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Here we consider the problem of shock propagation through a layer of spherical particles. A point particle
force model is used to capture the shock-induced aerodynamic force acting upon the particles. The discrete
element method (DEM) code LIGGGHTS is used to implement the shock-induced force as well as to capture
the collisional forces within the system. A volume fraction dependent drag correction is applied using Voronoi
tessellation to calculate the volume of fluid around each individual particle. A statistically stationary frame is
chosen so that spatial and temporal averaging can be performed to calculate ensemble-averaged macroscopic
quantities, such as the granular temperature. A parametric study is carried out by varying the coefficient of
restitution for three sets of multiphase shock conditions. A self-similar profile is obtained for the granular
temperature that is dependent on the coefficient of restitution. A traveling wave structure is observed in the
particle concentration downstream of the shock and this instability arises from the volume fraction dependent
drag force. The intensity of the traveling wave increases significantly as inelastic collisions are introduced.
Downstream of the shock, the variance in Voronoi volume fraction is shown to have a strong dependence upon
the coefficient of restitution, indicating clustering of particles induced by collisional dissipation. Statistics of
the Voronoi volume are computed upstream and downstream of the shock and compared to theoretical results
for randomly distributed hard-spheres.



I. INTRODUCTION

Shock propagation through a particle-laden medium is an important process that has many technological and en-
vironmental applications. Explosive volcanic eruption and supernova are spectacular examples of shock propagation
through a multiphase medium in nature. Multiphase shock propagation is fundamental to understanding, characteriz-
ing, and predicting the effect of heterogeneous explosives. Modern heterogeneous explosives include metal particles
within the explosive material. Upon detonation, the explosive material is converted into a hot dense gas which rapidly
expands. Particles packed within the explosive are compressed and accelerated by the passing shock wave, and begin
to radially disperse. Other engineering applications include shock-induced dispersion of particles and droplets, as
well as accidental explosions in mines and grain silos. In all these examples it is critically important to understand
the dynamics of the particles within the early period of interaction with the shock, since this interaction between the
particles and the surrounding gas has the potential to nucleate instabilities, which in turn affect the long-time evolution
of the system.

A multiphase flow model of shock propagation over a particle-laden gas should account for the two-way coupling
between the gas and the particles. The forward coupling accounts for the influence of the shock and the post-shock
gas flow on the particles. The dispersed particles generate reflected waves that travel upstream into the gas and forms
a transmitted shock that travels through the particle-laden gas. The transmitted shock strength deviates from that of
the incident shock depending on the strength of the reverse coupling of particles on the flow. At very dilute parti-
cle volume fractions, a two-way coupled description is sufficient since particle-particle interactions are negligible.
However, as particle volume fraction increases, the effect of indirect interactions between the particles, mediated by
the surrounding gas, becomes important and must be taken into account through drag force modification [10]. With
further increases in particle volume fraction, the multiphase flow enters the four-way coupled regime [14], whereby
collisions between the particles become important to the overall momentum and energy balance. This regime can
be termed the collisional regime. As the particle volume fraction further increases and approaches the close-packing
limit, the physics of shock propagation through the particle-laden medium is significantly controlled by the enduring
contacts between the particles (compaction regime). In this regime, the momentum balance is dominantly controlled
by the contact forces between the particles. This work focuses on the collisional regime where the particle-particle
interactions play an important role.

While applications often require descriptions of shock propagation in multi-phase materials in complex geometries,
understanding multi-phase shock propagation even in simple planar geometry remains a formidable problem and is
still under active study. Rogue et al. [35] performed experiments to investigate the interaction of a strong planar shock
wave with a horizontal bed of particles within a vertical shock-tube. Recent work by Wagner et al. [48] considered a
horizontal shock-tube where a vertical curtain of particles is subjected to a strong planar shock wave. These shock tube
experiments have provided valuable information about the macroscopic effect (behavior) of the propagating shock on
the particle phase (e.g. downstream evolution of the location of the head and tail of the particle curtain). However, the
detailed physics occurring at the microscale remains inaccessible in these experiments due to the inability to measure
the effect of particle-particle interactions. Such interactions come about through direct collisional interactions and
through indirect interactions such as neighbor-induced drag force modulation [2, 4, 6, 45, 46, 50]. Understanding
these particle-particle interactions is crucial to developing models for shock-particle interaction at intermediate parti-
cle volume fractions, and this motivates our current study. Goldshtein et al. [20] studied the problem of planar shock
propagation through a single-phase granular medium driven by a piston rapidly moving into a quiescent medium.
Using granular kinetic theory, the Eulerian hydrodynamic equations were solved to obtain a closed-form self-similar
solution for the granular medium within a fluidized region ahead of the piston.

We consider a similar problem, where a quiescent particle-laden medium is subjected to an incoming planar shock
wave. The Euler-Lagrange approach is used to investigate the shock propagation over a particle-laden medium at the
microscale, which has an initially statistically uniform distribution of spherical particles. This simplified set up is
one-dimensional, and is inhomogeneous only in the direction of shock propagation and is statistically homogeneous
in the transverse directions. Furthermore, in the shock-attached frame of reference the problem is stationary, thus
permitting averaging over time as well as over the homogeneous transverse directions. The gas phase is treated as
a continuum and averaged within a reference volume element, while discrete particles are tracked in the Lagrangian
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frame. A point particle model is used for computing the time-dependent force on each particle as the shock propagates
over it [24, 25, 32, 33]. The collective effect neighbors have on the drag force acting upon each particle is taken into
account in terms of the local Voronoi volume fraction dependent drag [49]. A soft-sphere discrete element method
(DEM) is used to simulate particle-particle collisions with a spring dash-pot force model. Through DEM simulations,
we capture the collision-induced internal stresses within the particle phase.

DEM simulations have been extensively applied in the study of 1-D stationary granular shear flows [9, 21, 47],
and have been very valuable in understanding the collisional physics and in the calibration of kinetic theory based
closure models [9, 18, 21, 47]. Study of the planar shock propagation over a particle bed complements the granular
shear flow problem in several ways. The shear flow problem can be made both homogeneous and stationary with
periodic boundary conditions along all three directions. If the granular shear flow is confined between two parallel
plates, then the problem is inhomogeneous in the wall normal direction. However, the region of inhomogeneity is
typically limited to thin layers close to the bounding plates; the majority of the domain away from the bounding
plates can be considered homogeneous. In comparison, the problem of planar shock propagation over a particle bed is
strongly inhomogeneous in the streamwise direction. This complicates the analysis since the statistical results are now
dependent on the inhomogeneous direction. The granular shear flow is driven by gravity and the effect of surrounding
fluid is often ignored. In our current study, the particles are driven by the shock and the post-shock gas flow. This
introduces the need for a point particle model for the force exerted by the gas on the particles.

The macroscale behavior of shock propagation through a particle-laden fluid has been addressed by Rudinger [37, 38].
He defined the following three regions: (i) Immediately downstream of the multiphase shock is the frozen region
where the particle properties are the same as those of the gas-particle equilibrium mixture upstream of the shock.
(ii) Sufficiently downstream of the shock the gas-particle mixture is in equilibrium corresponding to the terminal
post-shock condition. (iii) The relaxation region where the mixture is not in equilibrium, since both the particle and
gas phases are evolving from their pre- to post-shock states. Rudinger [37, 38] accounted for the two-way coupling
between the particles and the gas at the macroscale, and provided shock relations for the downstream equilibrium
regime. The particles’ influence on the shock can be separated into a macroscale influence and a microscale influence.
At the macroscale, since the flow has been averaged over the reference volume, the shock as well as the post-shock
flow will remain planar.

At the microscale, the shock propagation around the randomly distributed particles becomes quite complicated due to
multitudes of wave reflections and diffractions. The point particle force model to be employed in the present work is
based on undisturbed flow approaching the particle. Therefore it is sufficient to know the details of the propagating
shock at the macroscale in order to evaluate the forces on the individual particles. Information on the influence of the
neighboring particles is taken into account through the Voronoi volume of each particle. This approach is consistent
with previous implementations of multiphase DEM [11]. We further simplify the problem by assuming that the gas
properties transition from the pre- to post-shock equilibrium states entirely across the shock. Thus, only the particle
properties are allowed to evolve in the relaxation region.

