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At transcritical conditions the transition of a fluid from a liquid-like state to a gas-like
state occurs continuously, which is associated with significant changes in fluid properties.
Therefore boiling in its conventional sense does not exist, and the phase transition at trans-
critical conditions is known as “pseudo-boiling”. In this work, direct numerical simulations
(DNS) of a channel flow at transcritical conditions are conducted in which the bottom and
top walls are kept at temperatures below and above the pseudo-boiling temperature, respec-
tively. Over this temperature range, the density changes by a factor of 18 between both
walls. Using the DNS data, the usefulness of the semi-local scaling and the Townsend at-
tached eddy hypothesis is examined in the context of flows at transcritical conditions—both
models have received much empirical support from previous studies. It is found that while
the semi-local scaling works reasonably well near the bottom cooled wall, where the fluid
density changes only moderately, the same scaling has only limited success near the top wall.
In addition, it is shown that the streamwise velocity structure function follows a logarithmic
scaling and the streamwise energy spectrum exhibits an inverse wavenumber scaling, thus
providing support to the attached eddy model at transcritical conditions.

Keywords: Transcritical flow, wall modeling, turbulent channel flow, pseudo-boiling, turbulent
boundary layer

I. INTRODUCTION

At subcritical pressures, fluids at a liquid state can be unambiguously distinguished from those
at the gaseous state. At supercritical pressures, however, a substance can exist partly as liquid and
partly as vapor near the critical temperature, and the transition between the two phases becomes
continuous. During this process, all fluid properties change dramatically, and the flow exhibits a
liquid-like density and a gas-like diffusivity [1, 2]. As an example, Fig. 1 shows the thermo-transport
properties of nitrogen across the pseudo-boiling line (a.k.a. Widom line), which is defined by the
thermal condition where the specific heat capacity attains its maximum at a given pressure [3, 4].
These conditions are relevant for several engineering applications [5]. Examples are the trans-
critical injection in diesel engines, gas turbines, and rocket motors, where reactants are injected
into chambers at supercritical pressures. These flow configurations conform with the classical jet
configurations, and processes of interest are the atomization of the injected reactants and their
subsequent combustion (see, e.g., [3, 6, 7] for experimental studies and [8, 9] for numerical inves-
tigations). Besides the transcritical injection, in refrigerators, power plants and nuclear reactors,
coolants are pressurized to supercritical conditions to prevent the so-called boiling crisis [10, 11].
In this work, we consider wall-bounded flows at transcritical conditions, which are of relevance to
regenerative cooling systems in rocket motors, where one of the cryogenic propellants is first used
to cool the combustion chamber prior to its injection. Laboratory measurements of wall-bounded
turbulence at transcritical conditions are scarce, and most earlier experiments reported only wall
heat transfer rates (see, e.g., [12–14]), which, albeit its relevance to engineering systems, provide
only limited information about the near-wall turbulence.

Our knowledge of turbulence at transcritical conditions mostly comes from direct numerical
simulations (DNS), where turbulent motions at all scales are numerically resolved, and pressure,
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FIG. 1. State diagram and thermo-transport properties of nitrogen (critical pressure of 3.40 MPa and
critical temperature of 126.2 K) from NIST database [15]. (a) pressure-temperature state diagram with
the compressibility factor contours shown in gray and specific heat capacity at constant pressure shown
as red contours in units of J/(g·K). The blue solid line is the coexistence line and the blue dashed line is
the pseudo-boiling line defined by the peak of specific heat capacity. The black dot represents the critical
point; (b) density, specific heat capacity, and dynamic viscosity plotted as a function of temperature at three
different pressures, emphasizing the drastic property changes in the pseudo-boiling region.

dynamic viscosity, and heat capacity, etc. are tabulated as a function of temperature and pres-
sure [16, 17]. Here we briefly review recent DNS investigations and relevant findings. In Refs.
[18, 19], the authors conducted DNS of annular flows between two simultaneously heated and
cooled walls, and it was found that turbulence is attenuated near the hot wall. Considering the
channel configuration, it was reported in Ref. [20] that the mean velocity profiles at various flow
conditions collapse when using the semi-local scaling (although we note the heat capacity was kept
constant in Ref. [20]). In contrast, in Ref. [21], the authors found that the mean velocity may
be collapsed using conventional viscous length and velocity scales. In addition to these studies on
flows that are fully developed and statistically homogeneous along the streamwise and spanwise
(annular) directions, developing thermal boundary layers were studied in Refs. [22, 23].

Although DNS allows us to access full three-dimensional flow field, using it as a design tool for
practical engineering problems remains infeasible owing to its computational cost [24], and numer-
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ical difficulties associated with representing large density gradients in transcritical flows [25–28].
Such numerical difficulties have limited DNS to transcritical flows with O(1) density change [16–
19, 21–23]. However, practical engineering flows involve density changes up to O(100), and com-
putationally efficient modeling tools to support engineering design decisions are desired.

To date, low-cost computational fluid dynamic (CFD) models (e.g. Reynolds-averaged-Navier-
Stokes) have not been able to accurately predict the wall heat transfer rates at transcritical and
supercritical conditions because of an insufficient description of the near-wall turbulent heat trans-
fer [2]. While efforts have been made to enable wall-modeled large-eddy simulation (WMLES)
capabilities for problems involving wall heat transfer [29–32], applications of this cost-efficient tool
has so far been limited to ideal-gas flows. By addressing this need, the objective of this work is
twofold. First, we extend the recently developed modeling capability for simulating transcritical
flows [33] to conduct DNS of transcritical channel flow with O(10) density changes in the flow field.
Second, we attempt to use DNS to inform low-cost CFD models by examining commonly employed
scaling transformations and physical models for variable-property fluids. Specifically, we examine
the semi-local scaling [20, 34–38] and the attached eddy model [39–41].

The remainder of the manuscript is organized as follows. Additional background information is
provided in Sect. II. In Sect. III, we present details of the computational setup. In Sect. IV, the
DNS results are presented, and conclusions are given in Sect. V.

