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Abstract

Length scales of eddies involved in the power generation of infinite wind farms are studied

by analyzing the spectra of the turbulent flux of mean kinetic energy (MKE) from Large Eddy

Simulations (LES). Large scale structures with an order of magnitude bigger than the turbine rotor

diameter (D) are shown to have substantial contribution to wind power. Varying dynamics in the

intermediate scales (D − 10D) are also observed from a parametric study involving inter-turbine

distances and hub height of the turbines. Further insight about the eddies responsible for the power

generation have been provided from the scaling analysis of two dimensional premultiplied spectra of

MKE flux. The LES code is developed in a high Reynolds number near-wall modelling framework,

using an open-source spectral element code Nek5000, and the wind turbines have been modelled

using a state-of-the-art actuator line model. The LES of infinite wind farms have been validated

against the statistical results from the previous literature. The study is expected to improve our

understanding of the complex multiscale dynamics in the domain of large wind farms and identify

the length scales that contribute to the power. This information can be useful for design of wind

farm layout and turbine placement that take advantage of the large scale structures contributing

to wind turbine power.
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I. INTRODUCTION

Large organized arrays of wind turbines stretching over a span of tens of kilometers in

the horizontal direction, commonly known as wind farms [1–3], are conventionally used to

extract wind energy from the atmospheric boundary layer (ABL) since the last two decades.

Efficient design and operation of large wind farms not only requires the presence of high

mean wind speed Ū (annual mean) at hub-height location, but also benefits from specific

considerations regarding wind turbine position, e.g., the inter-turbine streamwise and span-

wise distance, staggered vs. aligned arrangements, etc [4–8]. The dynamics of the power

extraction by the wind turbines in a farm are very different and far more complicated than

those of a stand-alone turbine [9–11]. As an example, our recent study [12] has revealed

that large scale structures with length-scales of the order of ten turbine rotor diameters

(D) made significant contribution to the power generated by the wind turbines in a farm,

which have not been observed so far in lone-standing turbines. While the presence of length

scales ∼ D contributing to the turbine power in wind farms is intuitive and was reported

recently [11, 13], the current literature lacks an organized study on the contributions of still

larger scales of motion (� D) in the wind farms. Large scale structures near the wall are

known to carry significant amount of turbulent kinetic energy and Reynolds stresses in wall

bounded turbulence and were the subject of many recent studies in canonical and boundary

layer flows [14–20], but not so much is known about the behaviour of such structures in the

region of wind turbine wakes. Understanding the physics of large scale structures and their

organization (coherence) influencing the wind turbines is important for characterization of

wind turbine wake dynamics and power generation. These structures can also potentially

serve as an important metric apart from the hub-height mean wind speed in selecting land

locations of wind farms.

Large wind farms are usually studied as infinite wind farms in the asymptotic limit [9,

21, 22], invoking streamwise-spanwise homogeneity through periodic boundary conditions.

In this framework, the flow is “fully developed” and the wind turbine array imposes an addi-

tional geometric roughness z0,hi, and friction velocity u∗,hi (scales with streamwise–pressure

gradient as u2∗,hi/H = −1
ρ
∂p/∂x [9]) which are higher than the bottom wall aerodynamic

roughness z0,lo and wall friction velocity u∗,lo =
√
τw/ρ (τw is the wall-shear stress) imposed

by the topography of the land [23–26]. The wind turbine array roughness z0,hi ∼ zh/sxsy



is influenced both by the turbine hub-height zh, as well as non-dimensional streamwise,

spanwise turbine spacing parameters sx, sy (sxD, syD are the physical turbine spacings in

multiples of the rotor diameter D). Analogous to the rough wall boundary layer flows, the

concept of infinite wind farms provides a consistent way to study the influence of vertical

physics in ABL turbulence due to the presence of wind turbines [9, 12, 27, 28]. Previous

literature have also illustrated the dominance of the vertical physics compared to the ho-

mogeneous horizontal counterpart in very large wind farms and have established that the

vertical entrainment of mean kinetic energy (MKE) through turbulent shear stress flux, is

responsible for the power generated by the turbines [9, 21, 22, 28, 29]. To the authors

knowledge, there was only one recent study on large wind farms that commented on the

presence of large scale energetic counter-rotating roller modes in kinetic energy entrainment

deduced by Proper Orthogonal Decomposition (POD) [30], despite the fact that large scale

organizations in MKE transport play a significant role in the power generated in large farms.

In this work, we aim to analyse the physics of the large-scale structures in wind farms and

investigate how they are influenced by the important farm design parameters, like wind tur-

bine hub-height zh, and the non-dimensional streamwise, spanwise inter-turbine distances

(sx, sy). It must be appreciated that the present work focuses on the global transport of

the MKE flux in the computational domain, from the top wake region, zh + D/2, to the

bottom wake region, zh−D/2, or vice-versa, and does not attempt to comment on how they

correlate to the localized energy transfers in the wind turbine rotor region. This study is

expected to improve the understanding of the MKE transport responsible for wind turbine

power and the length scales involved, and also elucidate towards an efficient wind farm de-

sign that could position the wind turbines to systematically utilize the large scale structures

near and around them. The numerical studies in this work involving wind farms in ABL

at Re ∼ O(1010) are performed in a framework of Large Eddy Simulations with near wall

modelling. The wind turbine forces are modelled using the state-of-the-art actuator line

model [31], without resolving the turbine blades. Additionally, the use of periodic boundary

conditions in our computations allows us to use Fourier transform in the horizontal direc-

tions and define the length scales (wavelengths) as the inverses of wavenumbers kx, ky.

The rest of the paper is organized as follows. In Section 2, we document the numerical

methods, where we provide the details of the spectral element method and the large eddy

simulation method with the near wall modelling, followed by the description of the compu-



tational domain with the list of the LES simulations performed. In Section 3, we present the

results of the turbulent statistics in the periodic wind farms as well as the spectral analysis

with the comments on the length scales involved in power generation. In Section 4, we

discuss the conclusions from our key findings.

II. NUMERICAL METHODS

The numerical method implements a variational formulation of Navier-Stokes (NS) equa-

tions involving Galerkin projection using open-source spectral element solver Nek5000 [32]

in PN − PN−2 formulation (see [33] for more details). The domain is partitioned into hexa-

hedral elements in 3D, and within each element any variable can be expanded into a series of

orthogonal basis functions (Lagrange-Legendre polynomials) with the grid points clustered

towards the element boundaries known as Gauss-Lobato-Legendre (GLL) points which are

essentially the roots of the basis function polynomials. For smooth solutions, exponential

convergence can be achieved with increasing order of the polynomials. The current algorithm

was optimized to achieve perfect scalability in parallel implementation for up to 1,000,000

processors [32].

A. Subgrid-Scale Model for Large Eddy Simulations

The spatially filtered 3D Navier-Stokes equations for LES of wind turbine arrays in

neutrally-stratified ABL flows can be obtained by incorporating a convolution integral filter

on the original Navier-Stokes equations

∂ũ

∂t
+ ũ∇ũ = −1

ρ
∇p̃∗ + F̃x + F̃AL + ν∇2ũ−∇ · τττ (1)

Here, ũ is the filtered velocity vector, p̃∗ is the modified pressure [34], and F̃x is the stream-

wise driving pressure gradient, while F̃AL represent the actuator line forces exerted by the ro-

tating wind turbine blades. The subgrid stress (SGS) tensor in Equation (1), τττ = ũuT−ũũT

arising from the non-commutativity of filtering with the nonlinear advection term is modeled

using an algebraic wall-damped Smagorinsky type eddy viscosity closure [35, 36]

τττSGS − 1

3
τττSGSδkk = −2(lf )

2|∇sũ|∇sũ, lf = Cs∆, (2)



where ∇sũ = 1/2(∇ũ+∇ũT ) and |∇sũ| = (2∇sũ : ∇sũ)1/2. The grid size ∆ in Equation 2

is defined as ∆ = (∆x∆y∆z)
1/3 (∆η is the grid size in the η direction defined as the local

average distance between the GLL nodes in this direction [36]), and the filter length scale

is defined as l−nf = (Cs∆)−n = (C0∆)−n +
[
κ(z+ z0)

]−n
(κ = 0.41 is Von-Karman constant,

z0 = z0,lo) with C0 = 0.19, n = 0.5. The current model, through this specific choice of

parameters {C0, n}, explores a new parametric function for the control of the filter length

scales, that represents a slower growth with the distance from the wall than in classical

models [23, 24, 35], which in fact exhibits a good fit with the growth of the filter length

scales observed in dynamic models [23]. The proposed algebraic model can be viewed as a

less expensive alternative to dynamic-based models that still provides reliable results in the

calculations of the atmospheric flows, as is evident from the validation studies of the current

model in the neutral atmospheric boundary layer simulations documented in Ref. [36].

