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An analytical method is presented for determining the Reynolds shear stress profile in steady, 

two-dimensional wall-bounded flows using the mean streamwise velocity.  The method is then 
utilized with experimental data to determine the local wall shear stress.    The procedure is 
applicable to flows on smooth and rough surfaces with arbitrary pressure gradients.  It is based on 
the streamwise component of the boundary layer momentum equation, which is transformed into 
inner coordinates. The method requires velocity profiles from at least two streamwise locations, 
but the formulation of the momentum equation reduces the dependence on streamwise gradients.  
The method is verified through application to laminar flow solutions and turbulent DNS results 
from both zero and non-zero pressure gradient boundary layers.  With strong favorable pressure 
gradients, the method is shown to be accurate for finding the wall shear stress in cases where the 
Clauser fit technique loses accuracy.  The method is then applied to experimental data from the 
literature from zero pressure gradient studies on smooth and rough walls, and favorable and 
adverse pressure gradient cases on smooth walls.  Data from very near the wall are not required for 
determination of the wall shear stress.  Wall friction velocities obtained using the present method 
agree with those determined in the original studies, typically to within 2%. 

 
 

I. INTRODUCTION 
 

The wall shear stress, wτ , expressed as a friction velocity, uτ , or as a skin friction coefficient, fc , is of 
fundamental interest for all wall-bounded flows.  Flow velocities and lengths scale with uτ in the inner 
region of the boundary layer, and the drag on surfaces is of practical interest.  Although in principle 
straightforward, accurate determination of the local wall shear can in practice be difficult, and various 
methods have been developed to either directly measure or infer the skin friction.   Winter [1], Haritonidis 
[2], and Klewicki et al. [3] are among those who provide reviews of some of the techniques available. 

Direct measurement of the drag on a surface is possible with a floating element force balance, and if the 
sensor is sufficiently small relative to the size of the boundary layer, the local shear stress can be 
determined.  Squire et al. [4] provide a recent example.  Techniques utilizing microelectromechanical 
(MEMS) devices or oil film interferometry, as discussed by Naughton and Sheplak [5], are also based on 
direct responses to the wall shear.  These techniques all have their challenges and limitations.  Force 
balances, for example, can be expensive, require careful alignment with the surface to be accurate, and 
must be moved and realigned if measurements are required at multiple locations.  Oil film interferometry 
is not practical in liquid flows or on rough surfaces. 
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The wall shear stress is more commonly inferred from velocity measurements.  For smooth walls, the 
wall shear is equal to the viscous shear at the wall, 

0
U

w y y
τ μ ∂

∂ =
= , where μ  is the dynamic viscosity, U  is 

the mean streamwise component of the velocity and y  is the coordinate in the wall normal direction.  
Accurate determination of the velocity gradient at the wall can be possible if the boundary layer is 
sufficiently thick.  Dixit and Ramesh [6], for example, used a surface hot wire probe (SHW) that was 
mounted in the wall and extended a known small distance from the surface.  By keeping the wire within 
the viscous sublayer, it was effectively possible to measure the velocity gradient at the wall.  As with the 
other methods discussed above, very near wall measurements are not always possible or practical, 
particularly when needed at multiple locations. 

Other methods using velocity measurements typically rely on assumptions about the shape of the 
velocity profile farther from the wall.  In zero pressure gradient (ZPG) turbulent boundary layers on 
smooth walls, the inner region of the mean streamwise velocity profile is self-similar in inner coordinates, 
and the Clauser fit technique [7] can be used to determine uτ by fitting measured velocity profiles to the 
universal log law.  The technique is well known to be accurate and requires only the streamwise velocity 
profile at the location of interest.  With a shift of the universal log law, the Clauser fit technique can also 
be accurately applied to ZPG rough wall boundary layers, as demonstrated in studies such as Schultz and 
Flack [8].  Preston tubes, which measure the total pressure near the wall, typically extend beyond the 
viscous sublayer and rely on the same assumption of a universal log layer as the Clauser fit.  Experiments 
and direct numerical simulations (DNS) such as those of Jones and Launder [9], and Spalart [10] show 
that the universal log layer is quite robust, even in mild to moderate non-ZPG boundary layers.  With 
strong pressure gradients, however, significant deviations from the universal law of the wall are apparent, 
and straightforward applications of Clauser fit or Preston tube techniques lose accuracy. 

The momentum deficit in a boundary layer results from the wall shear stress, so the skin friction can in 
principle be determined from the streamwise gradient of the momentum thickness, θ , using the 
momentum integral equation.  The method does not presume a universal velocity profile, but it does 
requires measurements at multiple streamwise locations to determine the streamwise evolution of θ .  It is 
often subject to considerable uncertainty, however, as even small three-dimensional effects in a nominally 
two-dimensional boundary layer can result in significant error in xθ∂ ∂ .  The technique can produce 
good results, as demonstrated by Brzek et al. [11], who took great care to determine xθ∂ ∂  at closely 
spaced streamwise stations. 

Several studies have considered the relationship between the Reynolds shear stress in the boundary 
layer and the wall shear.  Included are Fukagata et al. [12], Deck et al. [13], Yoon et al. [14], and Renard 
et al. [15].  Mehdi and White [16] and Mehdi et al. [17] used the Reynolds shear stress and an integrated 
version of the momentum equation to determine the local skin friction based only on measurements at the 
streamwise location in question.  Their method uses measured profiles of the mean velocity and the 
Reynolds shear stress, u v′ ′− .  The technique requires accurate estimates of the wall normal gradient of the 
total shear stress.  Since the Reynolds shear stress is difficult to measure very near the wall, they used a 
fitting technique based on the expected shape of the total shear stress profile to smooth the experimental 
data and determine the gradient.  The method was shown to work with ZPG boundary layer data from 
both smooth and rough walls.  To the extent that the total shear stress depends on the pressure gradient, it 
is possible that the near wall fitting technique might require adjustment for non-ZPG cases. 

Each of the methods described above has been successfully used.  Each also has its challenges and 
limitations.  The present paper presents a new method based on the momentum equation that does not 
require assumptions about the shape of the mean velocity profile or otherwise rely on fitting of 
experimental data to expected functions.  It presumes a steady, two-dimensional boundary layer, but can 
otherwise be used in flows with arbitrary pressure gradients and surface roughness.  It utilizes profiles of 
the mean velocity and Reynolds shear stress, but does not require u v′ ′−  data from very near the wall.  The 
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formulation attempts to minimize dependence on streamwise gradients, but some dependence remains, 
making data from two or more streamwise locations necessary and the process of determining the wall 
shear iterative. 