II. BACKGROUND

A. Scaling transformations

For constant-property wall-bounded turbulent flows, the near-wall time-averaged velocity fol-
lows the law of the wall [42]

u+ = y+, in the viscous sublayer, y+ < 5;

u+ =
1

κ
log(y+) +B, in the logarithmic region, 30 . y+ . 0.1δ;

(1)

where u is the streamwise velocity, + indicates normalization by wall units, κ ≈ 0.4 is the von
Kármán constant, B ≈ 5 is an additive constant, y is the wall-normal coordinate, and · indicates
ensemble average. The wall units used for normalization are uτ =

√
τw/ρw and δν = µw/(ρwuτ ),

where the subscript w indicates quantities evaluated at the wall, ρ is the fluid density, µ is the
dynamic viscosity, and τw is the mean wall-shear stress. y+ = y/δν , u+ = u/uτ represent the
viscous scaling. For constant-property flows, ρw = ρ is a constant, and µw = µ is also a constant.

For variable-property flows, both the fluid density and the dynamic viscosity (and other flow
properties including heat capacity) are functions of temperature and pressure, leading to additional
complexities. For example, the time-averaged velocity does not follow the law of the wall, unless a
scaling transformation is applied. One commonly used velocity transformation is the so-called van
Driest transformation [43]

u+VD =

∫ u+

0

(
ρ

ρw

)1/2

du+. (2)

The intention of this (and other) velocity transformation is for the transformed velocity u+VD to
collapse with the incompressible law of the wall as a function of y+ (i.e. Eq. (1)). The van Driest
transformation works quite well for boundary-layer flows above adiabatic walls (see, e.g., [44–46]).
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However, for flows above non-adiabatic walls, Eq. (2) fails, and the transformation developed in
Ref. [35] has been recommended

ySL =
y
√
τwρ

µ
,

u+TL =

∫ u+

0

(
ρ

ρw

)1/2 [
1 +

1

2

1

ρ

dρ

dy
y − 1

µ

dµ

dy
y

]
du+,

(3)

where the transformed velocity u+TL is expected to follow the law of the wall as a function of ySL (note
ySL is non-dimensional). In Ref. [35], Eq. (3) was derived by equating the turbulent momentum
flux and the viscous stress to their incompressible counterparts. The same transformation was later
derived in Ref. [20] using a slightly different approach. While the above transformation has been
quite successful [30, 35, 47], it is worth noting that Eq. (3) is not based on first principles, but is
a consequence of reasonable assumptions, which may be valid for certain flows but may also prove
to be inadequate in other flows. The subscript “SL” in Eq. (3) is the acronym for semi-local.

The starting point of the semi-local scaling [34] is such that a fluid parcel at a wall-normal
location ySL in a variable-property flow subjects to the same large- and small-scale effects as a fluid
parcel at a wall-normal location y+ in a constant-property flow (given the two flows are at the
same friction Reynolds number). Following Ref. [35], the friction Reynolds number of a variable-
property flow is defined using the semi-local friction velocity u∗τ =

√
τw/ρ̄, the boundary layer

height (or the half channel height) δ, and the local kinematic viscosity µ̄/ρ̄.

The semi-local scaling proves to be quite useful. Collapsed Reynolds stresses, pre-multiplied
energy-spectra, Kolmogorov length scales, mixing lengths, and eddy viscosities at difference
Reynolds numbers were reported in Refs. [20, 36, 37]. However, it is worth noting that the
equations of state used in Refs. [20, 36] are not completely realistic. For example, the authors held
the specific heat capacity constant. In addition, only moderate density changes were considered in
Refs. [20, 36, 37], where STD(ρ′/ρ) did not exceed 15%. Here fluctuations are denoted using the
superscript ′, and STD(·) is the standard deviation of the bracketed quantity. Considering that
transcritical flows in practical applications often encounter density change of O(10 ∼ 100), it is of
interest to test the usefulness of the semi-local scaling in flows with large density variations. Such
tests were previously conducted in Ref. [28] for boundary layer flows at transcritical conditions,
where deficiencies of the semi-local scaling were observed.

B. Attached-eddy hypothesis

While the scaling of the time-averaged velocity may be derived using dimensional arguments
(see, e.g., [42]), one often needs to resort to more sophisticated models like the attached-eddy
hypothesis for scaling predictions of turbulent statistics in wall-bounded flows [39, 41, 48, 49]. The
attached eddy hypothesis is comprised of three sub-hypotheses. The first sub-hypothesis states
that, at high Reynolds numbers, there exists a range of wall-normal distances, within which range,
neither viscous effects nor large-scale effects play a significant role. This wall-normal distance range
is also known as the logarithmic range. The second sub-hypothesis states that the sizes of the fluid
structures within the logarithmic range scale as their distance from the wall, and these structures
are space-filling. These structures are now known as attached eddies. The last sub-hypothesis
states that instantaneous velocity fluctuations at a generic location in the flow field result from
a superposition of all the eddy-induced velocities at that location. This last sub-hypothesis is a
direct consequence of Bio-Savart law. A sketch of the hypothesized boundary-layer structure is
shown in Fig. 2(a).
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FIG. 2. (a) A sketch of hypothesized boundary layer structure. The attached eddies are space filling. On a
vertical plane cut as shown here, the number of eddies doubles as the size halves. An eddy affects the shaded
region below it. The velocity at a generic point in the flow field is a result of the additive superposition of
all the eddy-induced velocity fields there. (b) A sketch of the additive cascade in wall-bounded flows. The
sketch is the same as (a), but we have retained only the hierarchical organization of the attached eddies,
schematically indicated by color lines. The two black squares indicate two points in the flow field. For these
particular points under consideration (at the same wall-normal height), eddies in blue affect the two points
simultaneously, eddies in orange can only affect one of the two points and eddies in gray affect neither of
them.