B. Boundary conditions and Near Wall Model

We incorporate periodic boundary conditions in the streamwise and spanwise directions

while the top boundary conditions are stress free. At the bottom surface, we use a wall

stress boundary condition without having to resolve the rough wall, relating the wall stress

vector τs to the horizontal velocity vector ũuuh at the first grid-point using the standard

Monin-Obukhov similarity law [37] along with no-penetration conditions of large eddies,

w̃ = 0,

1

ρ
τs = −κ2

̂̃uuuh,∆z
2

(x, y, t)| ̂̃uuuh,∆z
2
|(x, y, t)

log( z
z0

)
∣∣∣2

∆z
2

, (3)

where ̂̃uh,∆z
2

= ̂̃u∆z
2
~ex + ̂̃v∆z

2
~ey (~ex, ~ey are unit vectors in the x, y direction) and | ̂̃uh,∆z

2
| =√̂̃u2∆z

2
+ ̂̃v2∆z

2
. The “hat” represents additional explicit filtering carried out in the modal

space by attenuating kc = 4 highest Legendre polynomial modes of the spectral element

model [38], where kc stands for the number of the highest modes being filtered. For collocated

spectral element methods ̂̃u∆z
2

, ̂̃v∆z
2

are calculated as an interpolation at half wall node

∆z/2, i.e. between ̂̃u(x, y, 0, t) and ̂̃u(x, y, z = ∆z, t), where ∆ z is the distance between the

bottom boundary and the first GLL point from the boundary in the vertical direction. We

ensure that ∆z/z0 � 1 to satisfy the assumptions and the similarity laws in the near-wall

model [37, 39–42].



To validate our spectral element near-wall LES model, the neutral ABL simulations have

been conducted that have shown excellent logarithmic trends of the mean streamwise velocity

in the inner layer (z/H ≤ 0.1) when compared against the state-of-the-art scale dependent

dynamic Smagorinsky model [23, 24], and accurate −1,−5/3 scaling laws in the streamwise

energy spectra. More technical details of the near-wall LES model and the specific choice

of parameters can be found in Ref. [36]

C. Actuator Line Model

In an actuator line model [31], the blades with the aerofoil cross sections are divided into

elements, similar to the Blade Element Momentum Theory (BEM), and the local lift (L) and

drag (D) forces experienced by each element are calculated as (L, D) = 1
2
C(l,d)(α) ρ V 2

rel cwd,

where c and wd are the chord-length and the blade width respectively. The local angle of

attack, α, is computed from the relative velocity, Vrel, streamwise velocity, u (ũ in LES) and

the pitch angle, γ (Figure 1). The lift and drag coefficients, Cl(α), Cd(α) of the aerofoil are

tabulated beforehand from DNS or wind-tunnel experiments and are used in the computation

of the local aerodynamic force ~f = L~eL + D ~eD (here ~eL and ~eD are the unit vectors in the

direction of the local lift and drag, respectively). In the current paper, Cl, Cd were taken

from the standard NACA aerofoil look-up tables [38]. The total reaction force from all the

blade elements experienced by the fluid is distributed smoothly on several mesh points and

is given as the actuator line force in the NS equations (1),

F̃AL(x, y, z, t) = −
N∑
i=1

~f(xi, yi, zi, t) η ε(|~r − ~ri|), (4)

~r = (x, y, z), where η ε(d) is a Gaussian function in the form of η ε(d) = 1/ε3π3/2 exp
[
−(

d/ε
)2]

. The summation in the forces is over all N blade elements from the multiple wind

turbine blades, and ε = 2wd is used in the current study as suggested in [2, 31] for optimum

results. The AL model is more advanced than the actuator-disc model [9, 22, 30] commonly

used in numerical computations of periodic wind farms, in its capability to capture the

tip-vortices being shed in the near-wake quite accurately [31, 38].
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FIG. 1: Actuator line forces obtained at the nodal points of the turbine blades. Vrel is

obtained from the velocity triangle. Ft and Fθ are the axial thrust and rotational forces on

the turbine blades due to aerodynamic lift (L) and drag (D) forces.
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FIG. 2: Computational domain showing the 8× 6 periodic arrangement of wind turbines

for the baseline case I. Hub height zh, and rotor diameter D set to 0.1H. The dashed

white arrows indicate the direction of mean wind flow.

D. Computational Setup

The computational domain utilized in this work to approximate the infinite wind farm

setting is of rectangular geometry with dimensions 2πH × πH ×H or 20πD× 10πD× 10D



(H, D are the ABL thickness and the rotor diameter respectively), as in [9] (see a schematic

in Figure 2 for details). Wind turbines of fixed rotor diameter D = 0.1H are placed in

the computational domain as organized arrays. Table I documents the geometrical and

computational parameters of the layout for the four cases simulated. The Reynolds number

Re = U∞H/ν ∼ 1010 has been set for all the cases, where U∞ is the mean streamwise

velocity at the top-edge of the boundary layer, which can be thought of as a representative

of the geostrophic velocity in atmospheric flow driven by the pressure gradient and Coriolis

forces [21, 43]. Normalization with U∞ was found to provide a meaningful comparison of

variables between the different cases in the periodic wind farm setting. Case I is considered

as a baseline case with sx = 7.85, sy = 5.23, and a hub height zh = D = 0.1H located

in the inner layer. Case I has been chosen as a standard test case considered in several

other studies [8, 9, 30] and is consistent with the parameters of realistic wind farms in

United States and Europe. Cases IIa and IIb, (see Table I), will provide a way to study

the influence of the streamwise and spanwise turbine distances on the large scale structures

in the MKE transport, while Case III will contribute to our understanding of the MKE

transport with a higher hub-height reaching into the outer layer (zh = 0.33H), where the

influence of the wall is diminished as compared to zh = 0.1H. The bottom wall roughness

z0,lo = z0 = 10−4H induced by topography is constant through all our simulation cases

I,IIa,IIb and III. While the geometric roughness z0,hi as a function of (zh, sx, sy) can be

calculated from the LES simulation data, the geometric roughness by the wind turbines can

also be apriori estimated from the roughness measure by Lettau [44], z0,Lett = zhπ/8sxsy. A

comparison of Lettau roughness normalized by the aerodynamic wall roughness, z0,Lett/z0

in Table I clearly indicates that the geometric roughness is an order of magnitude higher

than its aerodynamic counterpart and is sensitive to the hub-height and turbine arrange-

ments. Cartesian spectral element collocated grid has been used in the simulations, with

the number of elements and the total grid count for each simulated case listed in Table I.

All simulations were performed with 7th polynomial order of approximation, which required

8 GLL collocation points per element per direction. The grids were constructed to satisfy

some specific resolution requirements: a) for the actuator line model, one requires on the

order of 4 spectral elements along the actuator line in the yz rotor plane with the current

GLL resolution; b) one needs at least one spectral element to cover the distance of one

rotor diameter downstream of each turbine in the x direction. These refinements are nec-



essary in order to capture the helical vortices and the wakes shed by the rotating turbines

downstream, and hence the number of turbines (see Table I) expectedly determines the grid

requirements in the domain. Appendix A provides a more detailed documentation of the

grid structure and grid resolution of the simulated cases.

The LES simulations as in Table I are computationally expensive requiring ∼ O(107)

grid points and have been started with statistically stationary neutral ABL initial condition

obtained from a separate precursor simulation. The wind turbine (WT) simulations have

been run for long enough to allow the WT domain achieve temporal invariance in the

statistical sense. After that, spatio-temporal snapshot data of velocities are collected for a

span of ∼ 50Te time (Te = 2πH/U∞ is a flow-through time), which were used for spectral

analysis involving Fourier transform.