The simplifications allow us to focus on the process by which a random distribution of particles, in equilibrium
before the arrival of the shock, approaches its new post-shock equilibrium state. We consider the finite volume frac-
tion regime where both the gas-mediated particle-particle interaction and direct collision between the particles are
important. It is known in the fluidized-bed literature that volume fraction dependence of drag can lead to instabilities
in the particle distribution [13, 30]. Such instabilities are observed in the present shock driven particle-laden flows as
well, resulting in clustering of particles in the post-shock regime. The structure and tendencies of the clustering are
investigated, as well as the effect of collisional parameters on the clustering. Voronoi volume statistics [17, 29, 39] are
used to quantify the nature and amount of particle clustering downstream of the shock and results are compared with
an analytical 3Γ distribution [41].

The rest of the paper is arranged as follows. In Section II we present the details of the discrete element simula-
tions, particle collision model, and the point particle force model. Force fluctuations are introduced using a Voronoi
tessellation based volume fraction in conjunction with an empirical drag correction. Details of multiphase shock rela-
tions are presented. Data processing methods are presented in Section III. Section IV discusses the results from three
different cases with varied multiphase shock properties. For each case, a parametric study is carried out by varying the
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coefficient of restitution. A traveling wave-like structure is observed in the particle concentration downstream of the
shock, which is studied by investigating the Voronoi volume fraction statistics both upstream and downstream of the
shock, and comparing the results to Voronoi statistics for randomly distributed particles. The coefficient of restitution
is shown to have a significant impact upon the Voronoi volume statistics downstream of the shock, indicating that
inelastic collisions lead to a clustered micro-structure within the particle bed. The granular temperature as calculated
directly from the DEM results are presented and discussed. Section V provides a summary of the results and discusses
future work.

II. NUMERICAL APPROACH

Our interest is to study the collisional dynamics that arises from the propagation of a planar shock wave through
a bed of particles. Therefore the volume fraction of particles within the bed is chosen to be at intermediate values
ranging from about φ = 0.05 to φ = 0.55, so that particle-particle collisions are frequent and important in the overall
momentum balance. The discrete element method code LIGGGHTS has been modified to implement the numerical
method presented below, and to carry out the simulations.

A. Problem Setup

We consider a computational domain that is stationary in a shock-attached reference frame where the x-direction is
the direction of shock propagation (see Figure 1). In the lab reference frame, the pre-shock gas and particle distribu-
tions are fixed. In the shock-attached frame, the pre-shock gas and particles approach the shock at the shock velocity.
As the gas passes through the shock, it rapidly slows and is compressed to its post-shock state. The particles first
go through a rapid deceleration due to the inviscid forces that act on the acoustic time scale, followed by a slower
deceleration due to the viscous forces, and finally approach the post-shock gas velocity. Correspondingly, the particle
volume fraction increases substantially from the initial value after passing through the shock. In the shock-attached
frame, the pre-shock state is taken as upstream and extends in the negative x-direction, and the post-shock state is
taken as downstream and extends in the positive x-direction.

FIG. 1: Representative simulation setup in the shock-attached frame of reference: Randomly packed particles enter
on the left hand side at the laboratory shock speed. At x = 0 they encounter a planar shock and experience a shock
modulated force causing collisions.

For the simulation cases discussed in this paper, we use two different domain sizes. Dimensions of the compu-
tational domain scale to accommodate the inertial relaxation of the particles towards the equilibrium state. In other
words, the length downstream of shock is chosen such that the particles will decelerate and attain the post-shock gas
velocity before exiting the domain. This relaxation length depends on both the particle size and the particle-to-gas
density ratio. For Case 1, we extend the domain 150d downstream of the shock, where d denotes the particle diameter.
Cases 2 and 3 extend 500d downstream of the shock. For all three cases, the computational domain extends 50d
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upstream of the shock, with a stationary planar shock located at x = 0. In the y and z-directions, the computational
domain extends from−15d to +15d. Periodic boundary conditions are employed along the y and z-directions. There-
fore, the domain size along these directions is chosen to be larger than the correlation lengths, but small enough that the
number of particles to be simulated is manageable. Thus, our simulation domain has a total size of 200d× 30d× 30d
for Case 1, and a total size of 550d× 30d× 30d for Cases 2 and 3.

Inflow and outflow conditions in the streamwise direction are used at the −x and +x boundaries, respectively.
The choice of a shock-attached reference frame makes the problem statistically stationary, and the incoming particles
enter the computational domain at a uniform speed equal to the shock-speed in the laboratory frame. Due to down-
stream advection of particles, new particles must be constantly inserted at the inflow plane every time-step to retain
the initial volume fraction φ0. Particles leaving the domain in the x-direction are deleted.

A number of particle and gas related parameters are of importance in the present problem. Particle parameters
such as density, diameter, Young’s modulus, Poisson ratio, and the normal coefficient of restitution dictate the behav-
ior of individual particle-particle collisions, while volume fraction dictates the number of collisions. Similarly, the rate
of momentum exchange between the particles and the gas depends on shock strength and parameters such as particle
diameter and particle-to-gas density ratio. In the first set of simulations to be discussed below we vary the coefficient
of restitution, while holding the shock properties and particle-to-gas density ratio fixed. Additional sets of simulations
will be reported where we vary the shock properties to investigate their influence. Tables I and II below present the
particle and fluid properties employed in our simulations. The particle properties are chosen to be representative of
aluminum and the gas is modeled as a very dense ideal gas.

TABLE I: Particle properties

Diameter: d 100µm

Young’s modulus: Y 70GPa

Poisson ratio: µ 0.35

Density: ρp 2.7 g/cc

Normal coefficient of restitution: e 0.4− 1

TABLE II: Gas properties

Gas viscosity : νg 0.05 cm2/s

Particle-Gas density ratio (pre-shock): ρpρ0 100

Speed of sound (pre-shock): a0 34311 cm/s

Specific heat ratio: γ 1.4

In the following subsections we will present (i) the multiphase flow shock relations that yield the gas properties
upstream and downstream of the shock, (ii) the equations of motion that control the evolution of the particle, (iii)
the aerodynamic force model, and (iv) the soft-sphere collision model, which collectively is the complete numerical
methodology implemented in LIGGGHTS.

B. Multiphase Shock Relations

We first define the pre- and post-shock states of the particle-laden gas flow. For a normal shock wave traveling
through an ideal gas, the standard Rankine-Huguenot conditions apply. These jump conditions must be appropriately
modified in the case of a shock propagating through a particle-laden gas, as the presence of the particle phase alters the
overall mass, momentum and energy balances across the shock. Furthermore, the effective thermodynamic properties
of the gas-particle mixture are different from those of the pure gas.
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In the case of shock propagation through a particle-laden gas, there are three distinct regions that can be identi-
fied in the post-shock state. The first is the frozen region directly behind the shock, where there is an instantaneous
jump in the gas properties. Due to inertia, the particles do not rapidly change from their initial properties across the
shock. This instantly generates a slip between the particle phase and the post-shock gas velocity, and a difference
between the gas and particle temperatures. The frozen region is followed by the non-equilibrium region (or relaxation
regime), where both the particle phase properties and the post-shock gas properties evolve towards an equilibrium.
If the coupling to the gas phase is weak, then the change in the gas properties across the relaxation regime is much
smaller than the change in the particle properties. Lastly, an equilibrium region is observed where the particle and gas
phase properties have reached equilibrium. Carrier [8] considered the “dusty-gas” approximation of multiphase shock
in the limit when the particle volume fraction is negligible. Carrier’s dusty gas approximation was advanced in the
works by Rudinger [37, 38], who described properties of the relaxation regime in the dilute limit and later discussed
the frozen and equilibrium regimes for finite volume fractions.

Using the thermodynamic properties of the mixture, the balance equations for the gas and particle phases can be
solved for the equilibrium state values. In the following discussion, the subscript 0 refers to the incoming pre-shock
flow in the shock-attached frame of reference, while the subscript e corresponds to the final equilibrium state. In this
shock-attached frame, the pre-shock gas velocity u0 is the lab frame shock velocity and therefore the shock Mach
number is given by MS = u0/α0. The pre-shock mixture speed of sound α0 depends on the ratio of specific heats for
the gas-particle mixture defined as

γmix,0 = γ
1 + δη0

1 + γδη0
, (1)

where γ is the specific heat ratio of the pure gas. Here δ = c/cp is the ratio of particle specific heat c to the specific
heat at constant pressure of the gas cp. The mass loading parameter is defined as

η0 =
ρp
ρg0

φ0
1− φ0

, (2)

where ρp and ρg0 are the particle and pre-shock gas densities, and φ0 is the initial pre-shock particle volume fraction.
Note that the definitions of specific heat ratio and mass loading are for the pre-shock state.

