qc changes sign again in the stable layer,

which is due to the combined effects of entrainment of the fluid from the stable layer and the
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FIG. 13. Evolution of temperature field for Ra = 5 × 106 and Λ = 4 at times: (a) t = 0.16; (b)

t = 0.21; (c) t = 0.22; and (d) t = 0.24. See supplemental movie [36].
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FIG. 14. Evolution of the thickness of convective layer for Ra = 5 × 106 and Λ = 4. The low-

frequency oscillations are due to the impingement of plumes after merger events. See supplemental

movie [36].
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Nu = 0.037 ×Ra0.245. The Nu (Ra,Λ) data can be found in supplemental material [36].
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dashed vertical line is included to discern the change in sign in N 2.

excitation of internal gravity waves. This is quantified by studying the height dependence

of the Brunt-Väisälä frequency [10], which is defined in dimensional units as

N 2 = − g

ρ0

∂ρ

∂z
. (30)

Figure 18 shows the height dependence of N 2, scaled by the convective time scale tc =
√

H/g α∆T 2, for Ra = 107 and Λ = 4. By definition in the stable region N 2 > 0, and

in the region where 0 ≤ N 2 ≤ 1 both entrainment and the internal gravity waves drive

vertical motions of the fluid; internal gravity waves become dominant only for z > 0.73,

where N 2 > 1.

In contrast, for Λ = 0.01, the internal gravity waves play no appreciable role in generating

vertical motions. This can be seen from Figure 19, where N 2 < 0 in the entire domain,

showing that convective motion of the fluid dominates.

V. CONCLUSIONS

We have systematically studied penetrative convection of a fluid with a density maximum

using both analytical and numerical tools. We derived an evolution equation for the growth
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FIG. 19. Variation of the Brunt-Väisälä frequency, N 2, with height for Ra = 107 and Λ = 0.01.

The dashed vertical line is included to discern the change in sign in N 2.

of the convecting layer by integrating the heat equation in the convecting layer and by

constructing the mean temperature profile based on our knowledge of the flow in turbulent

Rayleigh-Bénard convection. In so doing, we have identified a new governing parameter, Λ,

that measures the strength of the stratification of the stable upper layer and thereby exerts

a controlling influence on the evolution of the underlying convecting layer. For a constant

heat flux, Q, we recover the result from previous studies [7–9] that the convecting layer

grows diffusively. The final steady thickness is shown to depend solely on the values of Q

and Λ.

In order to obtain an analytic equation for the evolution of h(t), Eq. 22, we assumed

that the heat transport in the stable layer is controlled by conduction. The veracity of

this assumption is justified by the results of the analysis in the extreme limits of Λ, which

provides the framework for the utility of such a simple approach.

High-resolution numerical simulations using the lattice Boltzmann method reveal that

the growth of the convecting layer at a same Ra depends sensitively on the value of Λ –

the smaller the value of Λ, the faster the convecting layer grows. The flow field was also

found to depend sensitively on Λ. For larger values of Λ, the penetrative entrainment of the

plumes by the stable upper layer is suppressed. However, for smaller Λ entrainment into
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the stable layer is efficient and the flow rapidly reaches a stationary state. The temporally

and horizontally averaged temperature profile for Λ = 4 and Ra = 107 was found to be in

qualitative agreement with the temperature profile from the experiments of Adrian [31].

We computed Nu for Ra = [106, 108] and Λ = [0.01, 4] and found that for a fixed Ra,

as Λ decreases, Nu increases. This is consistent with the limit of Λ → 0 in penetrative

convection reducing to that of the classical Rayleigh-Bénard convection. For Λ = [0.01, 4],

power-laws were obtained for the data using a linear least-squares fit, giving the exponent β

in Nu = A×Raβ. Both A and β vary non-monotonically with Λ, but a consistent physical

interpretation is only possible by studying the changes in Nu and not A or β individually.

We conclude by noting that whilst the complexities of many of the astrophysical and

geophysical settings in which penetrative convection is operative are not at play in our study,

nonetheless key qualitative phenomena will not differ. Of principle relevance is the influence

of rotation, which has the general effect of suppressing convection, as does stratification.

Indeed, there is a direct mathematical analogy between rotating and stratified fluids, and

under some conditions the analogy is exact [37]. Thus, because penetrative convection, as

we have studied it here, couples a convective region with a strongly stratified region, we

suggest that the analogy between rotation and stratification is of some use in considering

the qualitative influence of rotation on our results.
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