The attached eddy hypothesis was pioneered by Townsend [50], then extended in Refs. [51–
55] by accounting for wake effects, effects of vortex clustering and the mutual exclusion effects
of the attached eddies of the same size. However, these earlier works have relied on the use of
a few specific wall-attached eddies, and investigations of the scaling implications of the attached
eddies were not until quite recent (see, e.g., [40, 48, 56–58]). A notable recent development on
the scaling implications of the attached eddy model is the hierarchical random additive process
(HRAP) model, where only the assumed hierarchical organization of the wall-attached eddies is
retained (see Fig. 2(b)) and the streamwise velocity fluctuation at a generic location in the flow
field is modeled as a random additive process

u′y =

Ny∑
i=1

ai, (4)

where ai represents a contribution from an attached eddy of size δ/2i, and the number of addends
Ny is obtained by integrating the eddy population density P (y) ∼ 1/y from the location of interest
to the boundary layer height

Ny =

∫ δ

y
P (y)dy ∼ log(δ/y). (5)

Squaring and averaging both sides of Eq. (4) leads to the logarithmic scaling of the variance of the
streamwise velocity fluctuations

u′2 = Nya2 = A1 log(δ/y) +B1, (6)

which scaling was first derived by Townsend [50], and has so far received considerable empirical
support [59–61]. Here, A1 is the Townsend-Perry constant, and B1 is a constant. Next, let us
consider two points that are separated by a distance r in the flow direction. The attached eddies
may be grouped into three groups, first, eddies that affect the two points simultaneously (whose
height is r . h . δ, and will be referred to as type-I eddies); second, eddies that affect only one
of the two points (whose height is y . h . r and will be referred to as type-II eddies); and third,
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eddies that affect neither of the two points (whose height is h . y and will be referred to as type-III
eddies). If we take the difference between the two points, only contributions from type-II eddies
remain, and we obtain the logarithmic scaling of the second-order structure function

(u′(x, y)− u′(x+ r, y))2 =

 Ny∑
i=Nr

ai − bi

2

= 2(Ny −Nr)a2 = 2A1 log(r/y) +B1,s, (7)

where ai and bi are addends that contribute to the velocity fluctuations at the two points, and B1,s

is yet another constant. By taking the difference between Eq. (6) and Eq. (7), we have

u′(x, y)u′(x+ r, y) = u′2 − 0.5(u′(x, y)− u′(x+ r, y))2 = A1 log(δ/r) +B1,c, (8)

whose Fourier transformation leads directly to the celebrated wavenumber inverse scaling of the
streamwise energy spectra

Eu′u′ ∼ k−1, (9)

where k is the streamwise wavenumber and B1,c is a constant.
Because the above derivation for the scalings in Eqs. (7) to (9) does not rely on any specifically-

shaped attached eddy, we conclude that the existence of the logarithmic scalings Eq. (7) and the
k−1 scaling are evidence of the presence of a hierarchy of wall-attached eddies as sketched in Fig. 2.

III. COMPUTATIONAL SETUP

The computational domain is schematically illustrated in Fig. 3. The working fluid is nitrogen,
whose critical pressure and critical temperature are pc = 3.40 MPa and Tc = 126.2 K, respectively.
The flow is at a bulk pressure of 3.87 MPa, corresponding to a reduced pressure (pr = p/pc) of
1.14. The flow is confined between two isothermal walls, which are kept at Tw,b = 100 K and
Tw,t = 300 K, where T is the temperature, and the subscripts ‘b’ and ‘t’ denote ‘bottom’ and ‘top’,
respectively. The reduced temperature (Tr = T/Tc) is 0.79 at the bottom cooled wall and 2.38 at
the top heated wall. The periodic channel is of size Lx×2Ly×Lz with Lx/Ly = 2π, Lz/Ly = 4π/3
and half-channel height of Ly = 0.09 mm, where x, y, and z are the streamwise, wall-normal and
spanwise directions, respectively. The wall-normal coordinate extends from y = −Ly to y = Ly.
A constant mass flow rate is enforced and the bulk velocity, defined as ũ0 =

∫
ρudV/

∫
ρdV , is

27.3 m/s, where the integration is over the entire channel, and u is the streamwise velocity. The
size of the computational domain is typical for channel-flow calculations and was proved to be
sufficient for capturing the wall-normal statistics [62].

The governing equations for the description of transcritical flows are the conservation of mass,
momentum and total energy, taking the following form

∂ρ

∂t
+∇ · (ρu) = 0 , (10a)

∂(ρu)

∂t
+∇ · (ρuu+ pI) = ∇ · τ + f , (10b)

∂(ρE)

∂t
+∇ · [u(ρE + p)] = ∇ · (τ · u)−∇ · q + u · f , (10c)

where u is the velocity vector, p is the pressure, f is the body force and E is the specific total
energy. The viscous stress tensor and heat flux are

τ = µ
[
∇u+ (∇u)T

]
− 2

3
µ(∇ · u)I , (11a)

q = −λ∇T , (11b)
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FIG. 3. Schematic of the transcritical turbulent channel flow. The top and bottom walls are isothermal
kept at 300 K and 100 K, respectively; p0 is the bulk pressure.

where λ is the thermal conductivity. The specific total energy is related to the specific internal
energy, e, and the specific kinetic energy as follows

E = e+
1

2
u · u . (12)

The body force, f , is applied along the streamwise direction to impose a pre-specified flow rate [63].
The system is closed with a constitutive equation, for which the Peng-Robinson (PR) cubic

equation of state (EoS) [64, 65] is used

p =
RT

v − b
− aα

v2 + 2bv − b2
, (13)

where R is the gas constant, v = 1/ρ is the specific volume, and the parameters a, b and α account
for effects of intermolecular forces and excluded volume,

a = 0.457236
R2T 2

c

pc
, (14a)

b = 0.077796
RTc
pc

, (14b)

α =

[
1 + c

(
1−

√
T

Tc

)]2
. (14c)

The coefficient c, appearing in Eq. (14c), is

c = 0.37464 + 1.54226ω − 0.26992ω2 , (15)

where ω = 0.04 is the acentric factor of nitrogen. Procedures for evaluating thermodynamic
quantities such as internal energy, specific heat capacity and partial enthalpy using the PR EoS
are described in detail in Refs. [27, 33, 66].