In the following sections, an analytical method is developed for computing the Reynolds shear stress 
profile based on the mean streamwise velocity profile.  This method is verified using solutions from 
laminar boundary layers and turbulent DNS data.  It is then applied to experimental data from the 
literature from boundary layers on smooth and rough surfaces with both zero and non-zero pressure 
gradients to determine the local wall shear stress. 
 

II. ANALYSIS 
 

The Reynolds-averaged, streamwise momentum equation for two-dimensional, steady boundary layers 
with constant properties, is 

 

 ( ) 21 0U U dP uU V
x y y dx x

τ ρ
ρ

∂ ′∂ ∂ ∂+ − + + =
∂ ∂ ∂ ∂

  (1) 

 
where x  and y  are the streamwise and wall normal coordinate directions, U  and V  are the respective 
mean velocities in these directions, ρ  is the density and P  is the static pressure.  The total stress, 

,U
yu vτ ρ μ ∂

∂′ ′= − +  is the sum of the Reynolds shear stress and the viscous stress.  The Reynolds normal 

stress term, 2u x′∂ ∂ , is typically small and is neglected, but is kept here for completeness.  Next, the 
continuity equation is used to substitute for V , with the assumption that 0V =  at the wall. 
 

 ( ) 21 0U U U dP uU dy
x x y y dx x

τ ρ
ρ

∂ ′∂ ∂ ∂ ∂− − + + =
∂ ∂ ∂ ∂ ∂∫   (2) 

 
The equation is now integrated in the wall normal direction to solve for τ  at an arbitrary location y . 
 

 
2

0 0 0

1 2
y y yw dP U U uy U dy U dy dy

dx x x x
ττ

ρ ρ ρ
′∂ ∂ ∂= + − + +

∂ ∂ ∂∫ ∫ ∫   (3) 

 
Equation (3) could in principle be used to solve for wτ  using the steamwise velocity profile and the 

measured Reynolds shear stress at an arbitrary y location.  An example is provided by Brzek et al. [11], 
who used this method for a ZPG profile and showed that the wall shear obtained agreed well with the 
result obtained from the momentum integral method.  Difficulties can arise with this procedure, however.  
There are two options for applying Eq. (3).  If a location for analysis is chosen very near the wall, the 
Couette flow assumption states that the streamwise gradients are negligible.  This eliminates the last three 
terms in Eq. (3).  The pressure gradient term is assumed known, but the total stress, τ , must be extracted 
from the experimental data.  This is problematic, since the Reynolds shear stress is inherently difficult to 
measure very close to the wall.  The alternative approach is to use a y  location farther from the wall, 
where τ  is more readily obtained.  The Couette flow assumption no longer applies, however, so the 
partial derivative U x∂ ∂  at fixed y  becomes non-negligible, as will be demonstrated in the sections 
below.  While U x∂ ∂  can be approximated from data at two streamwise locations, this typically brings 
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with it added uncertainty, particularly in non-ZPG cases where U x∂ ∂  can become significant even close 
to the wall.   

The development through Eq. (3) is common to other studies.  It is essentially the same as Eq. (3) of 
Brzek et al. [11].  The difference between methods is in the subsequent development.  Mehdi et al. [17], 
for example, begin with the streamwise momentum equation (Eq. (1) above), and integrate it three times 
in the wall normal direction.  The resulting equation only requires profile data of the mean velocity and 
Reynolds shear stress at a single streamwise location to determine the wall shear.  As noted above, it 
requires the wall normal gradient of the total shear, which typically requires assumptions about the profile 
shape to determine with sufficient accuracy.  As another example, Brzek et al. [11] and others before 
them integrated Eq. (3) to obtain the momentum integral equation.  As noted above, this approach 
requires only mean velocity profile data, but at multiple streamwise locations.  It depends on an ability to 
accurately compute the streamwise gradient of the momentum thickness.  The present paper takes a new 
and different approach, transforming Eq. (3) into wall coordinates and separating terms which depend on 
streamwise gradients from those which do not.  It requires mean velocity and Reynolds shear stress 
profiles from at least two streamwise stations, but seeks to minimize the dependence on streamwise 
gradients from that required in Eq. (3). 

For the present method, to reduce the dependence on the U x∂ ∂  terms, Eq. (3) is transformed from 
x y−  to x y+−  coordinates, and made dimensionless.  The standard definitions 
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are used where eU  is the local freestream velocity, ν is the kinematic viscosity, and K is the acceleration 
parameter 

2 .e

e

dUK
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ν=  

The resulting equation is 
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The left side of Eq. (4) is the dimensionless Reynolds shear stress term.  The terms on the right side 
depend only on the streamwise velocity profile.  Term I is the viscous shear stress term and term II is the 
pressure gradient term.  Terms III and IV result from the integrals of U x∂ ∂  in Eq. (3), and have been 
divided into a term which depends on the streamwise gradient U x+∂ ∂  (term IV), and a term which does 
not (term III).  Terms V and VI result from the integral of the streamwise gradient of the streamwise 
Reynolds normal stress in Eq. (3) and have again been divided into a term that depends on the streamwise 
gradient (term VI) and a term that does not (term V).  Terms V and VI are typically small throughout the 
boundary layer, and were found to be unhelpful for the experimental cases considered in this paper.  They 
are not included in the comparisons below, except to assess their magnitude with DNS data. 

After the coordinate transformation from Eq. (3) to Eq. (4), the streamwise gradients are evaluated with 
y+  held constant.  Unlike U x∂ ∂  at constant y , which typically becomes significant in the buffer layer 

or inner part of the log layer, U x+∂ ∂  at constant y+  is nearly zero from the wall to the outer edge of the 
log layer for the ZPG boundary layer, and only becomes significant in the wake.  As will be shown below, 

U x+∂ ∂  is also typically small for much of the inner part of the boundary layer even when inner region 
self-similarity and the law of the wall do not strictly hold, such as for non-ZPG cases.  Term III becomes 
important when U x∂ ∂  at constant y  becomes significant, which typically occurs for y δ ≳0.1 (δ
 being the 99% boundary layer thickness).  Term IV, in contrast, only becomes important when U x+∂ ∂  
at constant y+  becomes significant, so it is typically negligible for the inner third of the boundary layer.  
Hence the need to compute the streamwise gradient of the mean velocity for much of the boundary layer 
is less with the formulation of Eq. (4) than with that of Eq. (3). 