From the above definitions, the speed of sound within the particle-laden mixture at the pre-shock condition (α0)
can be expressed in terms of the speed of sound within the pure gas at the pre-shock state (a0) as(α0

a0

)2
=

γmix,0
γ(1 + η0)(1− φ0)2

=
M2
g0

M2
S

, (3)

whereMg0 = u0/a0 is the pure gas shock Mach number. An important characteristic of (3) is that as φ0 → 0, α→ a0,
and in the dilute regime, increasing φ lowers the mixture sound speed. Thus, the mixture sound speed is lower than the
gas sound speed, leading to supersonic mixture Mach numbers even at subsonic gas conditions. In the present work,
we set Mg0 = 1, which for φ0 6= 0 will lead to a multiphase shock of finite strength. The multiphase shock Mach
number is then given by (3). The ratio of equilibrium and pre-shock gas velocity, particle volume fraction, gas density,
and gas pressure can be expressed in terms of known quantities as

ue
u0

=
(γmix − 1)M2

S + 2 + 2φ0(M2
S − 1)

(γmix − 1)M2
S

(4)

φe
φ0

=
u0
ue

(5)
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ρe
ρ0

=
1− φe
1− φ0

u0
ue

(6)

pe
p0

= 1 + (1− φ0)γ(1 + η)(1− ue
u0

)M2
g . (7)

We emphasize that in the present simulation we do not solve the compressible gas flow equations. For a given set
of gas and particle properties upstream of the shock, the downstream equilibrium properties of gas are obtained from
the above relationships. We assume a weak coupling to the gas phase while in the non-equilibrium region. Therefore,
the gas properties do not relax but sharply jump from the upstream to the downstream equilibrium values across the
shock. This results in the shock remaining planar and of constant shock strength as it propagates through the bed of
particles at the macroscale. This assumption avoids the need for a compressible gas flow solver.

C. Particle Equations of Motion

While the gas properties undergo a sharp transition across the shock, the particle phase undergoes a smooth relax-
ation from the pre-shock equilibrium state to the final post-shock equilibrium state. The evolution of each particle is
tracked by solving Newton’s equations of motion, where the force acting on the ith particle F i is broken down into
two contributions, an inter-phase coupling force exerted by the gas upon the particle F gp,i, and an inter-particle force
F pp,i due to the collision between the ith particle with all its neighbors. The equations of motion for the particles are

mp
dvi
dt

= F i = F gp,i + F pp,i and
dxi
dt

= vi , (8)

where xi and vi are particle position and velocity respectively. We ignore the rotational motion of the particles, and
as a result ignore the friction force between the particles during inter-particle collision, and the torque imparted on
the particles during collision. We ignore the net aerodynamic torque on the particle as the shock propagates past the
particle. Next we describe the aerodynamic force model for F gp,i and the soft-sphere collision model for F pp,i.

D. Aerodynamic force: Point particle model

Since the gas properties are known from the multiphase shock relations, the aerodynamic force on each particle can
be explicitly calculated in terms of its position, velocity and acceleration. However, it is not sufficient to only account
for the quasi-steady drag force that arises from the relative velocity between the particle and the surrounding gas. In
shock-particle interactions, forces due to the gas acceleration as well as the relative acceleration between the particle
and the surrounding gas can be substantial and therefore must be included in the equation of particle motion [24, 25].
Following the works of Parmar et al. [33] and Annamalai & Balachandar [5], the non-dimensional force acting on a
spherical particle in a compressible flow is given by the following point particle force model:

fgp = fpg + f qs + f iu + fvu (9)

where the total gas-particle coupling force is expressed as a superposition of pressure gradient (pg), quasi-steady (qs),
inviscid unsteady (iu), and viscous unsteady (vu) force contributions. Each of these forces can be expressed in terms
of particle and the undisturbed gas flow properties, evaluated at the particle. Note that the shock thickness is typically
much smaller than the particle size and thus as the shock passes over a particle, part of the particle is still upstream of
the shock, while the rest of the particle is downstream of the shock. This complicates the evaluation of undisturbed gas
flow properties at the particle location, as they cannot be simply taken to be their values at the particle center. As will
be shown below, a generalization of the Faxén’s theorem will be used, which employs gas properties that are averaged

7



over the surface or volume of the particle, and thus can be well defined even as the gas properties sharply vary across
the upstream and downstream portions of the particle.

1. Pressure gradient force

The pressure gradient force (also known as the Archimedes force) is the undisturbed flow force. In the absence of
the particle, this is the force that is experienced by the volume of fluid that occupies the particle location. The other
three force contributions arise due to the presence of the particle and the flow perturbations induced by the no-slip and
no-penetration boundary conditions on the particle. The pressure gradient force can be expressed as

fpg =
4

3
πR3ρg

Du

Dt

V

, (10)

where Du/Dt is the total acceleration of the undisturbed fluid (i.e., total gas acceleration in the absence of the parti-

cle), ρg is the gas density and R is the particle radius. Here ()
V

indicates an average over the volume occupied by the
particle. The undisturbed flow is taken to be governed by the inviscid Euler equation and thus the effects of viscous
stresses in the undisturbed flow are ignored. Omitting the volume averaging and simply using [ρgDu/Dt] evaluated
at the particle center, the pressure gradient force would be equivalent to a delta function that generates a non-zero
impulse only at the time when the shock cross the particle center. In contrast, the Faxén form given in (10) predicts a
finite pressure gradient force that remains non-zero, as long as the undisturbed shock is located somewhere over the
particle. The importance of this generalization will become clear in section II D 5 where we validate the model.

2. Quasi-steady force

The quasi-steady force depends only on the instantaneous relative velocity between the particle and the fluid, and it
is given by

f qs = 6πRνgρg(u− v)
S

Φ , (11)

where νg is the kinematic viscosity of the fluid, which is taken to be constant. In the standard application of the point
particle model, the undisturbed flow velocity at the particle, u, will be evaluated at the center of the particle. For
the quasi-steady force, an appropriate definition of undisturbed ambient flow velocity seen by the particle that fully
accounts for the ambient flow variation was rigorously derived by Faxén [15] to be uS , where the overbar with a
superscript S indicates an average over the surface of the particle. The quasi-steady force expression given in (11) is a
generalization of the Faxén’s theorem to compressible flows, and it accounts for spatial variations in both density and
velocity of the ambient gas flow on the scale of the particle. See Parmar et al. [33] and Annamalai & Balachandar [5]
for a rigorous derivation of the above force expression from a solution of the linearized Navier-Stokes equations for
compressible flow over a spherical particle.

In (11), Φ represents the correction to the quasi-steady force due to finite Reynolds number and finite volume fraction.
The following empirical correction factor is employed here:

Φ =

{
(1 + 0.15Re0.687i )(1− φv,i)−3.7 if Rei < 1000

(0.01833Rei)(1− φv,i)−3.7 if Rei ≥ 1000 ,
(12)

where φv,i is the local Voronoi volume fraction around the ith particle. The Reynolds number of the ith particle is
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defined in terms of the surface averaged relative velocity as

Rei =
2R|u− v|

S

νg
. (13)

The Reynolds number dependence in (12) is from Rowe [36], and the volume fraction correction is given by Wen and
Yu [49].

The volume fraction dependence is of particular importance in the present simulation, since without dependence
upon φv,i, all particles at the same streamwise location will see the same undisturbed flow and therefore will ex-
perience the same streamwise force. In reality, however, the quasi-steady force will vary from particle to particle,
and this force variation is due to the influence of the neighboring particles [28]. Due to the random distribution of
particles, each particle sees a somewhat differently perturbed shock due to the spatial arrangement of its neighbors.
The current model accounts for the gas-mediated influence of the neighboring particles through the local volume
fraction-dependent correction. In the limit of φi → 0, the ith particle is far from all its neighbors and its quasi-steady
force is that of an isolated particle. With increasing local volume fraction, according to the simple model of Wen
and Yu [49], the effect of neighbors is an increase in drag force due to a crowding effect and acceleration of the flow
between the particles. There are other models that account for the volume fraction effect on quasi-steady force [3, 34];
the key feature of all these models is to increase drag force with increasing volume fraction.