Case Nturb sx sy sx × sy sx/sy z0,Lett/z0 zh N e
x ×N e

y ×N e
z Nxyz

I 8× 6 7.85 5.23 41.05 1.5 9.54 0.1H 54× 56× 24 2.52× 107

IIa 4× 6 15.7 5.23 82.11 3.0 4.77 0.1H 45× 56× 24 2.09× 107

IIb 8× 3 7.85 10.47 82.11 0.75 4.77 0.1H 54× 44× 24 1.98× 107

III 8× 6 7.85 5.23 41.05 1.5 31.5 0.33H 54× 56× 24 2.52× 107

Neutral ABL – – – – – – – 30× 20× 24 5.02× 106

TABLE I: LES cases for the wind farm simulations. Domain size is 2πH × πH ×H, and

D = 0.1H, fixed for all cases. Nturb is the number of turbines in streamwise-spanwise

arrangement, N e
i is the number of spectral element in the ith direction. Nxyz is the total

number of grid points used in the computational domain. Grid of a neutral ABL

simulation [36] is provided for comparison.
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FIG. 3: (a) Mean streamwise velocity 〈u〉 normalized by u∗,hi vs z/H. (b) Total (Reynolds

+ Dispersive) stresses τxz normalized by u∗,hi vs z/H. Solid black – Case I, Dashed black –

Case IIa, Dashed gray – Case IIb, Solid gray – Case III. Solid gray 2 in (a) – neutral ABL;

open # in (a), (b) – Calaf et al.(2010) [9] (same wind farm setup parameters as in Case I).

Black, gray dashed dotted vertical (a) and horizontal (b) lines: rotor swept area of Cases

I–III.

III. RESULTS AND DISCUSSION

A. Statistics of Infinite Wind Farms

The vertical variation of streamwise mean velocity profile for cases I–III is shown in

Figure 3a. The baseline case I is validated against the actuator-disc LES simulations of



Calaf et al. [9] illustrating the double log-layers as shown below

〈u(z)〉 = u∗,lo/κ log(z/z0,lo), z < zh −D/2, (5)

〈u(z)〉 = u∗,hi/κ log(z/z0,hi), z > zh +D/2. (6)

Here, u∗,lo =
√
τw/ρ comes from the wall shear stress, while u∗,hi =

√
−H

ρ
∂p/∂x comes from

the pressure gradient force. However the friction scale velocities can also be approximated

as u∗,lo ≈
√
−(〈u′w′〉+ 〈ū′′w̄′′〉)|zh−D/2 and u∗,hi ≈

√
−(〈u′w′〉+ 〈ū′′w̄′′〉)|zh+D/2. While

the Reynolds stresses 〈−u′w′〉 defined in the conventional way arise due to the correlation

between u,w velocities, the dispersive stresses, −〈ū′′w̄′′〉, are a manifestation of the spatial

heterogeneity of the u,w velocities, with 〈ū′′〉 = ū − 〈ū〉, 〈w̄′′〉 = w̄ − 〈w̄〉 (−, temporal

averaging and 〈〉, xy averaging). However, the dispersive stresses are usually much smaller

than the Reynolds stresses in infinite wind farms. A comparison of the total stresses τxz

(Reynolds + Dispersive) for the different cases I-III (case I is also validated with [9]) is

shown in Figure 3b. The comparison indicates that the differences in stresses in various

wind turbine layouts for Cases I-III are more illustratively seen in the bottom wake region

of the rotor manifesting the vertical energy entrainment. Since all the results involve the

LES filtered variables, the tilde is dropped for brevity here and in subsequent plots and

analysis.

In infinite wind farms, the difference in turbulent shear stress (Reynolds + Dispersive)

flux component of the Mean Kinetic Energy (MKE flux) at the top and bottom region of

the rotor is responsible for the mean power per unit area generated by the wind turbines in

the farm [6, 9, 21]. The MKE flux,

Φp(z) = −(〈u′w′〉+ 〈ū′′w̄′′〉)〈u〉, (7)

is plotted in Figure 4a for all the cases I-III. The MKE flux difference,

∆Φp = Φp(zh +D/2)− Φp(zh −D/2), (8)

was shown previously to correlate with the mean power density ρmean ∼ ∆Φp [9]. The mean

power density, ρmean = 1/(NtsxsyD
2)
∑Nt

i=1 P̄i, can be calculated by averaging the temporal

mean power
∑
P̄i over all Nt turbines in the farm, and diving by the area sxD × syD.

Figure 4b manifests a strong correlation between ∆Φp (MKE flux difference) and ρmean in

the present data, confirming the findings in [9]. The present data also indicates that the



mean power density roughly scales with the geometric turbine roughness in the regime of

investigated sx, sy. It is understood however that such relationship is not supposed to hold

once separation distances fall below a certain limit. As a reference, the temporal variation

of the array-averaged power P (t) = 1
Nt

∑Nt
i=1 P̄i for different cases is plotted in Figure 5.
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FIG. 4: (a) Vertical variation of the MKE flux for different cases. Solid black – Case I,

Dashed black – Case IIa, Dashed gray – Case IIb, Solid gray – Case III. Gray square –

neutral ABL. Open # – Calaf et al.(2010) [9] (same wind farm setup parameters as in

Case I). Dashed dotted lines: rotor swept area of Cases I–III. (b) Correlation between the

difference in MKE flux ∆Φp and mean power density ρmean for different cases.

B. Spectra of MKE flux

The spectra of the MKE flux Φp(z) and the MKE flux difference ∆Φp defined in Equa-

tions (7), (8) is of interest in this paper. The horizontal spectra of Φp(z) can be defined

through the corresponding spectra of two-point correlations, see a more thorough discussion

in Appendix B, as

Φ̂p(kx, ky, z) = |û(kx, ky, z)ŵ∗(kx, ky, z)|〈u(z)〉, (9)

where kx, ky are streamwise and spanwise wavenumbers, ̂ is the notation for the Fourier

coefficients, and ∗ refers to the complex conjugate. The horizontal spectra of the MKE flux

difference can be defined accordingly,

∆Φ̂p(kx, ky) = Φ̂p(kx, ky, zh +D/2)− Φ̂p(kx, ky, zh −D/2). (10)
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and Solid gray – Case III. Time scale is normalized with H/U∞. Mean power gain: IIa/I –
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The Fourier coefficients can also be expressed as a function of streamwise, spanwise

wavelengths, λx, λy (λx,y = 2π/kx,y) and their integral in λx, λy space contributes to the full

value,

∆Φp =

∫ ∞
0

∫ ∞
0

kxky∆Φ̂p(λx, λy)dlog(λx)dlog(λy). (11)

While Equation (11) illustrates a cumulative effect of streamwise and spanwise length scales

λx, λy on the MKE flux difference, we can still define its one-dimensional counterpart, using

a 2D Fourier transform and integrating over one wavelength direction. Equation (12) shows

the one dimensional MKE flux difference spectra, ∆Φ̂p(λη), η = x, y, isolating the spectral

content in the streamwise and spanwise length scales respectively,

∆Φ̂p(λη) =

∫ λζ,max

0

∆Φ̂p(λη, λζ)dλζ , (12)

where η = x, ζ = y and vice-versa. Equation (13) below defines the cumulative spectral

content of the 1D MKE flux difference in streamwise and spanwise length scales. For exam-

ple, γx(λ0) shows the fraction of MKE flux difference, contained at length scales λx ≥ λ0,



and γη(0) = 1,

γη(λη) =

∫ ∞
λη

∆Φ̂p(λ
′
η)dλ

′
η∫ ∞

0

∆Φ̂p(λ
′
η)dλ

′
η

, ∀η = x, y. (13)

(a) (b)

FIG. 6: Premultiplied 1D spectra kxξ vs normalized streamwise wavelengths λx/D for (a)

z = 0.25D, (b) z = 8.75D. Black lines, Case I; gray lines, neutral ABL. kxEuu (–), kxEww

(−−), kxφuw (−.−). All spectra normalized by U2
∞. Gray patch corresponds to the

resolved part of the spectra directly influenced by SGS viscosity.