Equation (4) is used to find uτ  by calculating the terms on the right side of the equation using the mean 
velocity profile and plotting the result against the measured dimensionless Reynolds shear stress.  The uτ  
selected is the one that provides the best fit of the data.  Since Eq. (4) is an implicit equation for the wall 
shear, the entire process is iterative due to the presence of fc  on the right side, in particular the 

2fd c dx  term in the coefficient of term III and in U x+∂ ∂  in term IV.  The process for finding uτ  is 

shown with a flow chart in the Appendix and includes the following steps:  (1) Mean velocity and 
Reynolds shear stress profiles are acquired at two or more streamwise locations.  (2) A guess is made for 
uτ  at each streamwise station.  The guess need only be physically plausible; accuracy is not required.  
Simply assuming 0.05 eu Uτ =  at each station is adequate.  (3) The uτ  values are then made dimensionless 
as fc , and these are used to compute 2fd c dx  at each station.  The dimensional data at each station 

are then converted to wall coordinates using the uτ  values.  (4) Profiles of U x+∂ ∂  at constant y+ are 
next evaluated at each station using data from neighboring stations.  (5) Next, the fitting is done at the 
first station.  The terms on the right side of Eq. (4) are computed at all y+  locations and plotted against 

the u v
+

′ ′  profile.  If it appears that the fit to the u v
+

′ ′  profile can be improved, a new uτ  is chosen and 
used to reevaluate fc  and reconvert the measured dimensional data to wall coordinates at the station in 
question.  Equation (4) is revaluated and plotted.  Iteration on step (5) is continued until the fit is judged 
as good as attainable.  (6) The process of step (5) is repeated for all other streamwise stations.  (7) If uτ  
has changed at any station after step (3), steps (3)-(7) are repeated.  When uτ  stops changing, the process 
is complete.  About three iterations are needed to fit the data as well as possible at all stations.  It should 
be noted that the fit of Eq. (4) may not be perfect due to experimental uncertainty and the approximations 
required for the derivatives 2fd c dx  and U x+∂ ∂ .  There is freedom, however, to deemphasize the fit 
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very near the wall where u v
+

′ ′  uncertainty is high, or in the outer region where term IV is important, and 
instead focus on the middle of the boundary layer where confidence in all terms is higher. 

As a modification to the method above, the term 2fd c dx  can be treated as an independent 

parameter in the fitting.  Any error in 2fd c dx  will change not only the magnitude of the computed 

profile, but also the shape of the profile in the region where Term III of Eq. (4) is significant.  By 
adjusting both uτ  and 2fd c dx  when doing the fitting, it can become possible to match the computed 

profile to the u v
+

′ ′  data over a wider range of y  locations.  A fit of more of the profile can provide more 
confidence in the determination of uτ .  Varying 2fd c dx  might be considered analogous to including 

a y  shift when using the Clauser plot method to account for uncertainty in the location of the wall.  The 
location of the wall is known at least approximately, so any y  shift imposed to improve the Clauser fit 

should be within the uncertainty.  Similarly, for the present method 2fd c dx  is known at least 

approximately based on the fc  values at neighboring stations, so any adjustment of its value should be 

within its estimated uncertainty.  No such adjustment of 2fd c dx  was used in the determination of uτ  

for any of the cases in the present paper but the technique was tested and found to be potentially useful if 
applied judiciously. 

 
III. LAMINAR SOLUTIONS 

 
The formulation of Eq. (4) can be tested and the significance of the various terms examined using flows 

with known exact solutions, such as laminar Falkner and Skan [18] wedge flows with m
eU Cx= .  Since 

the turbulent shear is zero, Eq. (4) is solved for the laminar shear stress (term I) and converted to laminar 
similarity coordinates using the following definitions 

 

( ),  .
ee

y U
Ux U

η ς η
ν

′= =  

 
The resulting equation is 
 

 ( )
{

( )
{

( ) ( ) ( )( )2 2

0 0 0

3 1 11 2
0 0 4 0 4 0

I II III IV

m m md d d
η η ης η ς η ς ης ς η ς ης η ς ς

ς ς ς ς
′′ − +′ ′ ′ ′′ ′ ′′ ′= − + + − + −

′′ ′′ ′′ ′′∫ ∫ ∫
1442443 144444444424444444443

  (5) 

 
with terms I – IV in Eq. (5) corresponding to those in Eq. (4).  Equation (5) is applicable for any value of 
m  between -0.09 (separation) and +∞ .  The importance of the terms in the equation is shown next for 
example cases with zero, favorable, and adverse pressure gradients.  The ZPG case is the Blasius 
boundary layer with 0m =  and ( )0 0.332ς ′′ = , and is shown in Fig. 1 (a).  The viscous shear stress (term 
I) is shown with symbols and successive approximations to it using the terms on the right side of Eq. (5) 
are shown with lines.  Term II is zero for the ZPG case, so the first approximation is unity, which agrees 
with the viscous shear to about 0.1y δ = .  This is the constant stress region.  Including term III extends 
the agreement to about 0.35y δ = , with the difference from the viscous shear remaining small until 

0.5.y δ >   With term IV included, the match to the viscous shear is exact for the full boundary layer, 
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which is expected since Eqs. (4) and (5) are equivalent to Eq. (1) with no additional assumptions or 
approximations. 

Figure 1 (b) shows a favorable pressure gradient (FPG) example with 1m =  and ( )0 1.232ς ′′ = .  The 
inclusion of term II provides a good approximation of the laminar shear near the wall, as in the ZPG case 
the addition of term III extends the agreement toward the middle of the boundary layer, and including 
term IV produces exact agreement.  The same can be seen for an adverse pressure gradient (APG) case 
with 0.0476m = −  and ( )0 0.221ς ′′ =  in Fig. 1 (c). 

(a) (b) 

 (c) 
FIG. 1. Terms of Eq. (5) as indicated in legend for laminar Falkner and Skan [18] boundary layer, (a) ZPG with 

0,m =  0.332ς ′′ = ; (b) FPG with 1m = , 1.232ς ′′ = ; (c) APG with 0.0476m = − , 0.221ς ′′ = . 