Voronoi tessellation
The local volume fraction associated with each particle is calculated using Voronoi tessellation. Voronoi tessellation
takes a set of N particles in 3-D space and a containing bounding box, and divides the space into N Voronoi cells,
each containing a single particle. The boundaries of a Voronoi cell are defined such that all points interior to the
cell are closer to the particle center contained within the cell than any other particle. In other words, each bounding
face of a Voronoi cell passes through the midpoint of the vector between the given particle and each of its nearest
neighbors. In the present DEM simulation, a Voronoi tessellation can be accomplished at each time step using the
N particle locations. Figure 2 shows a sample Voronoi tessellation from the present work where only edges of the
Voronoi volumes around the particles are shown. From the volume of the Voronoi cell that encloses a particle, the
local Voronoi volume fraction of that particle can be calculated as

φv,i(t) =
Vp
Vi(t)

, (14)

where Vp is the volume of the particle and Vi(t) is the time-dependent volume of the Voronoi cell that encloses the ith
particle. The open source C++ package VORO++ is used to carry out the Voronoi tessellation within the LIGGGHTS
implementation. Periodic boundaries are used for the tessellation in the y and z-directions.
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FIG. 2: (Left) A sample random distribution of particles. (Right) The particle distribution encapsulated by a Voronoi
tessellation. The edges of the Voronoi cells are shown in red.

The particles are considered to be stationary in the lab frame before the arrival of the shock. In the shock-attached
frame, this translates to particles being introduced at the inlet with a constant velocity. There is no gas-particle velocity
difference nor particle-particle collisions upstream of the shock. In the post-shock regime, the variation in quasi-steady
force plays an important role in introducing velocity fluctuation. This velocity fluctuation in turn is responsible for
inter-particle collisions. Due to the highly nonlinear nature of the volume fraction dependent drag correction, small
variations in local volume fraction can produce large changes in the drag force. This means that initial randomness
of incoming particles produces variations in the drag coefficient, which in turn produce random force fluctuations. At
high volume fractions, sufficiently downstream of the shock, the volume fraction corrected drag is much higher than
either the pressure gradient or the inviscid unsteady force and accounts for the majority of the impulse imparted upon
a particle.

3. Inviscid unsteady force

The inviscid unsteady force is given by

f iu = 4πR3

∫ t

−∞
Kiu

( a
R

(t− ξ)
)[ D

Dt
ρg(ur − vr)

S
]
ξ

a

R
dξ , (15)

where ur and vr are the radial component of the fluid and particle velocities, respectively, in a coordinate system
centered on the particle, and D/Dt = ∂/∂t + uV · ∇ is the total derivative following the volume averaged fluid
velocity. In the inviscid unsteady force, Kiu is the inviscid unsteady kernel with a functional form that is precisely
known in the limit of small Mach numbers as (see Longhorn [26] and Parmar et al [33])

Kiu(ζ) = e−ζ cos(ζ) . (16)

where ζ = ta/R is a dimensionless time, which is non-dimensionalized by the acoustic time scale, where a is the
speed of sound in the gas. Correspondingly, ξa/R is the non-dimensional time at which the density-weighted relative
acceleration (the term in the square parenthesis) is evaluated. In the incompressible limit, the inviscid unsteady force
is the added-mass force, which is proportional to the instantaneous relative acceleration between the particle and the
surrounding gas. This direct relation between instantaneous acceleration and force is due to the infinite propagation
speed of acoustic waves in the incompressible limit. In a compressible flow, due to the finite propagation speed of
acoustic disturbances, the inviscid unsteady force is given by a convolution integral, where the kernel Kiu is the force
response of a delta function relative acceleration. In (15), ur as well as the undisturbed ambient gas density vary on
the scale of the particle and thus ρg(ur − vr) is averaged over the surface of the particle. Using properties of volume
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and surface integrals, the inviscid unsteady force expression can be rewritten as

f iu =
4π

3
R3Kiu

∫ t

−∞

( a
R

(t− ξ)
)[ D

Dt
(ρg(u− v)

V
+ r∇ · (ρg(u− v)

V
)

]
ξ

a

R
dξ , (17)

where r is the radial vector from the center of the particle. This was the form obtained by Parmar et al [33] (also see
[5]).

The inviscid kernel is independent of the Reynolds number. In general, it is a function of Mach number defined
with the relative velocity (i.e., Kiu is dependent on M = |u− v|/a). In our case, the Mach number of the post-shock
flow is small, and we ignore this Mach number dependence and assume Kiu to be that given in (16). However,
this form has been derived for an isolated particle. In the present case of a distribution of particles, the presence of
the neighboring particles will influence the inviscid unsteady force, which should be modeled as a volume fraction
correction to Kiu. We currently have very little information on the volume fraction effect on the inviscid unsteady
kernel, and as a result this dependence is ignored in the present point particle model.

4. Viscous unsteady force

In general, the force expression given in (9) includes the viscous unsteady contribution as well. This force is known
as the Basset history force, and it arises from the time-dependent viscous diffusion of vorticity produced at the surface
of the particle. It is written in terms of a convolution integral similar to (15), but with a viscous unsteady kernel Kvu.
Unfortunately, the viscous unsteady kernel remains very difficult to model even for incompressible flows, since it de-
pends not only on Reynolds and Mach numbers but on the time-dependent nature of relative acceleration. Fortunately,
over the short time scale of shock-particle interactions, inviscid contributions fpg and f iu dominate, while over longer
time scale quasi-steady force f qs is the dominant contribution. Hence, for lack of precise understanding, we ignore
the viscous unsteady force.

5. Application to shock-particle interaction

The undisturbed flow properties, such as u, ρg and Du/Dt at the particle location are known in terms of the pre and
post-shock states of the gas and the location of the particle with respect to the shock. The pre-shock gas density and
pressure are given by their ambient values ρ0 and p0, while their post-shock values ρ1 = ρe and p1 = pe are given
by the multiphase shock equilibrium conditions, as detailed in section II B. (Subscripts 0 and 1 indicate upstream
and downstream of the shock, respectively). The velocities must be adjusted to account for the change in the frame
of reference. In the shock-attached frame the pre-shock gas velocity is the shock velocity in the lab frame (i.e.,
u0 = usex), while the post-shock gas velocity is u1 = (us − ue)ex, where ue is the post-shock velocity in the
lab frame. The undisturbed planar shock flow at the macroscale seen by the ith particle is fully defined and can be
used along with the particle velocity and acceleration to explicitly compute the surface and volume averages over the
particle in (10) and (11) as

f̃ qs,i =
3

4

1

ρ̃p

(
ρ̃1(ũ1 − ṽi)ψ̃i + ρ̃0(ũ0 − ṽi)(1− ψ̃i)

)∣∣∣(ũ1 − ṽi)ψ̃i + (ũ0 − ṽi)(1− ψ̃i
)∣∣∣ 24

Rei
Φ , (18)

f̃pg,i =
6

ρ̃p
ψ̃i(1− ψ̃i)(p̃1 − p̃0)ex . (19)
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The above force expressions have been non-dimensionalized, with the particle diameter d = 2R as the length
scale, the sound speed of the pre-shock ambient fluid a0 as the velocity scale, and mpa

2
0/d as the force scale. All

gas properties, such as density and viscosity are scaled by their value in the pre-shock ambient state. In the above
ψ̃i = x̃i − x̃s is the non-dimensional streamwise location of the ith particle with respect to the frozen shock location
(x̃s). For the inviscid unsteady force we obtain

f̃ iu,i =
12

ρ̃p

∫ ∞
0

Kiu(ζ)
[(
ρ̃1ũ1 − ρ̃0ũ0

)
ψ̃2ũs

]
τ−ζ

dζ ex , (20)

where we have changed the variable of integration to ζ = a(t− ξ)/R. Though the integral goes from zero to infinity,
the relative acceleration within the square parenthesis is non-zero only during the time interval during which the the
shock crosses the particle. The convolution integral can be explicitly integrated using (16) for the kernel that assumes
a frozen particle in the laboratory frame. The resulting expression is somewhat complicated and is given in Appendix
A.