The finite-volume compressible code CharLESx is used in this study. This code has been exten-
sively used for turbulent-flow calculations (see, e.g., [27, 67, 68]). Here we only briefly summarize
the main features of the code, and further details can be found in Refs. [33, 69], and references
therein. The flux reconstruction uses a central scheme where fourth-order accuracy is obtained on
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uniform meshes. A sensor-based hybrid central-ENO scheme is used to capture flows with large
density gradients and to minimize the numerical dissipation while stabilizing the simulation. For
regions where the density ratio between the reconstructed face value and the neighboring cells
exceeds 25%, a second-order ENO reconstruction is used on the left- and right-biased face values,
followed by an HLLC Riemann flux computation. An entropy-stable double-flux model, developed
for transcritical flows [33], is employed to prevent spurious pressure oscillations and to ensure the
physical realizability of numerical solutions. A Strang-splitting scheme [70] is employed to separate
the convection operator from the remaining operators of the system. A strong stability preserving
third-order Runge-Kutta scheme [71] is used for time integration. Equation (13) is used as the
state equation, and the molecular transport properties, including the dynamic viscosity and the
thermal conductivity, are evaluated according to Chung’s model for high-pressure fluids [72, 73].

For the present study, a structured grid is used, and the mesh is of size Nx × Ny × Nz =
384 × 256 × 384, with uniform grid spacings in the streamwise and spanwise directions. The
near-wall flow is dominated by the momentum-carrying motions, and therefore, the near-wall grid
resolution is often evaluated in terms of wall units, i.e. uτ and µw/ρw/uτ . The grid resolutions are
∆x+ = 7.0, ∆y+min = 0.29, ∆y+max = 6.7, ∆z+ = 4.7 based on the wall units at the bottom cooled
wall, and ∆x+ = 4.8, ∆y+min = 0.20, ∆y+max = 4.6, ∆z+ = 3.2 based on the wall units at the top
hot wall.

The friction Reynolds number Reτ = Lyρwuτ/µw is Reτ,b = 430 and Reτ,t = 300 based on wall
units at the bottom and top walls, respectively. DNS of incompressible channel flows typically
require grid resolutions ∆x+ ≈ 10, ∆y+min ≈ 0.5, ∆y+max ≈ 10, ∆z+ ≈ 10 [61, 62, 74]. Consider-
ing additional physics in a numerical simulation often requires higher resolution, and therefore a
finer grid may be needed for channels at transcritical conditions. A grid convergence study was
conducted in Ref. [28] for wall-bounded transcritical flows, showing grid independent first- and
second-order statistics for grid resolutions ∆x+ = ∆z+ . 7.3, ∆y+ . 0.2 ∼ 7.3, using a code
that has similar numerics. Following Ref. [28] and being conservative, we have used a slightly
finer grid for the transcritical flow calculation here. Since the present work considers high density
ratios, a separate grid convergence study is performed to ensure that statistical flow properties of
interest are converged. Results from this study are presented in Appendix B. Near the center of
the channel, flow motions are dominated by energy-transferring motions. There, the grid resolu-
tion is better evaluated in terms of the Kolmogorov length scale ηu = ((µ/ρ)3ρ/ε)1/4, where ε is
the dissipation rate. The grid resolution in terms of the Kolmogorov length scale is ∆x = 4.6ηu,
∆z = 3ηu, ∆y = 4.3ηu at the center of the channel, and grid resolution in terms of the thermal
Kolmogorov length scale (ηT = ηu/

√
Pr∗, where Pr∗ = cp µ/λ is the local Prandtl number, and

is shown in Fig. 6(b) as a function of the wall-normal coordinate) is ∆x = 11ηT , ∆z = 11ηT , and
∆y = 7.8ηT . A similar resolution was employed in Ref. [38]. The flow is well resolved and the ENO
scheme is active on less than 0.06% of the cell faces. Simulations are advanced in time at a unity
acoustic CFL number. After the flow reaches a statistically stationary state, we average across the
homogeneous directions and over six flow-through times to obtain fully converged statistics, where
one flow-through is defined as tf = Lx/ũ0.

IV. RESULTS

In this section, DNS results are presented. In order to validate the double-flux formulation,
we also performed an additional calculation of a channel flow at a bulk pressure of 4.0 MPa and
both walls are set to an equal and constant temperature of 300 K; results of this calculation are
discussed in Appendix A. We will also use the results of this calculation for comparison purposes.
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coordinate. Tpb is the pseudo-boiling temperature, where the specific heat capacity peaks. The dashed line
is at wall-normal coordinate y = yδ, where ũ is at its maximum.

A. Mean flow

We start our discussion by examining the mean flow. Figure 4 shows the Favre- and Reynolds-
averaged velocity and temperature as a function of the wall-normal coordinate. Here Reynolds
average is used as a conventional ensemble average, which is denoted as φ, and the Favre average
is defined as φ̃ = ρφ/ρ. From Fig. 4, u ≈ ũ and T ≈ T̃ .

Figure 4(a) shows an asymmetric velocity profile, with the momentum boundary layer near the
top heated wall being thinner than that near the bottom cooled wall. The wall-normal coordinate
at which u attains its maximum is defined as yδ, which takes the value of 0.56Ly (see dashed line).
The top and bottom wall boundary layer heights are thus determined by taking the difference
between yδ and the y-coordinate of the two walls. Instead of using yδ, one can also use the height
at which u′v′ = 0, which yields essentially the same wall-normal coordinate. The same asymmetry
is found in the temperature profile. Moreover, we notice that the temperature in the bulk of the
channel is fairly close to the pseudo-boiling temperature, Tpb = 128.7 K.