 
IV. TURBULENT DNS 

 
The terms of Eq. (4) are considered for a turbulent boundary layer using the ZPG DNS results of 

Jiménez et al. [19] and Sillero et al. [20].  Tabulated velocity profile data were provided from the DNS 
database at discrete momentum thickness Reynolds numbers, Reθ , of 1100, 1151, 1968, and 4000 – 6000 
in increments of 500.  Results for fc  were provided at more closely spaced locations, so 2fd c dx  

could be determined very accurately.  The U x+∂ ∂  values for term IV of Eq. (4) were approximated as 
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U x+Δ Δ  using the differences between values at equal y+  at adjacent profile stations.  Equation (4) was 
fit to the DNS profile data at all available Reynolds numbers.  The uτ  values determined from the fit 
exactly matched those obtained from the velocity gradient at the wall.  Figure 2 shows a typical result for 
Re 4500θ =  (Re 1437)uτ τδ δ ν+= = = .  The u v

+
′ ′−  data from the DNS are shown with symbols, and the 

terms from the right side of Eq. (4) are shown with lines.  Using only the laminar shear stress term (I), 
there is agreement with the Reynolds shear stress from the wall to about 0.05y δ = .  This is the constant 
stress region.  Term  

 

 
FIG. 2. Terms of Eq. (4) as indicated for turbulent ZPG DNS of Sillero et al. [20], Re 4500θ = , Re 1437.τ =  

II contributes nothing because the pressure gradient is zero.  Adding term III extends the agreement to 
about 0.35y δ = .  Although there was some approximation in U x+∂ ∂  due to the discrete spacing of the 
mean profile stations, the addition of term IV results in good agreement with the Reynolds shear stress 
data to the edge of the boundary layer.  Adding terms V and VI of Eq. (4) results in a very slight shift of 
the profile, with a maximum change of about 0.006 in u v

+
′ ′ .  This confirms that terms V and VI are not 

typically significant for ZPG cases. 
As noted above, terms III and IV in Eq. (4) result from the streamwise integral of U x∂ ∂  in Eq. (3).  

The emergence of term III in Fig. 2 shows that U x∂ ∂  at constant y  becomes significant for 0.05y δ > .  
Term IV does not become significant until U x+∂ ∂  at constant y+ becomes significant for 0.35y δ > .    
Hence, the transformation from Eq. (3) to Eq. (4) removed the need to accurately compute the streamwise 
gradient of the mean velocity for the region between 0.05y δ =  and 0.35 for this profile. 

The equilibrium sink flow DNS cases of Spalart [10] provide another test of the present method.  The 
mean velocity is shown in inner coordinates in Fig. 3.  The strong FPG causes deviation from the 
universal law of the wall.  If a Clauser fit were used to force a match to the universal log law, uτ  would 
be predicted about 5% too high for the 61.5 10K −= ×  case and about 9% too high for the 62.5 10K −= ×  
case.  The method of the present paper avoids this problem.  For the equilibrium sink flow, fc  and Reθ  
are constants, and the full boundary layer exhibits similarity in both inner and outer coordinates.  This 
means that 2fd c dx  and U x+∂ ∂  are zero, simplifying the coefficient of term III in Eq. (4) and 

eliminating term IV (note that if Eq. (3) were used, it would still be necessary to compute U x∂ ∂  at 
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constant y , and that the term would be large due to the acceleration).  Figure 4 shows the fit of the data 
for the 62.5 10K −= ×  case.  With the FPG, there is no constant stress region.  The total stress drops 
rapidly from its value of 1 at the wall.  Terms I and II match u v

+
′ ′−  to about 0.05y δ = .  With term III 

included, the match is good for the entire boundary layer.  The addition of term V (term VI is identically 
zero for the sink flow) improves the match to nearly perfect.  Term V adds about 0.014 to the right side of 
Eq. (4), indicating that for strong FPG cases, it may be worth considering if it can be computed 
accurately, but it is still small and can be neglected with only a minor effect. 

 

 
FIG. 3. Mean velocity profiles for FPG sink flow DNS 
of Spalart [10], log law constants 0.384κ = , 4.2A = . 

 
FIG. 4. Terms of Eq. (4) as indicated in legend for 
turbulent FPG sink flow DNS of Spalart [10], 

62.5 10K −= × , Re 415θ = , Re 253τ = .

V. EFFECTS OF MISSING OR UNCERTAIN DATA 
 
The results above demonstrate that with exact laminar solutions or essentially perfect DNS data, the 

fitting of Eq. (4) is equally perfect when all terms are included.  This is expected since Eq. (4) is an exact 
formulation of the momentum equation.  The question arises, however, of how accurately uτ  can be 
determined when experimental data are missing from the near wall region or experimental uncertainty is 
present in the data that are available.  This is shown in section VI through application of the method to 
experimental results, but is considered in a more controlled manner next by removing data and adding 
errors to the DNS results. 

Acquisition of experimental data near a wall is limited by the size and resolution of the probes used to 
obtain the data.  Resolving the near wall flow can be particularly difficult with particle image velocimetry 
(PIV).  To simulate this, data were removed from the near wall region of the DNS cases of Figs. 2 and 4.  
This affects the computation of the integrals in Eq. (4), and requires an approximation of the contribution 
from the near wall region.  Three potential approximations for the integral in term III are given in the 
following equations, with cy  denoting the closest remaining data location to the wall. 

 
2 2

0 c

y y

y
U dy U dy

+ +

+

+ + + +≈∫ ∫      (6) 
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0 2c
c

y yc
y y y

yU dy U U dy
+ +

+

+ + + + +
=≈ +∫ ∫      (7) 

 
2 9//7 22

0

7
9 c

y y

c y
U dy C y U dy

+ +

+

+ + + + +≈ +∫ ∫      (8) 

 
Equation (6) ignores the contribution from the near wall region, which is equivalent to assuming the 
integrand is zero for cy y< .  Equation (7) uses the trapezoidal rule to numerically integrate from the 
value of the integrand at the wall (zero in this case) to the value at cy .  Equation (8) assumes a mean 

velocity profile shape for the near wall region, 
1/7

U Cy+ += , and integrates this function from the wall to 

.cy   The constant C is evaluated using the data point at cy  as 
1/7

/
cy y cC U y+ +

== .  Approximations are also 
needed for the integrals in term IV (and terms V and VI if used), but the effects of these approximation 
are negligible since the integrands are near zero for the inner part of the boundary layer.  The equivalent 
of Eq. (7) was used for the term IV approximations.  Equations (6-8) are intended as potentially useful 
approximations for the near wall region, even if they are not necessarily based on accurate models of the 
mean velocity.  For the ZPG case, Eq. (7) under predicts the mean velocity, Eq. (6) under predicts it more, 
and Eq. (8) over predicts it.  The effects of the approximations for the profile of Fig. 2 are shown in Fig. 5 
for / 0.4cy δ = .  All quantities shown in Fig. 5 were computed using the correct value of uτ  obtained 
from the DNS.  The lines in the figure were computed using terms I-IV of Eq. (4).  With the 
approximation of Eq. (6), noticeable error is observed.  If uτ were adjusted to fit the Eq. (6) 

approximation to the u v
+

′ ′−  data, uτ would be under predicted by 13.5%.  If the fitting were done using 
Eq. (7), the under prediction in uτ  would be reduced to 2.6%.  Using Eq. (8), uτ  would be over predicted 
by 1.7%. 