In preparation for simulating a bed of particles, the force model discussed above was validated for the case of shock
propagation over an isolated particle. Figure 3 shows a comparison of the non-dimensional drag forced obtained
from the point particle force model, with that obtained by experiments as well as a fully resolved direct numerical
simulation (DNS), [31]. Both the DNS and experimental data are obtained from Sun et al. [43]. The drag coefficient
is defined as CD = |fgp|/( 1

2ρgπR
2|up|). For the DNS, a body-fitted finite volume method was used, and as such the

particle remains frozen as it is swept by the shock. The results show an excellent agreement between the DNS and the
point particle model as far as the initial rapid increase in the force, the peak value of the drag coefficient, and the time
at which this peak is realized. During this early period, most of the impulse imparted to the particle is due to inviscid
mechanisms. The model deviates slightly from the DNS and the experiments at intermediate times, but at long times
the steady drag coefficient is captured by the quasi-steady portion of the drag model. The deviation between the DNS
data and the point particle model at intermediate times is due to both the functional form of the inviscid unsteady
kernel and the neglected unsteady viscous effects.

FIG. 3: The non-dimensional drag force for a shock passing over an isolated particle. The point particle force model
discussed presently is compared to experimental and direct numerical simulation data for a frozen particle. The point
particle model captures the net momentum impulse well.
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E. Soft-sphere model of particle-particle interaction

The discrete element method tracks individual particles in the Lagrangian frame and allows detection of particle-
particle interaction. A soft-sphere collision model allows for the particles to have a small overlap and uses a spring-
dash-pot model to calculate normal and tangential forces. We consider perfectly smooth spheres where there is no
tangential interaction. In the case of interaction between the ith and jth particle, the normal collisional force according
to the soft-sphere model is

f ij = (knδnn− γnvnn) . (21)

Here δn is the normal overlap distance, n is the normal unit vector along the direction between the two particle centers,
and vn is the magnitude of the relative velocity. The spring coefficients for stiffness (kn) and damping (γn) are derived
using classical contact mechanics [1, 7, 12, 22, 40, 42, 51]. These coefficients are highly dependent upon the normal
coefficient of restitution (e), a ratio of the post-collision velocity v′c and the pre-collision velocity vc, which in turn
controls how much kinetic energy is lost due to an inelastic collision:

e =
−v′c
vc

. (22)

The Hertzian force model within LIGGGHTS uses a nonlinear spring-dashpot for the normal forces using the following
coefficients

kn =
4

3

( Y

2(1− ν2)

)(R
2
δn

)1/2
(23)

γn = −2
(5

6

)1/2 ln e

(ln2 e+ π2)1/2

( mpY

2(1− ν2)

)1/2(R
2
δn

)1/4
≥ 0 . (24)

This force model assumes that the two colliding spheres are of identical material properties and size. Mechanical
properties of the particle including the Young’s modulus Y , the Poisson ratio ν, as well as the normal coefficient of
restitution are used to derive the spring coefficients consistent with the Hertzian collision time and the energy lost due
to inelastic behavior of the colliding solids. Finally, the particle-particle interaction force of the ith particle, F pp,i in
(8), is obtained by summing the collisional force f ij for all the jth particles in contact with the ith particle.

III. DATA PROCESSING

Figure 1 shows the distribution of particles from a typical simulation where the average pre-shock particle volume
fraction of 10% increases to 56% in the equilibrium region downstream of the shock. The volume fraction remains
low and uniform ahead of the shock (on the left) and the volume fraction steadily increases downstream of the shock
(on the right). The problem is inhomogeneous along the streamwise direction, and is statistically homogeneous along
the y and z-directions. The computational domain is binned in the streamwise direction in terms of planar slabs in
order to compute averages. Each slab has a streamwise width of 5 particle diameters and is used to average the particle
properties within the slab at a particular time, which will be called the plane average. The plane average is further
averaged in time to obtain the ensemble average. Averaged quantities of interest include particle velocities, particle
volume fraction and granular temperature. While the calculation of some of these quantities is straightforward, details
of how the volume fraction and granular temperature are defined are given below.
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A. Plane and ensemble averages

Results from different averaging processes are used to illustrate different statistical properties. Since the problem is
statistically inhomogeneous only in the x-direction, we average over the transverse directions. We calculate the plane
average of a quantity within thin slabs centered around an x-location. For particle properties this involves averaging
over all the particles whose center lies within this thin slab at a particular time. For example, the plane-averaged
streamwise velocity of the particle is defined by

vx(x, tl) =
1

Nl

Nl∑
i=1

vx,i(tl) , (25)

where the overbar indicates a plane average and the sum is over all the Nl particles whose centers are within the slab
at time tl. The plane average is a function of x and time. Since the problem is statistically stationary, the plane average
can be further augmented with an average over time to define the ensemble average as

〈vx〉(x) =
1(∑L
l=1Nl

) L∑
l=1

Nl∑
i=1

vx,i,tl , (26)

where the time average is over L time instances. We will show that the plane-averaged results at any given time are not
the same as the ensemble-averaged results, due to spatial clustering of particles as they pass through the shock. These
structures travel in the streamwise direction. Therefore their impact is observed only in the plane-averaged quantities,
while their effect is averaged in the ensemble average.

B. Volume fraction definitions

Since Voronoi tessellation provides the cell volume associated with each individual particle, the local particle volume
fraction associated with each particle can be calculated from (14). One way to calculate the average volume fraction
within a slab (or at an x-location) is to simply average the local Voronoi volume fractions associated with all the
particles within the slab. We can calculate the plane-averaged volume fraction φ by counting the number of particles
within a slab and then multiply by the ratio of the volume of a single particle to the volume of the slab. The ensemble-
averaged volume fraction 〈φ〉 can be calculated by further averaging over time to obtain

φ =
VpNl
Vslab

and 〈φ〉 =
Vp
Vslab

1

L

L∑
l=1

Nl = 〈N〉 Vp
Vslab

, (27)

where Nl is the number of particle within the slab at the lth time instance and 〈N〉 is the mean number of particles
within the slab averaged over L time instances. The above ensemble average definition is not the same as that obtained
from averaging the Voronoi volumes, and in fact 〈φ〉 can be related to Voronoi volumes by

〈φ〉 =
( L∑
l=1

Nl
) [ L∑

l=1

Nl∑
i=1

1

φv,i

]−1
. (28)

Here we will use the definition given in (27), since it correctly corresponds to the definition used in the multiphase
shock relations presented in section II B.

We are also interested in observing variations in the Voronoi volume fraction downstream of the shock. Plane
and ensemble averages for the Voronoi volume fraction, and variance of the Voronoi volume fraction are given by

14



φv =
1

Nl

Nl∑
i=1

φv,i and 〈φv〉 =
1(∑L
l=1Nl

) L∑
l=1

Nl∑
i=1

φv,i . (29)

〈φ′2v 〉 =
1(∑L
l=1Nl

) L∑
l=1

Nl∑
i=i

[
φv,i − 〈φv〉

]2
. (30)

C. Granular temperature

Granular temperature is a measurement of random fluctuation energy manifested through the average velocity variance
of the particles. The ensemble-averaged granular temperature is defined as

〈T 〉 =
〈T1〉+ 〈T2〉+ 〈T3〉

3
(31)

where the granular temperature contribution from each principle direction is defined as

〈Tj〉 =
1

3
(∑L

l=1Nl
) L∑
l=1

Nl∑
i=i

[
vj,i − 〈vj〉2

]
(32)

Due to the high slip velocity immediately after the shock, the bulk streamwise velocity changes rapidly within our
computational slabs. Since the granular temperature is a measure of particle velocity variation from the bulk velocity,
it is important that the change of bulk velocity within a slab be properly accounted for when calculating the gran-
ular temperature in the x-direction (i.e., in calculating 〈T1〉). To account for this variation, we fit an interpolating
polynomial to the ensemble-averaged x-velocity data and use this to define the perturbation velocity.