Next, we examine the thermal properties. Figure 5 shows ensemble-averaged values of density
(ρ), compressibility factor (Z), Mach number (M), dynamic viscosity (µ) and heat conductivity (λ)
as a function of mean temperature T and the wall-normal coordinate. Near the top heated wall,
the fluid can be approximated as ideal gas (Z approaches unity). The density and compressibility
change drastically over a few degrees of Kelvin near the pseudo-boiling temperature Tpb. Because
T is close to the pseudo-boiling temperature Tpb in the bulk region, the wall-normal gradients of
these quantities in the bulk region are comparably moderate. Density, dynamic viscosity and heat
conductivity change appreciably near the two walls as a function of the wall-normal distance. Last,
the Mach number is everywhere below 0.16, so that this configuration corresponds to the low-speed
flow regime.

Figure 6 shows the mean heat capacity and Prandtl number as a function of the wall-normal
coordinate. Because of turbulent mixing, the time-averaged specific heat capacity cp shows a
much moderate peak than the specific heat capacity computed using the averaged temperature
and density (see also Ref. [36]). The temporally averaged Prandtl number is nearly the same as
cp µ/λ.
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respective values at the bottom wall.
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FIG. 6. (a) Ensemble-averaged heat capacity and the heat capacity computed using ensemble averaged
temperature and density as a function of the wall-normal coordinate. (b) Ensemble-averaged local Prandtl
number and cp µ/λ as a function of the wall-normal coordinate.

B. Instantaneous flow field

Next we examine the instantaneous flow field and discuss statistical results pertaining to the
near-wall structure. Figure 7 shows instantaneous isosurfaces of ρ = {60, 100, 200} kg/m3. The
fluid density is 44 kg/m3 and 785 kg/m3 at the top and bottom walls, respectively. Figure 7(a)-(c)
are at increasing distances from the bottom cooled wall. Footprints of Λ-vortices can be discerned
in Fig. 7(a). Further into the bulk region, at ρ = 100 kg/m3, the near-wall vortices break down,
leading to turbulent spots among comparably quiescent regions [75]. At ρ = 200 kg/m3, the
isosurface becomes highly corrugated, indicating strong mixing. We also note that the density and
the velocity in this particular flow are well correlated, and there is barely any variation in the
coloring of each isosurface.

Figure 8 shows instantaneous contours of reduced pressure, temperature, fluid density and
streamwise velocity on a z–y plane. The pressure fluctuates 0.5% around the reduce pressure of
pr = 1.14. Violent density fluctuations can be seen in Fig. 8(c), with intrusions of high-density
fluid into fluid of lower density and vice versa. However, at this moment, the exact mechanisms
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FIG. 7. Isosurfaces of constant density, colored by streamwise velocity. (a) ρ = 60 kg/m3 (ys/Ly = 0.98),
(b) ρ = 100 kg/m3 (ys/Ly = 0.9) and (c) ρ = 200 kg/m3 (ys/Ly = 0.6). The fluid density at top and
bottom walls is 44 kg/m3 and 785 kg/m3, respectively; ys denotes the mean location of the isosurface of
density.
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FIG. 8. Instantaneous contours on an z–y plane for (a) reduced pressure, (b) temperature (the black line
indicates T/Tpb = 1), (c) density (ρ0 is the volume-averaged bulk density), and (d) streamwise velocity.

(a) (b)

FIG. 9. Instantaneous contours of the streamwise velocity fluctuations at (a) ySL = 80 from the bottom wall
and (b) ySL = 80 from the top wall. The velocity fluctuations are normalized using the friction velocity at
the respective wall.

that lead to these violent density fluctuations in the near-wall region is not entirely clear. Also,
it is apparent from Fig. 8(d) that the momentum boundary layer is significantly thinner near the
top heated wall.

Figure 9 shows instantaneous contours of streamwise velocity fluctuations at a distance ySL = 80
(defined in Eq. (3)) from the bottom cooled wall and the top heated wall. We make one observation.
Fluid structures at the same semi-local-scaled distance ySL from the two walls are qualitatively
different—near the bottom cooled wall, elongated low-speed streaks span the entire streamwise
extent of the computational domain (Fig. 9(a)), whereas the streaks near the top heated wall
(Fig. 9(d)) are often shorter.

This difference is evidenced in Fig. 10, showing the two non-zero invariants of the anisotropic
tensor bij , where bij = u′iu

′
j/u
′
ku
′
k − δij/3 is the normalized deviatoric part of the Reynolds stress

tensor. Defining bij = u′′i u
′′
j /u
′′
ku
′′
k−δij/3 leads to similar results and are not shown here for brevity.
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FIG. 10. Turbulence invariant map, showing η as a function of ξ for bij near the bottom cooled wall (y < yδ)
and near the top heated wall (y > yδ). Results for a channel flow in which both walls are set to a constant
and equal temperature (denoted as ”Const. Prop., Reτ = 390”, Appendix A) are included for comparison.
The Lumley triangle [76] corresponds to η = ξ, η = −ξ and η =

√
1/27 + 2ξ3.

Following Ref. [76], the two invariants of bij are η =
√

1/6 bijbji and ξ = (1/6 bijbjkbki)
1/3. The

third invariant is bii = 0. Figure 10 shows η as a function of ξ for bij near both walls and for bij
in a low-speed constant-property channel flow at Reτ = 390. The bounding triangle in Fig. 10
is known as the Lumley triangle, where η = 0, ξ = 0 corresponds to isotropic turbulence, P2 =
(η, ξ) = (1/3, 1/3) corresponds to one-component turbulence and the other points on the triangle
represent two-component and axis-symmetric turbulence. P1 is at (η, ξ) = (−1/6, 1/6). The wall-
normal distance increases from P1 to P2 and from P2 to the origin. η = ξ, i.e. points joining P2

and the origin, represents the limiting state of axis-symmetric expansion. ξ = 0 represents the
limiting state of plane-strain turbulence. Compared to low-speed constant-property wall-bounded
flows, where the Reynolds stresses are mainly axis-symmetric, flows at transcritical conditions
yield stress tensors that deviate appreciably from an axis-symmetric description, especially near
the top heated wall, where the turbulence is at a state slightly away from the limiting state of
axis-symmetric expansion.