In the near wall regime, robust scaling laws of the attached eddies [45, 46] can be observed

in wind farms. For example, Case I in Figure 6a shows the existence of the k−1x scaling (λ0x

scaling in premultiplied spectra) in the u energy spectra, which are manifestations of the

overlap region of the scales of attached eddies with the integral length scales [36, 47, 48].

The k
−1/2
x scaling law (λ

−1/2
x in premultiplied spectra) of φuw (cospectra) is an illustration of

the near-wall organizations of Reynolds-stress carrying structures, as demonstrated in the

correlation scaling of 1D spectra [36, 49],

φuw ≈ E1/2
uu E

1/2
ww , (14)

with Euu ∼ k−1x and Eww ∼ k0x (see Figure 6a). Here φuw = |ûŵ∗|, Euu = ûû∗ and

Eww = ŵŵ∗, where hat represents the Fourier transform and ∗ represents the conju-

gate transpose. These correlated scaling regions were observed throughout the inner layer

z < D. In 1D scenario, e.g., for variation only in λx, integration of the spectral variables
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FIG. 7: 2D premultiplied energy spectra vs normalized streamwise and spanwise

wavelengths, λx/D, λy/D. Black lines, Case I; gray lines, neutral ABL. kxkyEuu (–),

kxkyEww (−−), kxkyφuw (−.−). (a) z = 0.25D (b) z = D (c) z = 8.75D. Contours are 0.25

of maximum at that level. All spectra normalized by U2
∞.

Euu, Eww, φuw has been performed in the λy direction. When compared to neutral ABL

simulations (without wind turbines), we observe similar scaling laws, but for the wind tur-

bine domain, the attached eddy scaling laws extend to larger length scales λx > 10D. This

observation is further corroborated in the 2D premultiplied spectra shown in Figure 6b. The

figure also illustrates that the vertical w spectra of wind farms at close to the wall locations,

z < D, as well as u spectra and a cospectra at the same contour level, extend to much larger

streamwise and spanwise length scales compared to the neutral ABL. This indicates that the

3D turbulent motions also increase in size near the wall, possibly due to the vertical entrain-

ment of the mean kinetic energy flux in wind farms, which requires downdrafts or vertical

motions from the high-speed regions above the turbine rotor towards the wall [12, 50]. Note



that the higher locations in the boundary layer, e.g. at z = D and z = 8.75D, do not show

this feature, as can be seen from the corresponding premultiplied spectra plots.

In general, Figure 6b shows good trends of the linear dispersion, λy ∼ λx in the u spectra,

corresponding to the active wall-normal motions as well as the power law scaling, λy ∼ λ
1/3
x

in both u,w energy spectra and the u′w′ cospectra corresponding to the attached inactive

motions [51, 52]. However, it must be appreciated that the 1/3 law scaling, unlike the wall-

bounded turbulence [36, 49], has its contribution both from the low-speed streaks near the

wall, as well as from the spanwise modulation of the velocities due to the wind turbine wakes

as shown later in Equation (16). Similar near-wall scalings are observed in other cases (not

shown here).

Figures 6a, 6b show that a considerably long region of the −5/3 law (λ
2/3
x ) is present in the

1D spectra in the neutral ABL case at scales λx > D. These scales are adequately resolved

by the grid as evident from the details of the grid resolution presented in Appendix A. At

scales lower than D, λx < D, the drop in spectra is noticeable which is explained by the fact

that, although the scales down to ∼ 0.6D are still resolved by the grid, see Appendix A, they

are also effected by the subgrid scale viscosity, since they correspond to the highest resolved

wavenumbers targeted by the subgrid scale dissipation. These scales are identified by gray

patches in Figures 6a, 6b, following Ref. [53]. It can also be observed, that in neutral ABL,

the decay rate of the spectrum at λx < D is different in the inner and outer layer owing

to decreasing eddy viscosity effects near the wall. The extent of the −5/3 law is smaller

in wind turbine simulations that in the neutral ABL. Since these deviations are observed

in the region of scales that are well resolved in both cases with and without wind turbines,

this fact provides a room for hypothesis that the observed effect might be caused by the

modulation of turbulence by wind turbines.

Figure 8 shows the spectral content of kx∆Φ̂p(λx), ky∆Φ̂p(λy), the one-dimensional pre-

multiplied spectral surrogates to the difference in MKE flux (∆Φp), which illustrates the

contribution of streamwise and spanwise length scales in the mean power generated by the

wind turbines. It must be noted that the spectra kη∆Φ̂p(λη) have been further multiplied by

A = sxsyD
2, which enables us to compare the mean power Pmean = ρmeanA of the turbines

in the wind farm, instead of the mean power density. Although it might be slightly obscured

in the premultiplied spectra plot of the Figure 8, where differences in smaller length scales

are artificially exaggerated by multiplying by higher values of kx, ky, the largest discrepan-



cies in the spectra and hence wind turbine power amongst different Cases I-III come from

the larger length scales λx, λy > 10D. It is clearly seen from the corresponding spectra

plots that are not premultipled by wavenumbers (not included here). We do admit that

larger length scales might also suffer from large uncertainties when it comes to their spectral

characteristics due to their larger coherence times and a potential lack of a sufficient num-

ber of uncorrelated samples. In a separate uncertainty analysis of the MKE flux difference

spectra at large length scales to the duration of the averaging time, it was concluded that

the statistical uncertainty is less than 0.01% with the current averaging of 50 flow through

times, both for the streamwise and the spanwise spectra. Additionally, we also observe the

(a) (b)

FIG. 8: One dimensional normalized premultiplied difference in the MKE flux spectra

kη∆Φ̂p(λη) (Equation (12)) between the top and bottom wake region, z = zh ±D/2. (a)

versus streamwise wavelength, η = x (b) versus spanwise wavelength, η = y. Solid black –

Case I; dashed black – Case IIa, dashed gray – Case IIb; solid gray – Case III. A = sxsyD
2.

Gray patch – resolved part of the spectra directly influenced by SGS viscosity.

presence of negative contribution of kx∆Φ̂p(λx), ky∆Φ̂p(λy) in cases I,IIa,IIb (corresponding

to the lower hub-height of zh = 0.1H, which is also equal to D) for streamwise and spanwise

length scales in the order of turbine rotor diameter D. This negative contribution corre-

sponds to the upward transfer of the MKE flux from the bottom to the top wake region,

that does not contribute to the turbine power. It might be hypothesized that the updrafts

in the small scales of motion are associated with the near-wall turbulence bursts that reach

wind turbines with relatively low hub-heights of zh = D. While the contribution to the flux

difference at smaller length scales λx, λy ∼ O(D), is negative for Cases I,IIa IIb, it is ob-



served that Case III corresponding to the higher hub-height of zh = 0.33H still contributes

to 15% of ∆Φ̂p(λx) and 20% of ∆Φ̂p(λy), in those scale ranges. Since wind turbines now are

three times higher (zh = 3D), the near-wall energetic motions do not reach the turbine rotor

region any longer. It is suspected that the contribution to the power by the intermediate

length scales ∼ D in Case III mainly comes from the incoherent yet energetic outer scales of

motion [52]. This can also be seen in the vertical spectra at z = zh +D/2 in Figure 9. The

vertical spectra manifests the potential turbulent vertical motions (“downdrafts”) due to

the entrainment of mean kinetic energy, and when compared to neutral ABL data provides

interesting revelations. At z = zh+D/2, the differences in the neutral ABL and WT spectra

(Cases I, IIa, IIb) occurs at λx > 10D, while for Case III, the discrepancies can be seen at

scales λx > D in the outer layer, all of which contribute to the turbine power.

FIG. 9: One-dimensional premultiplied vertical velocity spectra kxEww at z = zh +D/2 vs

normalized streamwise wavelength λx/D with and without wind turbines. Solid black –

Case I; dashed black – Case IIa, dashed gray – Case IIb; solid gray – Case III. Solid light

gray – neutral ABL, rotor region of I. Dashed light gray – neutral ABL, rotor region of III.

Gray patch – resolved part of the spectra directly influenced by SGS viscosity.