IV. RESULTS

A. Simulation cases

We chose three sets of particle and gas properties consistent with the multiphase shock relations given in section II B.
Table III lists the values of volume fraction upstream and downstream of the shock, as well as the velocity, density,
and pressure ratios across the shock for the three cases. Case 1 has an initial volume fraction of 10% which quickly
compacts to a dense volume fraction of 56.6%. Case 2 is a more dilute configuration, with an initial volume fraction
of 5%, which compacts to 26%. Due to the coupled nature of the multiphase shock relations, changing the initial
volume fraction changes the gas density and pressure ratios across the shock. For Case 2, both the density and pressure
ratios across the shock are about half those obtained for Case 1. The density ratio change is particularly important
as it changes the post-shock particle to gas density ratio, which determines the particle phase relaxation length (a
higher density ratio will lead to a shorter relaxation length). Additionally, a change in the particle volume fraction
also affects the particle relaxation length, due to the volume fraction dependence of the quasi-steady drag (A lower
volume fraction will correspond to a longer relaxation length). Due to these two effects, the relaxation length of Case
2 is expected to be significantly longer than that of Case 1. Case 3 has an initial volume fraction is 10% as did Case 1,
however the ratio of specific heats of the particles and gas is set to zero. Physically this means there is no heat transfer
between the gas and particle phases, the effect of which is a lower equilibrium volume fraction of 31% as well as a
lower density ratio across the shock compared to those for Case 1. Together, these three cases contain a wide range of
particle volume fractions along with a range of density ratios across the shock.
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For each case, we performed a parametric study by running simulations with different values of normal coeffi-
cient of restitution e. The coefficient of restitution is a measure of how much kinetic energy a particle pair loses when
undergoing collision. A coefficient of restitution of e = 1 corresponds to a perfectly elastic collision where no kinetic
energy is lost. A coefficient of restitution of e = 0 corresponds to a perfectly inelastic collision where particles move
at the same velocity post collision. For our parametric variation, we consider a range of between 0.4 and 1.0.

TABLE III: Multiphase shock properties

Case 1 Case 2 Case 3
Pre-shock particle volume fraction : φ0 0.1 0.05 0.1

Ratio of specific heats: δ 1 1 0

Equilibrium particle volume fraction: φe 0.5658 0.2564 0.3063

Gas velocity ratio: ueu0
0.1771 0.1950 0.3264

Gas density ratio: ρeρ0 11.68 6.551 3.974

Gas pressure ratio: pep0 13.56 7.705 11.28

One of our key findings is that after the passage of a shock, a random distribution of particles with spacing of uniform
probability will not only see and increase in mean volume fraction, but will exhibit clustering at both the macro and
microscales. We described and analyzed this in detail, in the remainder of this section, which is laid out as follows.
Section IV B discusses the nature of particulate structures observed downstream of the shock. Section IV C quantifies
these particulate structures with ensemble-averaged Voronoi statistics calculated upstream and downstream of the
shock and compares these statistics to those for a perfectly random distribution of particles at comparable volume
fractions. Section IV D discusses ensemble-averaged results for the granular temperature, the streamwise particle
velocity, and the variance of the Voronoi volume fraction.

B. Post-shock Particulate Structure

In the shock-attached reference frame, we expect the system to be statistically stationary and the ensemble-averaged
velocity and volume fraction to change monotonically from the pre-shock state to a post-shock equilibrium state.
However, such an ensemble-averaged picture masks a traveling wave structure that persists downstream of the shock,
which we observe in the DEM simulations. We identify wave-like structure by generating pseudocolor plots of the
Voronoi volume fraction. To further illustrate this point, we will compare planar averages of particle volume fraction
as well as streamwise velocity, computed at one time instant, to the corresponding ensemble-averaged statistics.

The observed post-shock structures in Figures 4, 5, and 6 are for Cases 1, 2, and 3, respectively. These figures
show pseudocolor plots of Voronoi volume fraction projected onto the x− z plane. For each case studied, the results
are shown for three coefficients of restitution: the elastic limit where e = 1, an intermediate value where e = 0.7,
and a strongly inelastic case where e = 0.4. A macroscopic wavy particulate structure is observed in all cases except
for Case 1 in the elastic limit where e = 1. An analysis of the Voronoi volume statistics presented in later sections
will show that there is indeed a structure present in this case, however, it is not easily observed in Figure 4. This
wavy distribution of particle volume fraction is due to the volume-fraction-dependence of the quasi-steady drag. In
other words, the instability arises from the gas-mediated particle-particle interaction. This macroscopic structure is
particularly pronounced Cases 2 and 3 (Figures 5 and 6). As inelasticity is introduced by decreasing the coefficient of
restitution, the amplitude of these waves increase indicating an increase in the cluster intensity. This indicates that the
macroscopic structure induced by the gas-mediated particle-particle interaction is amplified by the dissipative nature
of the collisional process. As a result, the intensity of particle clustering intensifies with particle inelasticity.
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FIG. 4: A pseudocolor plot of the Voronoi volume fraction for Case 1. A green line at x = 0 shows the location of
the planar shock. Three coefficients of restitution are plotted: e = 1 (top), e = 0.7 (middle), and e = 0.4 (bottom).

FIG. 5: A pseudocolor plot of the Voronoi volume fraction for Case 2. A green line at x = 0 shows the location of
the planar shock. Three coefficients of restitution are plotted: e = 1 (top), e = 0.7 (middle), and e = 0.4 (bottom).
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FIG. 6: A pseudocolor plot of the Voronoi volume fraction for Case 3. A green line at x = 0 shows the location of
the planar shock. Three coefficients of restitution are plotted: e = 1 (top), e = 0.7 (middle), and e = 0.4 (bottom).

Fluidized-bed research has shown that volume fraction-dependent drag force produces macroscopic variations in vol-
ume fraction in the form of waves [13, 30]. Similarly, it is well understood that an initially excited particulate system
(i.e., particles having random initial velocity), when allowed to cool due to inelastic collisions, results in clustering of
particles at the microscale [19, 27]. This is due to the fact that after each collision, the paired particles lose momentum,
reducing post collision separation. Thus, repeated collisions results in localized clusters of particles. In the present
inelastic simulations, both these macro and microscale clustering mechanisms appear to be active.

Due to the conservation of mass, the ensemble-averaged volume fraction 〈φ〉 downstream of the shock must ap-
proach the equilibrium volume fraction φe as the particles relax to the post-shock equilibrium velocity ue. As can be
seen in the wave pattern observed in Figures 4, 5, and 6, however, the plane-averaged volume fraction at a fixed-time,
φ, even far downstream of the shock will clearly fluctuate about this equilibrium volume fraction. Plots of plane
and ensemble-averaged volume fraction (φ and 〈φ〉), along with the plane and ensemble-averaged x-velocity of the
particles (vx and 〈vx〉), are presented in Figures 7, 8, and 9. The ensemble-averaged volume fraction for all values of
e approach the same post-shock equilibrium value. However, the rate of approach appears to be slightly influenced by
inelastic collisions.
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(a) (b)

FIG. 7: Ensemble-averaged φ (a.) and x-velocity (b) compared with the fixed-time, planar averages for Case 1. The
variation of φ is small compared to the variation seen in cases with lower φe.

(a) (b)

FIG. 8: Ensemble-averaged φ (a.) and x-velocity (b) compared with the fixed-time, planar averages for Case 2.
Variations in φ of almost 10% are seen both above and below the ensemble-averaged values.
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(a) (b)

FIG. 9: Ensemble-averaged φ (a.) and x-velocity (b) compared with the fixed-time, planar averages for Case 3.
Similar to Case 2, Variations in φ of almost 10% are seen both above and below the ensemble-averaged values.

As expected by the presence of a wave-like structure, the plane-averaged volume fraction plotted at a specific time
varies along the x-direction and deviates from the ensemble average. For Case 1, the equilibrium volume fraction
of φe = 0.57 is within a few percent of the close-packing limit of φ = 0.64. This puts a physical upper limit on
the possible local volume fractions. Due to this constraint, the variation in φ is small in Figure 7 compared to the
variation at lower volume fractions observed in Figures 8 and 9. In all three cases, the plane average of the elastic
collision sub-cases has the least deviation from the ensemble average. As inelasticity is increased, the deviation from
the ensemble average increases.

Unlike the particle volume fraction, the particle x-velocity does not vary greatly between the ensemble average
〈vx〉 and the plane average vx. The particle x-velocity fluctuations are small compared to the bulk flow speed, and
the effect of the wave structure upon the bulk x-velocity is negligible. This indicates that the dense particulate struc-
tures observed in Figures 4, 5, and 6 are frozen in the post-shock equilibrium state. Since all particles, clustered or
otherwise, travel at the post-shock gas velocity in the equilibrium state, there is no drag, and the volume-fraction
dependence of drag becomes irrelevant.