Figure 6 (a) shows the error introduced in uτ as a function of the extent of the missing data for the 
profile of Fig. 2.  With the crude approximation of Eq. (6), the error is less than 2% when / 0.1cy δ < , but 
increases to 20% when / 0.5cy δ = .  With the simple approximation of Eq. (7), the error remains below 
2% for /cy δ  up to about 0.3, and is still below 5% for / 0.6cy δ = .  For the power law approximation of 
Eq. (8), the error remains below 1% to / 0.3cy δ = , and remains below 3% even when data are removed 
from / 0.8y δ < .  The log region of this boundary layer extends to 270y+ ≈ , which corresponds to 

/ 0.2y δ ≈ .  The results of Fig. 6 indicate that the present method can be useful even when data are 
absent from the log region and only available in the outer part of the wake.  Figure 6 (b) shows results for 
the FPG case of Fig. 4.  Term III of Eq. (4) is larger for the FPG case than for the ZPG, causing the errors 
to grow more rapidly as cy  increases.  Using Eq. (7), the error remains below 0.5% to / 0.1cy δ = , but 
then rises steadily as more data are removed.  Using Eq. (8), the error in uτ  remains below 4.7% for all 

/cy δ .  The 1/7 power law of Eq. (8) was chosen because it is commonly used as a simple approximation 
to the mean velocity profile.  One could use a better approximation for the inner region and reduce the 
error further. 

Experimental uncertainty is another potential source of error in uτ .  Gaussian noise was added to the 
quantities in Eq. (4) of the DNS results of Figs. 2 and 4.  Even large amounts of noise added to U + and 

/U x+∂ ∂  had little effect on terms III and IV, since it was averaged to near zero in the integrals.  The 
noise in U + was, however, carried through into the viscous shear (term I), so a sufficient quantity of data 
should be acquired to produce a smooth U +  profile.  Figure 7 shows the effect of Gaussian noise added to 
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u v′ ′−  for the profile of Fig. 2.  The amplitude of the noise was ±10% of the maximum u v′ ′− in the profile.  
If the fitting is done though the center of the scattered data, no error is added to uτ .  If the fitting is done 
at the edges of the scatter, an error of 3% results. 

Bias error in the measured quantities also affects uτ .  A 5% bias in the mean velocity, which would be 
large in most experiments, results in less than a 1% error in uτ .  Error in uτ is proportional to any bias in 
the Reynolds shear, with a 5% bias in u v′ ′−  resulting in a 2.5% error in uτ .  The streamwise gradient 

/U x+∂ ∂ could be subject to considerable error, depending on the streamwise spacing of the measurement 
stations, and this error is proportional to the error in term IV of Eq. (4).  For the profile of Fig. 2, term IV 
makes no significant contribution for / 0.3y δ < , so errors in /U x+∂ ∂ would have no effect in this 
region.  If the fitting of the data were focused at / 0.4y δ = , a 20% bias in /U x+∂ ∂ would result in about 
a  0 . 2 5 % 

 

 
FIG. 5. Fit to data of Fig. 2 truncated at / 0.4cy δ = using terms 1-I-II+III+IV with approximations of equations 
indicated (ZE (zero): Eq. (6); TR (trapezoidal rule): Eq. (7); PL (power law): Eq. (8)) for the near wall region. 

(a)  (b) 
FIG. 6. Ratio of of uτ  determined with data truncated inside /cy δ  using equations indicated (ZE: Eq. (6); TR: Eq. 
(7); PL: Eq. (8)) for near wall region to uτ  from DNS, (a) ZPG case of Fig. 2, (b) FPG case of Fig. 4. 
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FIG. 7. Profile of Fig. 2 with Gaussian noise added to u v

+
′ ′− . 

error in uτ .  If the fit were focused at / 0.6y δ = , the same 20% bias would cause a 1% error in uτ .  
Hence, at least for the profile of Fig. 2, accurate determination of /U x+∂ ∂ does not appear to be critical, 
even if data are not available close to the wall.  It is best, however, to use data from as close to the wall as 
possible, to reduce the reliance on this term. 

Another potential source of error results from the estimation of the gradient of the skin friction 
coefficient, / 2 /fd c dx .  For the ZPG case, any error in this term results in the same percentage error in 

term III of Eq. (4).  For the profile of Fig. 2, a 10% error in / 2 /fd c dx  would result in a 0.5% error in 

uτ  if the profile fit were focused at / 0.2y δ = , and 1%, 2% and 2.8% errors for fits focused at 
/ 0.4y δ = , 0.6, and 0.8 respectively.  The size of the error in uτ  scales linearly with the error in 

/ 2 /fd c dx , so for example, a 40% error in / 2 /fd c dx  would cause a 2% error in uτ  if the fit were 

done at / 0.2y δ = .  As noted above, an estimate of uτ  can be produced using data at large /y δ , but the 
uncertainty is reduced if data are available closer to the wall where the importance of terms III and IV are 
lower. 

The combined uncertainty in uτ  results from all of the factors described.  For the cases considered 

above, the absence of near wall data and the bias uncertainties in u v′ ′− , / 2 /fd c dx ,and /U x+∂ ∂  were 

most significant.  If data were available at / 0.1y δ =  or closer, the dominant uncertainty would be from 
the Reynolds shear stress, and the percentage uncertainty in uτ  would be about half that in u v′ ′− .  If data 

were only available for / 0.2y δ ≥ , the uncertainty in / 2 /fd c dx  would become an additional source 

of noticeable error.  For / 0.4cy δ > , the effect of /U x+∂ ∂  would become important.  The magnitude of 
these uncertainties would depend on the details of particular experiments.  As an example using the 
profile of Fig. 2, if / 0.2cy δ =  and the errors in u v′ ′− , / 2 /fd c dx ,and /U x+∂ ∂  were 5%, 20%, and 

20% respectively, the error in uτ  could be as high as 3.4%.  This is in the worst case with all of the errors 
biased in the same direction.  For / 0.4cy δ =  with the same errors in the input quantities, the error in uτ  
would be 6%.  This is a significant error, but it should be remembered that it occurs when there are no 
data in the inner 40% of the boundary layer.  It is doubtful that any technique for finding uτ  could do 
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better under these circumstances.  The Clauser fit would be useless since there would be no data in the log 
region. 