C. Semi-local scaling

Figure 11 shows the semi-local wall-normal distance scaling as a function of y+ near the two
walls. The friction Reynolds numbers, defined based on semi-local quantities, are higher than the
Reynolds numbers defined based on wall quantities.

Figure 12 shows the Kolmogorov length scale as a function of ySL. To correctly measure the
Kolmogorov length, one needs to resolve the energy spectra. If the simulation is under-resolved,
the energy speactra will usually increase towards the grid cutoff. The spectra will be shown later
in Fig. 17, confirming that the the energy spectra are well-resolved. Measurements from constant-
property flows at various Reynolds numbers are included for comparison. The Kolmogorov scales
near the two walls do not collapse as a function of ySL, and they do not collapse with their constant-
property counterparts at similar Reynolds number. This is in direct contrast with Ref. [20], where
(nearly) perfect data collapse was reported among different variable-property flows at different
(but similar) Reynolds numbers. In Fig. 12, only ηu,b(ySL,b) agrees with the experimental results
in Ref. [77].
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FIG. 12. Kolmogorov length scale ηu and ηT = ηu/
√

Pr∗ as a function of ySL. Re∗τ = δ

√
τwρ(y = δ)/µ(y = δ)

is the friction Reynolds number defined based on semi-local quantities at a distance y = δ from the wall.
δ is an outer length scale and is Ly + yδ for the boundary layer near the bottom wall and is Ly − yδ for
the boundary layer near the top wall. Results near the bottom cooled wall are shown as solid lines and
results near the top heated wall are shown as dashed lines. ηu and ηT are shown in different colors. EXP
are experimental results reported in Ref. [77] for two constant-property boundary layers at Reτ = 2800 and
Reτ = 19000. Patel16 are DNS results reported in Ref. [20] for a constant-property channel at Reτ = 395.

Figure 13 shows u+VD and u+ as a function of y+, and u+TL as a function of ySL. The van

Driest transformation works reasonably well near both walls despite the non-adiabatic walls. u+TL

collapses reasonably well with the law of the wall near the bottom cooled wall, but the scaling
shows deficiencies near the top heated wall.

Next, we examine the Reynolds stresses. In Fig. 14, we show R′′ij = ρu′′i u
′′
j /τw and R′ij =

u′iu
′
j/u
∗
τ
2 as functions of ySL, where i, j = 1, 2, 3 denote the three Cartesian directions. R′ij ≈ R′′ij .

R′11 do not collapse as a function of ySL near the two walls. This is probably expected considering
that the two boundary layers near the two walls are at fairly different Reynolds numbers. The peak
values in R′11 fall below their incompressible counterparts. Nevertheless, reasonable agreements of
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FIG. 13. Mean velocity profiles as a function of wall-normal distance near (a) the bottom cooled wall and
(b) the top heated wall. VD, van Driest transformation; TL, transformation by Trettel & Larsson [35]. The
law of the wall corresponds to the established log-scaling u+ = log(y+)/κ+B. κ = 0.41 and B = 5 for the
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comparison.
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The solid black line indicates the expected scaling of u′+2 at high Reynolds numbers, 1.26 log(δ/y) + 2.0.

R′11 with their incompressible counterparts at matched Reynolds numbers are found slightly away
from the wall. Aside from R′11, other components do seem to collapse.

Last, we examine the eddy viscosity. Eddy viscosity may be computed as follows in the loga-
rithmic region, where molecular viscosity is negligible

µt,log =
τw

du/dy
. (16)

We may estimate du/dy using the velocity transformations

du

dy
=
du

dU

dY

dy

dU

dY
, (17)

where U and Y are the transformed velocity and wall-normal distance. Both the van Driest
transformation and the transformation proposed in Ref. [35] lead to

µt,log =
√
ρτwκy (18)
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away from the wall. In the near-wall region, Eq. (18) is often used with a damping function D

µt = D µt,log, (19)

where D = 0 at the wall and D approaches 1 away from the wall in the logarithmic region. For
constant-property flows, the van Driest damping function works quite well (see, e.g., [78])

DVD(y+) =
[
1− exp(−y+/A+)

]2
, (20)

where A+ = 17. In Fig. 15, we show the computed damping functions as functions of ySL and y+.
The van Driest damping function is included for comparison. Near the bottom cooled wall, the
eddy viscosity approaches µt,log away from the wall (where D ≈ 1). Near the top heated wall, the
semi-local scaling does not provide a very good prediction of the eddy viscosity in the logarithmic
region, where D is found to be smaller than unity from yδ to y = Ly. Both y+ scaling and the
semi-local scaling collapse data at the two walls; however, the computed damping functions collapse
well with the van Driest damping only as a function of ySL.

D. Attached eddy hypothesis

The presence of wall-attached eddies in the near-wall region may be examined by considering
statistics including the velocity energy spectra and the velocity structure functions. The structure
functions following the logarithmic scaling as in Eq. (7) and the velocity energy spectra following
the k−1 scaling as in Eq. (9) are direct evidence of the presence of the wall-attached eddies.

Figure 16 shows ∆u′2 = (u′(x+ r, y)− u′(x, y))2 as a function of the two-point displacement
in the streamwise direction at various wall-normal locations near the bottom cooled wall and the
top heated wall. Results of ∆u′′2 are similar and are not shown here for brevity. Results from
a constant-property boundary-layer flow at Reτ = 395 are included for comparison. ∆u′2 at the
same y+ distance from the two walls are distinctly different. Better data collapse is found when

using the semi-local scaling. However, ∆u′2 at different ySL locations only collapse as a function of
rx/y near the bottom cooled wall. Near the top heated wall, the semi-local scaling fails to collapse
the velocity structure functions at different ySL locations as a function of r/y. In addition to data
collapse, the velocity structure function near the bottom-cooled wall follows the same logarithmic
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scaling as its constant-property counterpart, suggesting the presence of the same wall-attached
eddies near the bottom cooled wall.