It should be noted, that even though the volume fraction in Case 1 does pass through volume fraction values seen
in Cases 2 and 3, there is far less deviation from the ensemble average at these volume fractions. Another factor
contributing to the difference is the time scale of response for the particles, characterized by the particle time scale

τp =

ρp
ρg
d2

18νgΦ
. (33)

The particle relaxation time scale is much smaller in Case 1 due to the smaller post-shock density ratio (ρp/ρg) =
(ρp/ρ0)(ρ0/ρe) = 8.56 compared to the post-shock density ratios (ρp/ρg) = 15.26 and 25.1 in Cases 2 and 3. Also
contributing to the larger particle relaxation time scale are the Reynolds number and volume fraction correction Φ
detailed in (12). A lower particle time scale in Case 1 means the system relaxes to the equilibrium state more quickly,
approximately 50 particle diameters compared to 200 diameters in Case 2 and 400 diameters in Case 3.

Our model simulations show a remarkable traveling wave structure that forms downstream of the shock. This
observed structure has two primary causes. A macroscopic structure is induced by the gas-particle interaction via the
volume fraction dependent quasi-steady drag force, and a clustering mechanism at the microscale induced by inelastic
collisions. This traveling wave structure cannot be captured by ensemble averages of either the volume fraction φ, or
the x-velocity. Planar averages, however, show that there is a high degree of volume fraction variance caused by the
clustering behavior. There is little variance in the x-velocity since velocity fluctuations are small compared to the bulk
velocity. This variance in the volume fraction is discussed further below.
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C. Voronoi Volume Statistics

In the previous section, we showed that there is a traveling wave particulate structure caused by macroscopic and
microscopic mechanisms. In this section, we investigate ensemble-averaged Voronoi volume statistics upstream and
downstream of the shock. We compare the simulation statistics against corresponding statistics of a random distri-
bution of particles of uniform probability. While the ensemble-averaged mean Voronoi volume is independent of the
coefficient of restitution, the distribution of Voronoi volume about this mean changes significantly as the coefficient of
restitution is varied. This demonstrates the role of inelastic collisions in the particle clustering behavior.

Particles enter the simulation domain with a random spatial distribution of uniform probability. Due to the ran-
domness of particle location, there is natural variation in the Voronoi volume associated with this upstream uniform
particle distribution. As the particles pass through the shock, this variation in Voronoi volume naturally changes due
to the compaction of the system to a higher mean volume fraction. Additionally, clustering at the macroscale due to
volume fraction dependent drag, as well as microscale clustering due to inelastic collisions, cause further variations
in the Voronoi volume distribution. We quantify the degree of excess clustering due to these additional effects using
histograms of the Voronoi volume. But first, it is important to understand the distribution of Voronoi volume statistics
of a randomly distributed particles of uniform probability for comparison.

A number of researchers have studied the distribution of Voronoi volumes in 2-D and 3-D for random distribu-
tions of point particles, 2-D hard disks, and 3-D hard-spheres [16, 23, 41, 44]. The work of Kumar & Kumaran [41]
is of particular relevance as they studied the statistics of Voronoi volume for a random Poisson process [44] with the
added positional constraint that the minimum distance between any two particle pair be larger than the sum of their
radii. They defined free Voronoi volume, Vf , as the volume in excess of the minimum possible Voronoi volume at
close ordered packing, corresponding to both the face centered cubic (FCC) and the hexagonal close-packed latices.
The mean free Voronoi volume can be expressed by

〈Vf 〉 = 〈Vp
φv
〉 − 3

√
2Vp
π

, (34)

where the first term corresponds to the mean Voronoi volume, while the second term is the smallest possible Voronoi
volume corresponding to FCC packing. They observed the following 3Γ function to fit the Voronoi volume distribution
quite well

f(Vf ) =
δαm/δ

2

Γ(m/δ2)
V

(m/δ−1)
f e(−αV

δ
f ). (35)

There are three parameters that define the 3Γ function. The parameters δ and m are presented as functions of the mean
volume fraction 〈φ〉, and the final parameter, α, is constrained to be a function of the other two parameters, δ, and m,
so that the mean of the above distribution becomes equal to the mean free Voronoi volume, 〈Vf 〉. This gives the relation

α =

[
Γ((m+ δ)/δ2)

Γ(m/δ2)〈Vf 〉

]δ
. (36)

Higher order moments of Equation (35) can be explicitly calculated, and can then be used to obtain central moments
such as the variance, skewness, and kurtosis. The n-th moment can be expressed as

〈V nf 〉 =
Γ((m+ nδ)/δ2)

Γ(m/δ2)αn/δ
. (37)
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We expect the pre-shock distribution of particles to be well approximated by the above 3Γ function. For all three
cases, the Voronoi volumes of all the particles upstream of the shock are put into a histogram and compared to the
theoretical 3Γ function in Figures 10, 11, and 12. In these figures, the upper left-hand plot shows the particle distri-
bution upstream of the shock, while the remaining three plots show the distribution far downstream of the shock for
three different values of e. Note that in each case, the data provided by Kumar & Kumaran [41] was used to obtain
the parameters γ, m, and α for a known local volume fraction. For Cases 1 and 3, where the initial volume fraction
is φ0 = 0.1, the theoretical 3Γ function matches the upstream DEM Voronoi volumes. For Case 2, where φ0 = 0.05,
the upstream DEM Voronoi data has a slightly smaller mean, and is slightly skewed towards smaller volumes. This
discrepancy could be due to the insertion algorithm used at the inflow boundary at the lower volume fraction.

(a) (b)

(c) (d)

FIG. 10: Histogram Voronoi volume data (green) resulting from Case 1 is plotted against the 3Γ distribution (blue).
Values are shown upstream of the shock at the initial volume fraction φ0 = 0.1 and downstream of the shock for various
coefficients of restitution at the equilibrium volume fraction φe = 0.554. Upstream of the shock the histogram-ed
DEM data and the 3Γ distribution are in excellent agreement. However, downstream of the shock there is a departure
from the 3Γ distribution for all coefficients of restitution including the elastic limit (e = 1). As inelasticity is increased,
the DEM data shifts towards smaller Voronoi volumes.
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(a) (b)

(c) (d)

FIG. 11: Histogram Voronoi volume data (green) resulting from Case 2 is plotted against the 3Γ distribution (blue).
Values are shown upstream of the shock at the initial volume fraction φ0 = 0.05 and downstream of the shock for
various coefficients of restitution at the equilibrium volume fraction φe = 0.25. As inelasticity is increased, there is a
much more pronounced shift than was observed in Figure 10.
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(a) (b)

(c) (d)

FIG. 12: Histogram Voronoi volume data (green) resulting from Case 3 is plotted against the 3Γ distribution (blue).
Values are shown upstream of the shock at the initial volume fraction φ0 = 0.1 and downstream of the shock for
various coefficients of restitution at the equilibrium volume fraction φe = 0.295.

Far downstream of the shock, the ensemble-averaged volume fraction approaches the equilibrium volume fraction.
However, the Voronoi volume distribution is expected to deviate from the ideal 3Γ function due to the wave structure
observed in the particle concentration. In Figures 10, 11, and 12, we additionally present the normalized histograms
of the Voronoi volume evaluated far downstream of the shock. We compare the histograms from the DEM data to the
theoretical 3Γ function at the corresponding equilibrium volume fraction. In the elastic limit (e = 1), downstream
of the shock, the peak of the DEM distributions are slightly skewed to the left compared to the 3Γ function. This is
more pronounced in Figures 11 and 12 for Cases 2 and 3. This shift is due to the macroscale clustering of particles
induced by the volume fraction dependent drag force. As collisions are made inelastic by lowering the coefficient of
restitution, the DEM distributions shift further, with the peak moving towards small Voronoi volumes. This shift is
compensated by a long tail for higher Voronoi volumes. Again, this shift due to inelastic collisions is most evident in
Cases 2 and 3, where sharp distributions develop for the inelastic coefficients (e < 1). Case 1 is constrained by the
close-pack limit and therefore retains a smoother distribution.