 
VI. EXPERIMENTAL DATA 

 
The present method is next used to extract the wall shear stress from experimental data.  This is 
considered first for the ZPG boundary layer on a smooth wall using the data of Morrill-Winter et al. [21].  
The data were acquired in large wind tunnels at the University of Melbourne and the University of New 
Hampshire using miniature multi-element hot-wire probes.  Both facilities have trips followed by very 
long test sections, resulting in thick boundary layers that facilitate measurements at small y+ .  The full 
iterative procedure was used to determine uτ  at each streamwise measurement station for each 
experimental case.  The initial estimates for uτ  could be set as the square root of the maximum u v′ ′−  in 
each profile or estimated with a Clauser fit.  As an exercise to demonstrate that the initial guess is not 
critical, uτ  was set to 0.6 m/s at all stations for a case from the Melbourne wind tunnel with eU = 15 m/s.  
This 0.6 value was based on a guess that eU uτ  would be about 25.  Results showing the iterations for 
this case are given in Table I.  Also shown are the differences between uτ  found by the present method 
and the values determined by Morrill-Winter et al. [21] using Clauser fits. The differences averaged 0.4% 
and were at most 0.7%.  Results from  

 
TABLE I:  Iterations to find uτ  for eU = 15.2 m/s smooth wall case of Morrill-Winter et al. [21], and comparison of 

present method to Clauser fit. 

x  
[m] 

uτ [m/s] 
Guess 

uτ [m/s] 
1st it. 

uτ [m/s] 
2nd it. 

uτ [m/s] 
3rd it. 

uτ [m/s] 
Clauser 

difference 
[%] 

4.5 0.6 0.545 0.545 0.545 0.541 0.7 
7.0 0.6 0.515 0.518 0.518 0.519 -0.2 

11.9 0.6 0.510 0.512 0.512 0.512 0 
18.0 0.6 0.500 0.498 0.500 0.497 0.6 

 
TABLE II: Comparison of uτ  found with present method and Clauser fit for smooth wall ZPG cases of Morrill-

Winter et al. [21] from Melbourne (M) and New Hampshire (NH). 

Facility eU [m/s] x [m] δ + uτ  [m/s]
Present

uτ  [m/s]
Clauser

difference 
[%] 

M 10.1 4.5 2048 0.370 0.368 0.5 
M 10.1 7.0 2662 0.357 0.356 0.3 
M 10.0 11.9 4093 0.339 0.340 -0.3 
M 10.0 18.0 5718 0.334 0.334 0 
M 15.2 4.5 2993 0.545 0.541 0.7 
M 15.1 7.0 3860 0.518 0.519 -0.2 
M 15.3 11.9 5963 0.512 0.512 0 
M 15.3 18.0 8038 0.500 0.497 0.6 

NH 4.4 16.0 2870 0.156 0.156 0 
NH 4.2 34.1 4997 0.144 0.144 0 
NH 4.3 66.1 7334 0.144 0.144 0 
NH 6.6 16.0 3771 0.230 0.230 0 
NH 6.6 33.9 6457 0.218 0.220 -0.9 
NH 6.6 66.0 10102 0.213 0.215 -0.9 
NH 8.8 16.0 4951 0.299 0.301 -0.7 
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NH 8.8 34.0 7485 0.291 0.293 -0.7 
NH 8.8 66.0 12701 0.281 0.285 -1.4 

 

 
FIG. 8. Terms of Eq. (4) as indicated in legend for turbulent smooth wall ZPG flow of Morrill-Winter et al. [21], 

11.9 mx = , 15.3 m/seU = , 5963δ + = , 0.512 m/suτ = . 

(a) (b) 
FIG. 9. Case of Fig. 8 with uτ  (a) increased by 1%, (b) decreased by 1%. 
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(a) (b) 
FIG. 10. Case of Fig. 8 with uτ  (a) increased by 3%, (b) decreased by 3%. 

the present method and the Clauser fit for all of the stations and cases of Morrill-Winter et al. [21] are 
given in Table II, again showing good agreement between the two methods. 

A typical fit of the data is shown in Fig. 8 for the streamwise station at x=11.9 m downstream of the 
trip.  The constant stress region extends to about 0.04y δ = , as in the DNS results of Fig. 2.  Including 
term III allows a good fit of the data to about 0.2y δ = .  With term IV included, the region of good fit is 
extended to about 0.4y δ = .  Because of the very thick boundary layer, good Reynolds shear stress data 
were available at low y δ , making it possible to determine uτ  using only the constant stress region.  In a 
smaller facility where such data were not available, the present method would allow evaluation of uτ  
using data considerably farther from the wall.  The sensitivity of the fit to the choice of uτ  is shown in 
Figures 9 and 11.  In Fig. 9, the value of uτ  is varied by ±1% from the value in Fig. 8.  Although the fit 
appears better in Fig. 8, one might argue for one of the values used in Fig. 9 depending on which part of 
the profile was emphasized in the fitting.  Figure 10 shows the fit with uτ  varied by ±3% from the value 
in Fig. 8.  Clearly the fits in Fig. 10 are not as good as in Figs. 8 or 9, showing that the fitting of uτ  has a 
resolution of about 1%.  To further check this resolution, the full fitting procedure was independently 
done by both of the present authors for all of the cases of Morrill-Winter et al. [21].  The average 
difference in uτ  at any measurement location was 0.24% with a maximum of 0.7%. 

Experiments on a ZPG rough-wall boundary layer were conducted by Squire et al. [4] and Morrill-
Winter et al. [22] in the wind tunnel at the University of Melbourne discussed above, and velocity profile 
data were acquired using the same miniature hot-wire probes mentioned above.  The wall shear was 
determined using a floating element force balance in the test wall at the most downstream station, and 
modified Clauser fits at other stations.  The test wall was covered with P36 grit sandpaper with a 
roughness height (defined as 6 times the rms of the roughness) of 0.902 mm, resulting in fully rough 
conditions.  The uτ  values determined for all of the rough wall profiles by the present method and by 
Squire et al. [4] are shown in Table III, and as with the smooth wall, the differences between the values 
from the two methods are small.  A typical fit of the data is shown in Fig. 11.  The result is similar to that 
of the smooth wall in Fig. 8. 