Peaks in the spectral flux difference kη∆Φ̂p(λη), η = x, y (Figure 8), are observed, cor-

responding to λx = msxD, m = 1, 2, · · · in the streamwise scaling and λy = nsyD, n =

1, 2, · · · in the spanwise scaling which are illustrative of the periodicity imposed by the re-

peated turbine arrangements in the farm. At length scales λx ∼ O(102D), the k
−1/2
x law of
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FIG. 10: One dimensional premultiplied MKE flux spectra kxΦ̂p versus normalized

streamwise wavelength (a) at the top wake region z = zh +D/2. (b) at the bottom wake

region z = zh −D/2. Solid black – Case I; dashed black – Case IIa, dashed gray – Case

IIb; solid gray – Case III.

attached eddies (λ
−1/2
x in the premultiplied spectra) can still be observed in all the cases.

This is primarily because of the fact that the −1/2 scaling law is also observed at similar

λx locations in both the top and bottom MKE flux, see Figure 10. Peaks corresponding to

wind turbine placement are also observed in both the top and bottom MKE flux.

Another interesting phenomenon observed is the difference in the spectra in the cases I,

IIa, IIb (different inter-turbine distances sx, sy), where the wind turbines have the same hub-

height zh, and hence potentially would have the access to similar large-scale structures in the

logarithmic layer [18, 19, 54]. The array-averaged turbine power (ρmeansxsyD
2) in Cases IIa,

IIb is slightly higher than in Case I (see Figure 5), due to a better wake recovery owing to

less number of turbines per unit area [6, 10]. Cases I, IIa and IIb demonstrate a completely

different dynamics at streamwise and spanwise length scales larger than D, below which the

SGS dissipation is dominant. For example, at higher sx × sy, Cases IIa, IIb compared to I

manifest higher magnitudes of updrafts at scales ∼ D and subsequently larger magnitudes

of MKE flux downdrafts at scales > 10D as well, which might be related to a diminished

effect of wake interference, otherwise inhibiting energetic near-wall updrafts and outer layer

downdrafts. It must be noted that, when integrated over all length scales, a relative surplus

in positive and negative contributions in Cases IIa, IIb partially cancels out, subsequently



providing comparable values of power in Cases I, IIa, IIb. The fact that the spectral content

of the MKE flux difference (Figure 8) is quite different at different length scales provides a

room for a hypothesis that the arrangements of wind turbines (sx, sy) actually modulate the

large scale organizations in the log layer. From the spectra of Cases I,IIa,IIb (Figures 8a, 8b),

it is thus clear that increasing sx allows the wind farm to take advantage of much larger

streamwise structures, since in Case IIa, contribution to mean power is the highest for length

scales > 10D. Increasing sy allows for wider structures (λy > λx) to contribute to the farm

power (Figure 8b), but streamwise horizontally anisotropic motions are more energetic than

their spanwise counterparts [19], thus the spectral power contribution (MKE flux difference)

in Case IIb at length scales λx < 10D (Figure 8a) is larger than in Case IIa.

The modulation of large scale structures can be further understood from the visualization

of the isosurfaces (Case I) of streamwise velocity at 65% and 95% of U∞ in Figure 11,

depicting the region z < zh + 0.75D. The iso-surface plot shows that the presence of wind

turbines generate the more energetic patches, u = 0.95U∞, propagating downstream, in

between the surfaces of u = 0.65U∞, which are not prominently seen in the neutral ABL

flow, without the turbines.

While the above discussion provides a qualitative visualization, a quantitative aspect of

the modulation of large-scales structures can be observed from the plots of integral length

scales, which demonstrate a measure of correlated large scales of motion. Figure 12a shows

the variation of integral length scales Luu with wall-normal distance, the definition of the

integral length scale used in the current study being given in Appendix C. Since the integral

length scales are bounded by 30D in all cases, which is less than half of the largest resolved

streamwise wavelength Lx = 20πD imposed by the domain length, one can conclude that the

computed integral length scales are not numerically influenced by the imposed periodicity

of the domain. It is interesting to observe that the integral scales in Cases I, IIa, IIb, III and

the neutral ABL without turbines are more or less similar in the outer layer but manifest

a marked difference in the inner layer and at hub-height. This also corroborates that the

modulation of the structures in wind farms are not only caused by the direct turbulence-

turbine interaction at hub-heights but also due to the “downdrafts” of the MKE flux as

also analyzed in Figure 8. The integral length scales in Figure 12a and the mean-squared

streamwise velocity fluctuations u′2/U2
∞ both indicate that peaks occur at the hub-height of

the turbines in the wind farm. Between Cases I, IIa and IIb, which are at the same hub-



height, the integral length scales in the bulk of the boundary layer grow in magnitude as sx/sy

is decreased. When Cases I and IIa are compared, which have the same sy but different sx,

the Case IIa with the smaller streamwise turbine separation manifests larger length scales,

since the streamwise wakes of the concurrent turbines effectively merge producing longer

structures, while they have more time to recover and mix before hitting the downstream

turbines in Case I. Similarly for a fixed sx, increasing sy from Case I to IIb allows the

correlated structures in the wakes to grow more with smaller spanwise interference. Case

III at a higher hub-height zh = 0.33H (outer layer) manifests a peak of a similar magnitude

at hub-height as Case I with the same sx, sy, showing a consistent trend in the influence

of the turbine separation distances on the peak integral length scales, irrespective of the

hub-height. While the vertical diffusion of length scales from the hub-height location might

seem smaller in Case III in Figure 12a, this is due to the logarithmic scaling of z axis and

is, in effect, similar between all the cases. Nonetheless, the overall dependence of Luu(z)

is markedly different in Case III than in other cases, showing significantly smaller length

scales in the inner layer, due to a reduced influence of the enhanced turbulence structures

at hub-height, that are now significantly further away, on the inner layer turbulence.

xy z

20π
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10πD

10D

(a)

xy z

20π
D

10πD

10D

(b)

FIG. 11: Modulation of large scale structures. Isosurface of normalized velocity magnitude
√
u2 + v2 + w2/U∞ for z ≤ zh + 0.75D. (a) Wind turbine array, Case I. (b) neutral ABL,

without wind turbines. Light gray patch – 0.65U∞, dark gray patch – 0.95U∞.

The discussions above are further corroborated by the cumulative spectral content of the

MKE flux difference, γx, γy, at streamwise and spanwise length scales, for different cases



(a) (b)

FIG. 12: Vertical variation of (a) Integral length scales Luu based on streamwise

fluctuations, (b) normalized mean-squared streamwise fluctuations u′2/U2
∞ (averaged over

xy planes), with and without the presence of wind turbines. Solid black – Case I; dashed

black – Case IIa; dashed gray – Case IIb; solid gray – Case III; light gray ◦ – neutral ABL,

without wind turbines. Dotted lines – hub heights, zh = 0.1H (Cases I, IIa, IIb),

zh = 0.33H (Case III). See Appendix C for the definition of Luu used in the current study.
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FIG. 13: Cumulative spectral content of the difference in MKE flux, γη(λη) (Equation (13))

at different (a) streamwise wavelengths, η = x, (b) spanwise wavelengths, η = y. Solid

black – Case I; dashed black – Case IIa; dashed gray – Case IIb; solid gray – Case III.

(see Figure 13). The large scale motions with scales greater than 10D contain > 80%,

even more so for streamwise motions, of the spectral flux difference, while scales smaller

than 10D contribute to less than 20% of the spectral flux difference among the resolved



scales 0.6D < λx < 60D, 0.5D < λy < 30D, see Appendix A for the discussion of the

resolved scales. The maximum discrepancies among Cases I-III for γx, γy occur at the large

length scales > 10D, while they are almost identical for smaller scales < 4D. Further, the

maximum discrepancies in the spectral content occur between Case III and the other cases

both for γx and γy, amounting to a difference of ∼ 20% in γy. As mentioned earlier, with

the statistical uncertainty in spectra of less than 0.01% over the chosen averaging time of 50

Te, the observed discrepancies are attributed to the physical flow features and not spectral

uncertainties. This indicates that the large scale structures, that are generated around the

hub-height as seen earlier, in Case III have higher energy content than in Cases I, IIa, IIb,

probably due to the fact that they reside in the outer layer where convective velocities are

higher. This can also be observed in Figure 8, where Case III has consistently higher values

of MKE flux difference at length scales λx, λy & 11D. A summary of the dynamics of

different length scales in our simulated wind farms is provided in Table II. These results

are observed to be in line with the findings of the large-scale motions [19] of wall bounded

turbulence, or the large roller-mode structures in POD of infinite wind farms [30].