Figure 17 shows streamwise energy spectra as a function of the streamwise wave number at a
few wall-normal distances from the bottom cooled wall and the top heated wall. It is worth noting
that the DNS calculation has only a limited streamwise extent, i.e., Lx = 2πδ, therefore some large
scales are not resolved. However, according to the investigation in Ref. [62], the energy spectra
of the resolved scales can be correctly captured. The data collapses near the bottom cooled wall
at large scales, but the semi-local scaling fails at collapsing data near the top heated wall. The
streamwise energy spectra exhibit power-law-like scaling km across an extended range of scales
with the scaling exponent only slightly smaller than −1, suggesting the presence of attached eddies
near both walls.



18

44 200 400 600 785

ρ [kg/m3]

0

0.01
p
.d
.f
.
[k
g
−
1
m

3
]

(a)

y+ = 5, Tr = 0.90

y+ = 20, Tr = 0.95

y+ = 100, Tr = 0.98

y+ = 400, Tr = 1.01

44 200 400 600 785

ρ [kg/m3]

0.01

p
.d
.f
.
[k
g
−
1
m

3
]

(b)

y+ = 10, Tr = 1.48

y+ = 30, Tr = 1.17

y+ = 100, Tr = 1.06

y+ = 200, Tr = 1.02
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wall and (b) the top wall. The fluid density at top and bottom walls is 44 kg/m3 and 785 kg/m3, respectively.
The volume-averaged bulk density is 365 kg/m3.

E. Density variation

It was shown in the previous section that the semi-local scaling works reasonably well near the
bottom cooled wall, but it shows deficiencies near the top heated wall, in contrast with earlier works
by Patel and co-authors. Compared to earlier calculations [36], the present DNS employs a real-
gas state equation, which allows the specific heat capacity to change as a function of temperature
and pressure. In addition, much more drastic mean density variation and instantaneous density
fluctuations are found in the present calculation near the top heated wall. Because the semi-local
scaling works quite well near the bottom cooled wall, and the specific heat capacity peaks between
y = −Ly and y = yδ (see Fig. 6), it is unlikely the failure of the semi-local scaling near the top
heated wall is because of a non-constant cp. Moreover, because the flow near the top heated wall
is better resolved than the flow near the bottom cooled wall (see discussion in Sect. III), it is also
unlikely that the grid resolution is the culprit. It seems that the semi-local scaling fails near the top
heated wall because of the strong density variations there. To support this hypothesis, we quantify
the density fluctuations in the flow field. Figure 18 shows the probability density function (p.d.f.) of
the fluid density at several wall-normal heights, and Fig. 19 shows the standard deviation, skewness
and kurtosis of the density fluctuations as a function of ySL. Density fluctuations near both walls
are highly skewed towards the density of the fluid at the other wall, indicating strong mixing (see
Fig. 18). The most violent density fluctuations are found near y = yδ, which corresponds to a wall-
normal distance of y+t = 200 from the top wall. STD(ρ′)/ρ barely exceeds 10% near the bottom
wall and in flows considered in Ref. [36], whereas STD(ρ′)/ρ ≈ 35% near the top heated wall. In
addition, the density fluctuations are highly super-Gaussian near the top heated wall, whereas the
skewness and kurtosis of the density fluctuation near the bottom wall are not very far from being
Gaussian.

V. CONCLUSIONS

In this work, DNS calculations of a channel flow at transcritical conditions are conducted. A
temperature difference of 200 K is considered between the two isothermal walls for nitrogen at a
bulk pressure only slightly higher than the critical pressure. The density changes by a factor of
18 in the flow field (a factor of three near the bottom cooled wall and a factor of six near the top
heated wall). The fluid temperature changes drastically near the two walls, however, in the bulk
region, T ≈ Tpb. As a result of heating, the boundary layer is thinner near the top heated wall. The
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semi-local scaling is found to be quite useful near the bottom cooled wall, where the mean density
variation is moderate. However, the same scaling is shown to have limited success near the top
heated wall, where violent density fluctuations are found. Hence, the semi-local scaling is generally
useful for real fluids at transcritical conditions as long as density fluctuations are moderate. In
particular, results from the present study indicate that the semi-local scaling would be most useful
for flows where STD(ρ′)/ρ . 40%.

We have also examined the presence of attached eddies in flows at transcritical conditions.
Despite the limited Reynolds numbers, a logarithmic scaling is found in streamwise structure
functions and we have provided evidence for the presence of a k−1 scaling in the energy spectra,
suggesting the presence of attached eddies at transcritical conditions.
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Appendix A: A validation case

We present a validation case of a channel flow at an operating condition that is not affected
by transcritical transition, thereby enabling a comparison with DNS benchmark calculations. For
this, we consider nitrogen between two isothermal walls kept at Tw = 300 K (Tr = 2.38) at a bulk
pressure of p0 = 4.0 MPa (pr = 1.18). The Mach number is M < 0.2 so that the flow can be
considered as incompressible. We drive the fluid in the streamwise direction by a constant mass
flow rate and the resulting friction Reynolds number is Reτ ≈ 390. A grid of size Nx ×Ny ×Nz =
256×256×256 is used and the grid resolution is ∆x+ ≈ 9.6, ∆y+min = 0.60, ∆y+max = 4.8, ∆z+ = 6.4,
which is the same as Moser et al. [74]. In Fig. 20 we compare the current calculation with the
DNS by Moser et al. [74] at a similar Reynolds number Reτ = 395. Since we only consider first
and second order statistics in this work, we compare only the mean velocity and the second-order
Reynolds stresses with previous DNS. Good agreement between these results is observed.