With the uτ  values found using the present method, the roughness function, U +Δ , can be determined at 
each profile location.  The mean velocity in inner coordinates is shown in Fig. 12 for the same profile 
used in Fig. 11.  The universal log law is shown using the same constants ( 0.39κ =  and 4.3A = ) used by 
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Squire et al. [4].  Following the recommendation of Squire et al. [4] based on the work of Marusic et al. 
[23], the roughness function is taken as the average shift in the log law between the limits of 

3.4y δ+ +=  and 0.19δ + .  For the profile of Fig. 12, 7.2U +Δ = , which matches the value reported by 
Squire et al. [4] based on the modified Clauser fit.  Roughness functions for all locations are given in 
Table III. 

Adverse pressure gradient cases were examined from the work of Marusic and Perry [24].  The 
experiments were done on a smooth wall in a smaller wind tunnel than in the cases discussed above, and 
conventional x-wire probes were used for the Reynolds shear stress measurements.  Figure 13 shows a 
typical fit of the data.  As in the laminar case of Fig. 1 (c), there is no constant stress region.  The 
dimensionless Reynolds shear stress rises from the wall to values above 1.  Data were not available close 
enough to the wall to match the prediction using only terms I and II.  With term III included, the data 
could be fit to about 0.3y δ = .  With term IV included, the fit was good nearly to the edge of the 
boundary layer.  Table IV shows results for all available stations and flow conditions.  The uτ  values 
found with the present method average about 5% lower than those determined by Marusic and Perry [24] 
using the Clauser fit.  While not an unreasonable difference, it is larger than observed in the ZPG cases 
above.  The differences could be due to deficiencies in the present method or the Clauser fit, but there are 
no reasons to suspect either.  The deceleration is sufficiently mild that the Clauser fit should be accurate.  
Another possibility is slightly low u v′ ′−  data.  Conventional x-wire probes are known to provide low 
values of the wall-normal component of the velocity, as explained by Champagne and Sleicher [25], who 
proposed a correction.  For the hot-wire sensors used by Marusic and Perry [24], this correction results in 
an 8% increase in all u v′ ′−  measurements.  This correction was applied to the data, and the fits with the 
present method were done again.  The corrected uτ  values are shown in Table IV.  Agreement with the 
Clauser fit is better.  The present method results are no longer biased below the Clauser fit values, and the 
average difference between methods is reduced to 2%. 

The sink flow (FPG) study of Jones et al. [26] is considered next.  As with the APG cases above, the 
Reynolds shear stress was measured with a conventional x-wire probe.  The smooth wall boundary layer 
was allowed to develop with a zero pressure gradient, which was followed by acceleration with constant 
K .  Figure 14 (a) shows a typical fit of the data from a station where the flow is still developing.  As in 
the APG cases, there is no constant stress region, but with the FPG the total shear stress drops rapidly 
from its value of 1 at the wall.  Terms I and II are insufficient to match the Reynolds shear, but with term 
III included there is reasonable agreement to about 0.3y δ = .  With term IV included, the fit matches the  

 
TABLE III: Comparison of uτ  and U +Δ  found with present method and Clauser fit for rough wall ZPG cases of 

Squire et al. [4]. 

eU  
 [m/s] 

x  
[m] 

δ +  uτ  [m/s] 
Present 

uτ  [m/s] 
Clauser 

uτ  diff. 
[%] 

U +Δ  
Present 

U +Δ  
Clauser 

U +Δ  diff. 

7.3 7.0 2890 0.310 0.314 1.3 4.50 4.5 0 
7.2 15.0 5190 0.289 0.290 0.3 4.10 4.2 -0.10 
7.3 21.7 6770 0.284 0.288 1.4 3.92 4.2 -0.28 

12.1 7.0 5250 0.524 0.529 0.9 6.24 6.3 -0.06 
12.2 15.0 8980 0.501 0.503 0.4 6.04 6.1 -0.06 
12.2 21.7 12300 0.489 0.488 0.2 5.74 6.0 -0.26 
17.1 7.0 7670 0.752 0.754 0.3 7.44 7.4 0.04 
17.4 15.0 13140 0.716 0.718 0.3 7.21 7.2 0.01 
17.3 21.7 17190 0.692 0.698 0.9 6.97 7.1 -0.13 
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FIG. 11. Terms of Eq. (4) as indicated in legend for 
 rough wall ZPG flow of Squire et al. [4], 

15.0 m,x =  17.4 m/s,eU =  13140,δ + =  0.716 m/suτ = . 

 

 
FIG. 12. Mean velocity for case of FIG. 11.

 
data to the edge of the boundary layer.  Results for all stations at two different acceleration rates are 
shown in Table V.  As with the APG cases of Table IV, the uτ  values from the present method are 
systematically low by about 3% compared to those obtained with the Clauser fit.  If the Champagne and 
Sleicher [25] correction is applied to the experimental u v′ ′−  data, uτ  values from the present method 
increase and agree with the Clauser fit results to within about 1%. 

As noted in the comparison to the DNS results of Spalart [10], a sink flow boundary layer will 
eventually reach equilibrium after a sufficient development length.  The terms 2fd c dx  and U x+∂ ∂  

go to zero, resulting in term IV equaling zero and simplifying the coefficient of term III in Eq. (4).  The fit 
of Eq. (4) is shown in Fig. 14 (b) for a downstream station of the Jones et al. [26] study, where sink flow 
similarity had been achieved.  There is good fit of the u v

+
′ ′−  data.  It is interesting to note that uτ  can in 

theory be found with the present method without need of the u v′ ′−  data.  The correct uτ  is the one which 
causes the  

TABLE IV: Comparison of uτ  found with present method and Clauser fit for smooth wall APG cases of Marusic 

and Perry [24]; uncor. – present method using u v′ ′  as measured, corr. – present method with Champagne and 
Sleicher [25] correction applied. 

eU  
[m/s] 

x  
[m] 

107 K  δ +  uτ  [m/s] 
uncor. 

uτ  [m/s] 
corr. 

uτ  [m/s] 
Clauser 

uτ  diff. 
[%] 

10.4 1.20 0 792 0.419 0.440 0.441 -0.2 
10.0 1.80 -2.14 1006 0.360 0.375 0.393 -4.6 

9.3 2.24 -2.89 1072 0.317 0.335 0.331 1.2 
8.6 2.64 -3.33 1135 0.257 0.273 0.273 0 
8.2 2.88 -3.53 1162 0.225 0.244 0.237 3.0 
7.9 3.08 -3.83 1156 0.188 0.203 0.207 -1.9 

30.8 1.20 0 2150 1.180 1.220 1.166 4.6 
29.1 1.80 -0.72 2536 0.960 1.000 1.031 3.0 
27.1 2.24 -0.94 2810 0.860 0.905 0.900 0.6 
25.2 2.64 -1.16 3055 0.720 0.750 0.766 -2.0 
23.9 2.88 -1.21 3164 0.610 0.640 0.681 6.0 
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23.0 3.08 -1.33 3207 0.550 0.590 0.603 2.2 
 

 

 
FIG. 13. Terms of Eq. (4) as indicated in legend for turbulent smooth wall APG flow of Marusic and Perry [24], 

2.24 mx = , 27.1 m/seU = , 2810δ + = , 70.94 10K −= − × , 0.905 m/suτ = . 

right side of Eq. (4) to asymptote to zero at large y .  Experimental uncertainty prevents this from 
happening in the general case, but with Eq. (4) simplified for the equilibrium sink flow, it can be done 
reliably. 