Length Scales (λx,y) Dynamics

≥ 10D
Major contribution (> 80%) to positive

Pmean ∼ sxsyD2∆Φp

∼ D

Small positive or negative contribution to

Pmean ∼ sxsyD2∆Φp,

depending on hub-height zh

< D Influenced/dissipated by subgrid scale viscosity

TABLE II: Summary of the dynamics of important length scales in wind farms resolved by

LES simulations for different Cases I-III.

The two dimensional premultiplied spectral difference, kxky∆Φ̂p(λx, λy) in Figures 14a–

14d corroborate the discussions above made with the 1D spectra, but additionally, also



contain the new information about the scaling laws and anisotropy of the eddies responsible

for the MKE flux. The streamwise horizontally anisotropic (λx � λy) eddies responsible

for the positive contribution of the spectra show a power law scaling of the form λy ∼ λ
1/3
x .

Cases manifesting the negative contribution of spectra (updraft), e.g., I, IIa demonstrate

signatures of power law scaling λy ∼ λ
1/3
x , and IIb shows λy ∼ λ

1/5
x which is quite different

than the 1/3 power law dynamics. This hints towards the fact that for Case IIb, while there

is an evidence of wider structures for the downdrafts, thinner intermediate scales might be

responsible for the updrafts compared to cases I,IIa. Also illustrative from the figures is

the fact that the eddies responsible for the negative contribution of the spectra manifest a

greater degree of horizontal anisotropy (λx > λy) than for the eddies accountable for the

positive contribution.

The 1/3 power law in the 2D spectra of the MKE flux difference (Figures 14a–14d) for

different cases is expectedly also present in the spectra of the MKE flux (Figure 15), and

also in the 2D u,w, uw spectra as shown in Figure 6b for the different turbine layouts in

I-III. This justifies that the 1/3 power law is a manifestation of coherent interactions in the

flow field, which is invariant of the turbine layout. A scaling analysis is also present below,

to justify the power law.

The width of the turbine wake, δy, grows in the streamwise direction, in accordance with

the turbulent mixing laws in the wake region, zh − D/2 < z < zh + D/2. Assuming the

width and the height of the wakes are the same for circular turbine wakes, the dispersion

relation of the wake width in a background turbulence is

δy ∼ (νwte)
1/2, (15)

where νw can be thought of as a wake eddy viscosity corresponding to the wake mixing [9],

and te is the lifetime of the eddies in the wake region. The streamwise convection of wakes

occurs mainly as a shear layer, with the streamwise wavelengths λx ∼ Sδyte, where S is the

velocity gradient scale in the mixing length region. As shown in Figure 16, the low velocity

wake regions at hub-height location z = zh = 0.1H amidst the high velocity atmospheric

turbulence impose a shear scale S due to the spanwise modulation of the streamwise flow

similar to the near wall streaks.

Consequently, substituting eddy lifetime te ∼ λx/(Sδy), in the turbulent dispersion
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FIG. 14: 2D premultiplied spectra of the difference in MKE flux, kxky∆Φ̂p(λx, λy)/U
3
∞,

versus normalized streamwise and spanwise wavelengths. (a) Case I (b) Case IIa (c) Case

IIb (d) Case III. Solid gray – positive contours, dashed gray – negative contours. Chain

dotted gray – λy ∼ λ
1/3
x , chain dotted black – λy ∼ λ

1/2
x . Gray dotted – λy ∼ λ

1/5
x . Contour

levels: positive – 10 levels, from 10-100% of maximum; negative – 10 levels from 10-100%

of minimum.

relation δy ∼ (νwte)
1/2 one can obtain an equation below in a non-dimensional form,

δy/D = β(λx/D)1/3, (16)

with spanwise length scales λy ∼ O(δy) giving λy/D = β(λx/D)1/3. A short scaling analysis

reveals that the wake eddy viscosity νw ∼ UcD (at high Re, the lateral and normal expansion

of the wake is insignificant), with the velocity scale, Uc ∼ 1/2(〈u〉|zh+D/2 + 〈u〉|zh−D/2). The

shear scale S ∼ ∆U/D where ∆U = (〈u〉|zh+D/2 − 〈u〉|zh−D/2). Subsequently, this gives
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FIG. 15: 2D premultiplied spectra of MKE flux for baseline case I at locations

z = zh±D/2. Solid – z = zh−D/2, Dashed – z = zh +D/2. Black – 25% of the maximum

contour. Gray – 12.5% of the maximum contour. Chain dotted black line – λy ∼ λ
1/3
x

FIG. 16: Snapshot of normalized velocity magnitude
√
u2 + v2 + w2/U∞ contour for Case

I, in xy plane at hub-height location z = zh, taken at 15 flow-through times Te after

obtaining statistical stationarity.

β = (Uc/∆U)1/3, with β ≈ 10 for cases I,IIa,IIb and β ≈ 80 for case III, as computed from

the mean statistics of our simulations. This illustrates that the coefficient β of the scaling

law maintains the same order of magnitude for all the cases, but is conspicuously affected

by the hub-height zh of the wind farm.



IV. CONCLUSION AND FUTURE WORK

In this work we study the large scale structures involved in the power generation of

large wind farms with different geometric roughness z0,hi (different turbine layout) in the

asymptotic limit using Fourier analysis. In particular, we focus on the parametric study of

increasing wind farm power by increasing the geometric roughness, from the perspective of

the dynamics of the length scales in the farm. By investigating the spectra of the mean ki-

netic energy flux difference at the top and bottom wake region over the global computational

domain, we observe that large streamwise anisotropic eddies of length scale > 10D (D is the

turbine rotor diameter) that contain over 80% of the flux spectral content are responsible

for the power generation in large wind farms. Rather different dynamics are observed at

length scales ∼ O(D) for the different cases with parametric variation in sx, sy, zh. For farms

with lower hub-height (zh), scales ∼ O(D) are also responsible for the negative contribution

or the upward vertical entrainment of the MKE flux, that does not contribute to the wind

turbine power.

At larger scales λx > 30D, the near wall k
−1/2
x scaling corresponding to the attached

eddies were observed in the MKE flux as well as the flux-difference spectra. We also notice

a regime of robust 1/3 scaling law (λy ∼ λ
1/3
x ) in the 2D premultiplied MKE flux differ-

ence spectra, similar to the energy and co-spectra, arising due to the background turbulent

dispersion of the wake shear layer in the wind farm. Additionally, the two dimensional

spectra of the MKE flux difference also elucidate on the horizontal anisotropy of the eddies

that make significant contribution to the power generation. In general, from the spectra

of u, w energy, as well as the integral length scales it is apparent that the enlargement of

eddy sizes near the wall is caused by the downdraft of vertical turbulent motions due to the

mechanism of MKE flux entrainment. As a final remark, we also want to highlight about

the modulation of large scale structures in the wind farms, where eddies containing high

amount of turbulent kinetic energy were observed near and around the hub-height location

of wind farms (such non-uniform distribution of energy-containing eddies across the bound-

ary layer was not seen in the case without the wind farms). These modulations of large

scale structures were also quantitatively estimated by computing the vertical variation of

the integral length scales showing peaks in wind farm layouts when compared to neutral

ABL flows without wind turbines. These effects can be potentially explored for a possibility



of efficient, symbiotic, design of wind farms where smaller turbines are placed in between the

larger ones in a vertically staggered orientation, so that an “optimized” energy harvesting

can be achieved [55].
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Appendix A DETAILS OF NUMERICAL GRIDS AND RESOLUTION

Numerical grids and grid refinement

This section presents the details of the numerical grids, their structure and the resolution,

used for the simulations discussed in the current work. Tables III, IV show a compari-

son of the grids used in the simulations of the neutral atmospheric boundary layer and

wind farms, respectively, with that of the previous literature. While most of the previously

reported numerical studies relevant to the subject used a uniform grid spacing in the con-

text of Fourier spectral finite difference or staggered finite difference schemes, the current

spectral-element based method (SEM) uses Gauss-Lobato-Legendre (GLL) quadrature point

distribution which is non-uniform within the element and clusters the points towards the

element boundaries. Thus, while comparing our grids to the previous studies, ∆x, ∆y, ∆z

for the SEM is reported in the mean sense, by dividing spectral element size ∆e
x,y,z in the

x, y, z direction (which is invariant in each direction in the present ABL simulations) by

the order of the Legendre polynomial p. While the grid resolution of previous neutral ABL

simulations displays a considerable amount of scatter, our spectral element grid parame-

ters appear to be consistently within the range of this scatter. Furthermore, our previous

work [36] has revealed that our spectral element grid sizes were within the requirements of

High-Accuracy-Zone of Brasseur and Wei [25], as was manifested by the proper logarith-

mic trends of the mean velocity profile and correct spectral scaling laws in ABL for our

best-performing subgrid-scale model [36] utilized in the current work.