Appendix B: Grid convergence

We confirm that the grid used in the main text qualifies for DNS. Grid convergence studies
have been done in, e.g., Ref. [28], for flows at transcritical conditions, and the purpose of this
appendix is to confirm that the conclusions drawn in Ref. [28] are also valid for density ratios
considered in the current study. We refer to the grid in the main text as the “regular grid”. In
addition, a “coarse grid” calculation and a “fine grid” calculation are preformed for the same flow
at Nx × Ny × Nz = 272 × 182 × 272 and Nx × Ny × Nz = 543 × 356 × 543, respectively. Table I
shows the averaged wall-shear stresses and the wall heat transfer rates at both walls. The values are
normalized using the corresponding values of the regular grid calculation for direct comparison. A
difference within 3% is found between the two grids and the regular grid. Figure 21 show the mean
velocity and the mean temperature profiles as functions of the wall-normal coordinate. Figure 22
shows comparisons of density, compressibility factor, Mach number, viscosity and heat conductivity
as a function of the mean temperature. Figure 23 (a) shows the second-order statistics, and Fig. 23
(b) shows the y-coordinate normalized using the Kolmogorov length scale. There is no significant
difference between different grids, and adequate grid convergence is found between all grids.

In conclusion, the flow is well resolved if a near-wall resolution of ∆x+ ≈ ∆z+ . 7, ∆y+ . 0.2
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coarse grid regular grid fine grid
τw,b 1.01 1.00 0.98
τw,t 1.03 1.00 1.02
qw,b 1.02 1.00 0.97
qw,t 0.99 1.00 1.02

TABLE I. Averaged wall-shear stresses and wall heat transfer rates at both walls. The values are normalized
using the corresponding values of the regular grid calculation.

to 7 is used. The same conclusion may also be found in Ref. [28].
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[62] A. Lozano-Durán and J. Jiménez. Effect of the computational domain on direct simulations of turbulent
channels up to Reτ = 4200. Phys. Fluids, 26(1):011702, 2014.

[63] C. Scalo, J. Bodart, and S. K. Lele. Compressible turbulent channel flow with impedance boundary
conditions. Phys. Fluids, 27(3):035107, 2015.

[64] D.-Y. Peng and D. B. Robinson. A new two-constant equation of state. Ind. Eng. Chem. Fund.,
15(1):59–64, 1976.

[65] B. E. Poling, J. M. Prausnitz, and J. P. O’Connell. The Properties of Gases and Liquids. McGraw-Hill,
2000.

[66] P. C. Ma, D. T. Banuti, J.-P. Hickey, and M. Ihme. Numerical framework for transcritical real-fluid
reacting flow simulations using the flamelet progress variable approach. In 55th AIAA Aerospace
Sciences Meeting, number 2017-0143, Grapevine, TX, 2017.

[67] J. Larsson, S. Laurence, I. Bermejo-Moreno, J. Bodart, S. Karl, and R. Vicquelin. Incipient thermal
choking and stable shock-train formation in the heat-release region of a scramjet combustor. Part II:
Large eddy simulations. Combust. Flame, 162(4):907–920, 2015.

[68] H. Wu, P. C. Ma, Y. Lv, and M. Ihme. MVP-Workshop Contribution: Modeling of Volvo bluff body
flame experiment. In 55th AIAA Aerospace Sciences Meeting, number 2017-1573, Grapevine, TX, 2017.

[69] Y. Khalighi, F. Ham, J. Nichols, S. Lele, and P. Moin. Unstructured large eddy simulation for predic-
tion of noise issued from turbulent jets in various configurations. In 17th AIAA/CEAS Aeroacoustics
Conference, number 2011-2886, Portland, OR, 2011.

[70] G. Strang. On the construction and comparison of difference schemes. SIAM J. Num. Anal., 5(3):506–
517, 1968.



25

[71] S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong stability-preserving high-order time discretization
methods. SIAM Rev., 43(1):89–112, 2001.

[72] T. H. Chung, L. L. Lee, and K. E. Starling. Applications of kinetic gas theories and multiparameter
correlation for prediction of dilute gas viscosity and thermal conductivity. Ind. Eng. Chem. Fund.,
23(1):8–13, 1984.

[73] T. H. Chung, M. Ajlan, L. L. Lee, and K. E. Starling. Generalized multiparameter correlation for
nonpolar and polar fluid transport properties. Ind. Eng. Chem. Fund., 27(4):671–679, 1988.

[74] R. D. Moser, J. Kim, and N. N. Mansour. Direct numerical simulation of turbulent channel flow up to
Reτ = 590. Phys. Fluids, 11(4):943–945, 1999.

[75] X. Wu, P. Moin, J. M. Wallace, J. Skarda, A. Lozano-Durán, and J.-P. Hickey. Transitional–turbulent
spots and turbulent–turbulent spots in boundary layers. Proc. Natl. Acad. Sci. U.S.A., 114(27):E5292–
E5299, 2017.

[76] J. L. Lumley and G. R. Newman. The return to isotropy of homogeneous turbulence. J. Fluid Mech.,
82(1):161–178, 1977.

[77] I. Marusic, J. P. Monty, N. Hutchins, and A. J. Smits. Spatial resolution and reynolds number effects in
wall-bounded turbulence. In Proceedings of 8th International ERCOFTAC Symposium on Engineering
Turbulence Modelling and Measurements (ETMM8), 2010.

[78] S. Kawai and J. Larsson. Wall-modeling in large eddy simulation: Length scales, grid resolution, and
accuracy. Phys. Fluids, 24(1):015105, 2012.


	Structure of wall-bounded flows at transcritical conditions
	Abstract
	Introduction
	Background
	Scaling transformations
	Attached-eddy hypothesis

	Computational setup
	Results
	Mean flow
	Instantaneous flow field
	Semi-local scaling
	Attached eddy hypothesis
	Density variation

	Conclusions
	Acknowledgments
	A validation case
	Grid convergence
	References