 
VII. DISCUSSION 

 
As with all methods, the present formulation has both advantages and disadvantages.  The present 

method, the momentum integral method, and the method of Mehdi et al. [17], for example, are based on 
exact representations of the boundary layer momentum equation.  Supplied with perfect data (or DNS 
results) they will all produce exactly the same correct answer.  Given real experimental data, their 
performance depends on the terms that must be computed, the influence of experimental uncertainty on 
these terms, and the parts of the boundary layer where accurate results are most required.  The momentum 
integral method, for example, has the advantage of requiring no turbulence data, but does require 
sufficient  

 
TABLE V: Comparison of uτ  found with present method and Clauser fit for smooth wall FPG cases of Jones et al. 

[26]; uncor. – present method using u v′ ′  as measured, corr. – present method with Champagne and Sleicher [25] 
correction applied. 

eU  
[m/s] 

x  
[m] 

107 K  δ +  uτ  [m/s]
uncor.

uτ  [m/s]
corr. 

uτ  [m/s]
Clauser 

uτ  diff
[%] 

12.00 0.80 2.70 632 0.535 0.550 0.551 -0.2 
14.74 1.60 2.70 914 0.630 0.650 0.658 -1.2 
17.46 2.20 2.70 1102 0.755 0.775 0.770 0.6 
21.45 2.80 2.70 1293 0.915 0.940 0.940 0 
25.63 3.28 2.70 1427 1.100 1.130 1.116 1.2 
30.57 3.58 2.70 1582 1.330 1.330 1.329 0.1 
6.09 0.80 5.39 388 0.268 0.273 0.302 -9.6 
7.54 1.60 5.39 567 0.347 0.358 0.362 -1.1 
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9.00 2.20 5.39 670 0.413 0.420 0427 -1.6 
11.00 2.80 5.39 784 0.509 0.520 0.516 0.8 
13.10 3.28 5.39 873 0.595 0.617 0.610 1.1 
15.06 3.58 5.39 928 0.695 0.695 0.701 -0.9 

 

 

(a) (b) 
FIG. 14. Terms of Eq. (4) as indicated in legend for turbulent smooth wall FPG flow of Jones et al. [26], (a) 

2.20 m,x =  9.0 m/seU = , 670δ + = , 75.39 10K −= × , 0.420 m/suτ = ; (b) 3.58 m,x =  15.06 m/seU = , 
928,δ + =  75.39 10K −= × , 0.695 m/suτ = . 

near wall data to accurately compute the momentum thickness and sufficient streamwise resolution to 
determine xθ∂ ∂ .  Brzek et al. [11] successfully used the momentum integral method and emphasized the 
need to obtain xθ∂ ∂  accurately.  They also obtained uτ  for a ZPG profile using the equivalent of Eq. 
(3), where again good streamwise resolution was needed to compute /U x∂ ∂  accurately.  The method of 
Mehdi et al. [17] has different requirements.  It requires the Reynolds shear stress profile, but only at one 
location since no streamwise gradients are needed.  It requires data sufficiently accurate to compute the 
wall normal gradient of the total shear stress, which they found requires smoothing and fitting of the data 
to expected profile shapes in the near wall region. 

For the present method, the requirements are different.  Reynolds shear stress data are required, and 
data from at least two streamwise locations are needed to estimate streamwise gradients.  The importance 
of the accuracy of these gradients has been reduced, however, by the transformation of the equation into 
wall coordinates.  An advantage of the method is that it does not require any particularly specialized 
equipment such as force balances or probes for acquiring velocity data exceptionally close to a surface.  It 
only requires profiles of the mean streamwise velocity and the Reynolds shear stress at two or more 
locations, which are already typically acquired in many boundary layer studies.  No presumption is made 
about the shape of the mean velocity profile, as is necessary with techniques such as the Clauser fit or 
Preston tube measurements. 

Given the differences in measurement requirements, the choice of method to determine uτ  depends on 
the flow in question and the data acquired from the available instrumentation.  No single method should 
be expected to be best in all cases.  For fully developed turbulent boundary layers, the Clauser fit remains 
a simple and preferred method for most zero pressure gradient cases.  It depends, however, on the 
universal law of the wall.  The present method can be used in arbitrary pressure gradients where 
significant deviations from the log law are present.  Fitting of the Reynolds shear stress profile can be 
done in any part of the boundary layer.  Data from very near the wall and gradients of the Reynolds or 
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total shear, which can be difficult to obtain accurately, are not required.  It is also unnecessary to rely on 
results from the outer part of the boundary where streamwise gradient terms become more significant and 
can cause error.  Instead, focus can be on the middle of the boundary layer where all terms are typically 
known with more certainty. 

 
VIII. CONCLUSIONS 

 
An analytical method has been developed for relating mean velocity and Reynolds shear stress profiles, 

and this method has been used to determine the wall shear stress from measured profile data.  The method 
is applicable for steady, two-dimensional boundary layers with arbitrary pressure gradients and surface 
roughness.  It utilizes the boundary layer streamwise momentum equation, which is transformed into 
inner coordinates without approximation.  The accuracy of the method was demonstrated and the relative 
importance of the terms in the formulation determined through application to laminar flow solutions and 
turbulent DNS results.  The utility of the method was shown through application to experimental data 
from the literature including zero pressure gradient cases from smooth and rough walls and smooth wall 
cases with favorable and adverse pressure gradients.  Results obtained with the present method agreed 
closely with those obtained by other methods in the original studies. 
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APPENDIX 
 

The following flow chart shows the implementation of the iterative method for finding the wall shear. 
 

 
FIG. 15. Flow chart showing iterative method for finding uτ . 
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