Along the similar lines, Table IV manifests the grid resolution of periodic wind farms



from the previous literature as compared against the spectral element simulations. The

current wind turbine array boundary layer (WTABL) grids for all the cases were obtained by

refinement of the base spectral-element ABL grid discussed above. It was thus ensured that

the WTABL grids are first of all adequately resolved for correctly capturing the atmospheric

boundary layer trends with LES. While most of the previous periodic wind farm simulations

relied on the actuator disc models for the turbines and had uniform grid spacing, our spectral

element simulations with the actuator line model for wind turbine blades manifests grid non-

uniformity. In addition to a non-uniform clustering of GLL quadrature points within each

element discussed previously, the actuator line model also requires non-uniform size of the

elements in order to properly capture the helical vortices propagating downstream of the

turbines [31, 38]. The grid parameters ∆x, ∆y, ∆z in Table IV for the SEM cases are

thus defined in the global mean sense and represent the ratio of the domain size in a given

direction to the total number of collocation points in this direction, ∆η = Lη/(N
e
η p) .
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FIG. 17: Schematic of grid refinements of Case I compared to neutral ABL in the region

near the WT rotors in (a) streamwise (b) spanwise and (c) vertical direction. Location of a

hypothetical turbine (in gray) shown in the neutral ABL grid. D = 0.1H is the rotor

diameter. Thick dashed black line – location of the bottom rough wall surface.

Resolved scales in LES simulation

The refinement of the ABL grid to correspond to the periodic wind farm cases was done

according to the rules described below. A schematic of the refinement of grids near the wind

turbine rotors is also provided in Figure 17. The description below follows the example of grid

for Case I, while the grids for the other Cases IIa,IIb and III are designed based on a similar

logic. It must be noted that even though the neutral ABL grid has the elements of a uniform

size in x, y, z directions, the location of the wind turbines is not necessarily at the element

boundaries. Thus in Figure 17, the streamwise and spanwise element refinements shown

are representative of all the turbine rotors in the 4th row and the 1st column, respectively.

Even though the elements stretched in the streamwise and spanwise direction during the



refinements of WT grids for differently located turbines may be slightly different in size, the

essential idea behind the refinement remains the same as illustrated in Figure 17a, 17b. The

wall-normal refinement shown in Figure 17c holds for all the turbine rotors.

(a) A baseline ABL grid documented in Tables I, III is used, which utilizes 30 × 20 × 24

elements with a polynomial order p = 7.

(b) Horizontal (streamwise) refinement of grids near WT rotor: 3 elements in the streamwise

direction are added downstream of each of the 8 turbines, while subsequently stretching

only the neighbouring elements as required. Total number of streamwise elements in

the WT array is 30 + 8× 3 = 54

(c) Horizontal (spanwise) refinement of grids near WT rotor: 6 elements in the spanwise

direction are added in the rotor region that uniformly span the rotor-swept area of

diameter D for 6 turbines in each of 6 rows, while subsequently stretching only the

neighbouring elements as required. Total number of spanwise elements in the WT array

is 20 + 6× 6 = 56

(d) Vertical (wall-normal) refinement of grids near WT rotor: 8 elements in the vertical

direction are added in the rotor region that uniformly span the rotor-swept area of

diameter D for 6 turbines in each of 6 rows. While grids in the near wall region are

thus substantially refined, grids in the outer layer region are stretched proportionately

(while still being in the High-Accuracy-Zone [25] of vertical grids) to maintain the same

number of spectral elements (N e
z = 24) in the vertical direction.

Table V shows the minimum and maximum grid resolution of the current spectral element

wind farm simulations, averaged over the GLL points within the element. This demonstrates

that spectral elements of size that are an order of magnitude smaller are present near the

“actuator lines” than in the region far away from the turbines. Note that the minimum

and maximum element sizes do not depend on a case, since the element refinement and

stretching is local to the turbines and does not depend on the number of turbines.

Tables IV, V illustrate that the grid sizes chosen for the current wind farm spectral

element simulations are on par with the finer resolution simulations from the previous lit-

erature. Furthermore, the current exponentially accurate spectral element methodology

provides non-dissipative and low-dispersive numerical schemes beneficial for Large Eddy



Case Geometry Nxyz ∆x/H ∆y/H ∆z/H ∆x/∆z ∆y/∆z ∆x/∆y

Sullivan et al.(1994)a [56] 2.6H × 2.6H ×H 192× 192× 75 0.014 0.014 0.013 1.02 1.02 1.0

Sullivan et al. (1994)b [56] 3H × 3H ×H 96× 96× 96 0.031 0.031 0.013 2.3 2.3 1.0

Porte-Agel et al. (2000) [23] 2πH × 2πH ×H 54× 54× 54 0.116 0.116 0.019 6.5 6.5 1.0

Brasseur et al. (2010) [25] 3H × 3H ×H 360× 360× 128 0.008 0.008 0.008 1 1 1.0

Xie et al. (2013) [43] 2H × 2H ×H 96× 96× 96 0.021 0.021 0.01 2 2 1

Meyers et al. (2013) [26] 2πH × πH ×H 128× 128× 96 0.049 0.025 0.01 4.7 2.4 2.1

Verhulst et al. (2014) [30] πH × πH ×H 128× 128× 61 0.025 0.025 0.016 1.5 1.5 1

Stevens et al. (2015) [53] 4πH × 2πH ×H 1024× 512× 256 0.012 0.012 0.004 3 3 1

Current ABL (PoF, 2017) [36] 2πH × πH ×H 211× 141× 169 0.029 0.022 0.006 4.8 3.7 1.3

TABLE III: Comparison of various resolution parameters of spectral element neutral ABL

simulations [36] with the previous literature. Sullivan et al.(1994)a – weakly convective

ABL, Sullivan et al.(1994)b – neutral ABL.

Case Geometry Nxyz ∆x/H ∆y/H ∆z/H ∆x/∆z ∆y/∆z ∆x/∆y

Calaf et al. (2010) [9] 2πH × πH ×H 128× 192× 61 0.049 0.016 0.016 2.9 2.9 3

Verhulst et al. (2014) [30] 2πH × πH ×H 256× 128× 61 0.025 0.025 0.016 1.5 1.5 1

Stevens et al. (2015) [8] 6πH × πH/2×H 1024× 128× 256 0.019 0.012 0.004 4.7 3 1.6

I 2πH × πH ×H 379× 393× 169 0.016 0.008 0.006 2.6 1.3 2.0

IIa 2πH × πH ×H 316× 393× 169 0.019 0.008 0.006 3.2 1.3 2.3

IIb 2πH × πH ×H 379× 309× 169 0.016 0.01 0.006 2.6 1.6 1.3

III 2πH × πH ×H 379× 393× 169 0.016 0.008 0.006 2.6 1.3 2.0

TABLE IV: Comparison of the various resolution parameters of current periodic wind farm

simulations (Cases I, IIa, IIb, III) with the previous literature. Grid parameters of I, IIa,

IIb, III are defined in the global mean sense. All simulations in wind farms are performed

in neutral ABL framework.

Simulations [36], which conforms to the ideas of utilizing highly-accurate numerical schemes

for a proper description of turbulent interactions in WT arrays [9]. The smallest resolved

length scale of the neutral ABL simulations can be defined using the Nyquist criterion as

λη,resABL = 2 ∆e
η/p = 2 ∆η, (17)

where ∆e
η is the element size in the η direction, p is the order of the polynomial approx-



Case ∆x/H
∣∣∣
min

∆x/H
∣∣∣
max

∆y/H
∣∣∣
min

∆y/H
∣∣∣
max

∆z/H
∣∣∣
min

∆z/H
∣∣∣
max

I 0.003 0.037 0.0024 0.023 0.0014 0.013

IIa 0.003 0.037 0.0024 0.023 0.0014 0.013

IIb 0.003 0.037 0.0024 0.023 0.0014 0.013

III 0.003 0.037 0.0024 0.023 0.0014 0.013

TABLE V: Maximum and minimum grid sizes for current wind farm simulations – Cases I,

IIa, IIb, III.

imation, and ∆η is the “mean” grid size presented in Table III. This definition aims to

reconcile the high-order approximation defined on spatially-varying GLL points, and the

classical Fourier approximation of the same resolution. It is thus seen from Table III

that the smallest resolved length scale corresponds to λx,resABL = 0.058H = 0.58D, and

λy,resABL = 0.044H = 0.44D.

For WTABL grids, the element resolution is nonuniform, and, while the largest element

sizes are on par with these of the ABL grid, the resolution near the wind turbine rotors is

about ten times finer, which means that the length scales that are on the order of magnitude

smaller, are captured by the grid around the location of wind turbines. However, during

Fourier analysis, the scale contribution is defined in a sense of a global averaging, and

the spatial information is lost. In this sense, the contribution to the Fourier spectra at

a particular wavenumber comes from the spatial regions where this wavenumber might be

resolved, and where it might be unresolved. As a result, different physics captured in

different regions of the grid is manifested as a combined effect in the spectra at wavelengths

λx,y < λη,resABL. Therefore, only the length scales that are adequately resolved everywhere

in the computational domain can be considered reliable in the context of Fourier spectral

analysis, and we thus restrict our analysis to the length scales λx > λx,resABL ∼ 0.6D,

and λy > λy,resABL ∼ 0.5D in this paper. Multiresolution features of the grid and the

ability to capture different scales of motion at different spatial locations can potentially be

explored with multiresoluton analysis techniques such as wavelets, and is left for the future

work. Practically, the spectral analysis in the current study is accomplished by spectrally

interpolating the results of the LES simulations onto a uniform grid for Fourier analysis,

with 1024×512 gridpoints, which gives an effective Fourier grid resolution of ∆F
η = 0.006H,



or wavelength resolution λFη = 0.012H, that does not interfere with the resolved length

scales of λ > 0.05H as defined above. Although the scales below λ < D are resolved by the

grid, they are also affected by the SGS dissipation, as discussed in Section III B.

Appendix B TWO POINT CORRELATIONS AND SPECTRA

Two point correlations

Note that turbulence in wind turbine array boundary layers is vertically and horizontally

inhomogeneous. For a given height z, we define a two point correlation between the points

xr = (x, y), xr + r = (x+ ∆x, y + ∆y) through an averaging in a horizontal plane

Ru′iu
′
j
(r, t; z) =

1

LxLy

x

A

〈u′i(xr, t; z)u′j(xr + r, t; z)〉d2xr. (18)

Here u′i refers to the turbulent velocity fluctuations in the ith direction, A ∈ [−Lx/2, Lx/2]×

[−Ly/2, Ly/2] is the rectangular patch corresponding to the xy plane at each z location, 〈〉

denotes the ensemble average. Due to invoking of the horizontal average, the correlation

Ru′iu
′
j
(r, t; z) is only a function of the point separation r, and not the points themselves,

xr,xr + r.

For homogeneous turbulence, we can impose an equivalence between the spatial average

and the ensemble average, thus recovering the classical definition of two point correlation,

Ru′iu
′
j
(r, t; z) = 〈u′i(x, t; z)u′j(x+r, t; z)〉 [34]. In inhomogeneous turbulence, we need to per-

form a spatial averaging explicitly to recover that. Furthermore, for statistically stationary

flows, the ensemble average 〈〉 can be replaced with the temporal average (due to ergod-

icity), as is done in the subsequent sections owing to a statistical stationarity of both ABL

and WTABL flows with the temporally-invariant mean wind, as considered in the current

paper. This makes the two point correlation in (18) time-invariant, as Ru′iu
′
j
(r; z).

Definition of spectra

The energy spectra for the inhomogeneous WTABL arrays can be defined from the Fourier

transform of the two-point correlation as follows,

Êu′iu′j(kr) =
1

2π

x

r∈R

Ru′iu
′
j
(r; z)e−ikr ·rd2r, (19)

where kr denotes the two dimensional wavenumber kr = (kx, ky). Thus, the spectral con-

tent of Ru′u′(r; z), Rw′w′(r; z), corresponds to the streamwise and wall normal energy spec-

tra, while that for Ru′w′(r; z) is representative of the spectra of the kinematic shear stress



(cospetra) which is required for the calculation of the MKE flux spectra in Equation (9).

The energy spectra as well as the kinematic shear stress cospectra are numerically evaluated

as

Êu′iu′j(kr) = ûi(kr, t; z)û∗j(kr, t; z). (20)

This is an outcome of the convolution theorem, illustrating that transform of the convolution

of two variables in the physical space is equal to the product or their individual transforms

in the spectral space [34].

Appendix C INTEGRAL LENGTH SCALES

The integral length scales can be calculated from the correlation coefficients

ρu′iu′j(r; z) =
Ru′iu

′
j
(r; z)

[Ru′iu
′
i
(0, z)]1/2[Ru′ju

′
j
(0; z)]1/2

(21)

constructed from the two-point correlations discussed in the previous section. In the current

paper, for the neutral ABL and the WTABL arrays, we consider the integral length scales

calculated from the correlations of the streamwise velocity fluctuations, ρu′u′(r; z), which

play a dominant role in the turbulence statistics.

Figures 18, 19 reflect the 2D correlation coefficient ρu′u′(r; z) for the wind farm cases

I, IIa, IIb, III and the neutral ABL (without wind turbines) at two different wall-normal

locations. While at the outer layer, z = 8.75D (Figure 19) all the wind farm layouts and

neutral ABL display similar features of the gradual decay of the correlation coefficient ρu′u′

with increasing separations ∆x,∆y, the correlation coefficient at hub-height locations of

wind farms (z = D for Cases I, IIa, IIb; z = 3.3D for Case III) and the neutral ABL at

z = D, manifests remarkably different behaviour. At z = D, the correlation coefficient

of neutral ABL illustrates a single peak, while ρu′u′ at the hub-heights of different wind

farm layouts manifests multiple peaks in line with the matrix arrangement of the wind

turbines. It must be noted that similar peaks in the spectral picture were also observable in

Figures 6a, 8,and 10.

Integral length scales in the current paper plotted in Figure 12 are defined as

Luu(z) =

∫
rx∈R

ρu′u′(∆x, 0; z)d∆x (22)



by utilizing the correlation coefficient ρu′u′(∆x, 0; z) between the two points separated only

at the streamwise direction, at the same spanwise location y. As can be seen from Fig-

ures 18, 19, this definition of length scales, from choosing two points xr = (x, y),xr + r =

(x + ∆x, y) at a fixed spanwise location in the construction of the two point correlation in

Equation (18), and subsequently the correlation coefficient, while averaging in the spanwise

direction, yields the upper bound on length scales owing to highly correlated motions in the

presence of streamwise dynamics. The contours of ρu′u′ further help us understand the rea-

son for the modulation of integral length scales in the wind farms compared to the neutral

ABL (without turbines).
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FIG. 18: Streamwise 2D correlation coefficient ρu′u′(r; z = ξ) for flows with and without

wind turbines. Figures (a)–(e) correspond to the Cases neutral ABL at ξ = D and

I,IIa,IIb,III at ξ = zh (hub-height) respectively.
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FIG. 19: Streamwise 2D correlation coefficient ρu′u′(r; z = 8.75D) for flows with and

without wind turbines. Figures (a)–(e) correspond to the Cases neutral ABL, I,IIa,IIb, and

III, respectively.
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