The theoretical 3Γ function does not capture the DEM distribution downstream of the shock due to the traveling
wave-like particle concentration variation. In an attempt to illustrate the effect of such a traveling wave-like particle
clustering, a sinusoidally varying plane-averaged volume fraction is considered. A traveling wave of amplitude A is
added to the ensemble average as
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φwave = 〈φ〉+A sin

(
2π

λ
(x− ct)

)
, (38)

where λ is the wavelength and c is the phase speed of the traveling wave. With this model, for a given A and λ, the
sinusoidally perturbed local volume fraction at each x-location is constructed. At each x location, and correspond-
ingly each local value of φwave, the 3Γ function is computed. An average 3Γ function can then be computed which
accounts for the range of volume fractions within the wavy structure. Figure 13 presents the averaged 3Γ distribution
sampled over a single wavelength. All three cases are shown, and for each case, a number of amplitudes values (A) are
presented. For case 1, the peaks of the volume fraction wave must remain under the close-pack limit, and as a result
only a limited range of A is tested. In all cases, increasing A shifts the distribution towards the left, and broadens it.
This is consistent with the trends observed in Figures 10, 11, and 12. For large amplitudes, in Figures 13b and 13c we
observe the volume fraction distribution to sharpen in a manner similar to the inelastic cases downstream of the shock.
It is also clear that no value of A precisely match with the distributions seen in Figures 10, 11, and 12, which indicates
the fact that the structures observed in the DEM are not perfectly sinusoidal, but are three-dimensional.

(a) (b)

(c)

FIG. 13: Sinusoidally varying plane-average of to the 3Γ distribution for three volume fractions corresponding to the
equilibrium volume fractions φe downstream of the shock for Cases 1 (a), 2 (b) and 3 (c). A number of values for the
amplitude are shown. As the amplitude of the wave increases the distribution shifts toward lower volumes similar to
the downstream particles observed in Figures 10, 11 and 12.
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The theoretical 3Γ distribution has proven to be a useful tool by establishing a baseline for random distribution of
particles against which the DEM Voronoi statistics downstream of the shock are compared. Deviation from the 3Γ
distribution is a clear indicator of the particle structure that was observed in the previous section. The 3Γ distribution
is used in the next section when discussing the ensemble-averaged variance of Voronoi volume fraction.

D. Ensemble-Averaged Results

In this section, we discuss the results for the three different cases in sequence. We focus on ensemble-averaged
statistics for the particle velocity and volume fraction, as well as granular temperature and Voronoi volume fraction
variance profiles for each of the cases. The ensemble averaged quantities do not capture the traveling wave structure
of the post-shock particle distribution. The traveling wave-like structure is only observed when taking higher order
moments of the data.

1. Case 1

The ensemble-averaged streamwise component of particle velocity and particle volume fraction for Case 1 are shown
in Figure 7. The product of the two is the net streamwise flux of particles, which must be a constant. Thus, as
the streamwise velocity decreases from the pre-shock to post-shock values, in the shock-attached frame, the particle
volume fraction correspondingly increases to the final equilibrium volume fraction. The results for the different
coefficient of restitutions nearly collapse, indicating the independence of these ensemble-averaged quantities from
the details of the collision process. As can be expected, the streamwise evolution of mean particle velocity, and
accordingly, the streamwise variation of mean particle volume fraction, is most influenced by particle response time,
which in turn depends on the particle-to-gas density ratio (see (33)).

An upper bound for the particle time scale is achieved when Φ = 1, corresponding to zero Reynolds number
limit for an isolated particle (i.e., for Re = 0 and φ = 0). Using the particle-to-gas density ratio in the post-shock flow
(ρp/ρe = 8.56), and a gas kinematic viscosity of 13.5 mPa s, we obtain an upper bound for the particle time scale
as τupper = 6.4 × 10−4 s. From this value and the post-shock gas velocity of 6075 cm/s, an upper bound relaxation
length scale of approximately 600 particle diameters is calculated. However, this is an overestimate, since particle
Reynolds number is much larger than unity, and as a result Φ� 1. Simulation results show that the particle relaxation
length scale is actually about 50 particle diameters, an order of magnitude smaller than the calculated upper bound.
This discrepancy illustrates how the nonlinear volume fraction dependent drag acts to rapidly equilibrate the particles.

While the mean particle velocity and volume fraction are independent of coefficient of restitution, we expect quantities
that depend on the inter-particle collision process to vary with e. Of particular interest is how the granular temperature
changes when varying e. Recall that particles initially enter the computational box in a cooled state with zero velocity
fluctuation. After encountering the shock, the aerodynamic forces increase as do the force fluctuations. These force
fluctuations cause the particles to accelerate at different speeds and collide, generating random fluctuation energy. At
this point there are two modes by which this new found fluctuation energy dissipates. The first mode is the gas induced
drag force. Immediately downstream of the shock, the gas induced drag force works to increase both the mean and
fluctuating particle velocity. Once the particles have approached the post-shock equilibrium velocity, the effect of gas
induced drag force is to damp the velocity fluctuation. A particle velocity that differs from that of the surrounding
gas velocity causes a drag force that drives the particle velocity toward that of the gas. The second mode of energy
dissipation is energy lost due to inelastic collisions. Energy fluctuations introduced due to the shock are eventually
dissipated, and the particles return to a perfectly cooled state.

Figure 14, shows the ensemble-averaged granular temperature variation plotted as a function of x. The tempera-
ture is scaled by the peak value of granular temperature, while x is scaled by the x-location of the peak value. Figure
15 shows the peak values for varying coefficients of restitution. This figure is non-dimensionalized by the incoming
pre-shock velocity of the gas and the particle diameter. The peak value of the granular temperature decreases as the
degree of inelastic collisions is increased (coefficient of restitution e is decreased) since inelastic collisions provide
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a mechanism for the fluctuating kinetic energy to dissipate. Under the aforementioned scaling, the temperature data
seems to somewhat collapse into a self-similar curve. The collapse is better for the lower coefficients of restitution.
In the elastic limit (e = 1), the width of the temperature plot appears slightly wider than for the inelastic coefficients
(e < 1). Immediately after the shock, at x = 0, the plots do not collapse, and achieve a magnitude close to the peak
value in the elastic limit (e = 1). The lack of collapse close to the shock is due to the nature of the pressure gradient
and inviscid unsteady forces. These near-impulsive forces impart rapid acceleration to the particles, but these forces
quickly decay due to their short range of influence.

FIG. 14: Case 1: Variation in granular temperature scaled by the peak granular temperature as well as the x-location
of the peak. The elastic limit (e = 1) is shown to break the self-similar collapse.

(a) (b)

FIG. 15: Case 1: The peak non-dimensional granular granular temperature (a) is shown to increase while the x-
location of the peak (b) moves towards the shock as the coefficient of restitution approaches 1.

The quasi-steady drag force is the long acting force which drives the long term evolution of the system. Figure 3
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shows that the force exerted on the particles is initially dominated by the inviscid contributions, whose magnitude is
large, but short lived. Simple analysis shows that the change in particle velocity across the shock at the end of this
inviscid phases scales as (ρe/ρp)(u0 − ue) [24, 25]. In the shock-attached frame, this results in a particle velocity

of vp = u0 −
(
ρe
ρp

)
(u0 − ue), immediately downstream of the shock due to the rapid action of the inviscid pressure

gradient and added-mass forces. From the multiphase shock properties given in Table III, we can estimate the particle
velocity to rapidly change from the pre-shock value of u0 to a value of about 0.9u0. This rapid variation in the particle
velocity, when averaged over the finite-sized slabs, results in the initial rapid increase in granular temperature. On the
short time scale, inelastic collisions are not the dominant mode of energy dissipation, and therefore the points close
to the shock do not collapse. The subsequent slower variation, including the peak value of the granular temperature,
occurs over a substantially longer lengthscale. This long term behavior is due to the volume fraction dependent
quasi-steady force and the resulting fluctuation in the particle velocity that contributes to granular temperature. It is
this latter slower evolution of granular temperature that is of interest here.

The variance of the Voronoi volume fraction is directly tied to the distribution of Voronoi Volumes discussed above.
The raw moments of the Voronoi volume fraction can be calculated in terms of the Voronoi volume fraction distribution
as

〈φnv 〉 =

∫ ∞
0

(
Vp

Vf +
Vp3
√
2

π

)n
f(Vf ) dVf . (39)

The moments can be used to calculate variance, skewness, and higher order statistics of the Voronoi volume fraction.
Figure 16 shows the Voronoi volume fraction variance for the different coefficients of restitution, where the variance
plots are scaled by the initial variance prior to the shock. The figures show the corresponding results for the analytical
3Γ distribution. At each streamwise location, the local mean volume fraction, as given in 17, was used to obtain
the corresponding local values of the parameters of the 3Γ distribution. The 3Γ variance increases downstream of
the shock and reaches a scaled peak value of 2.00 at a local mean volume fraction of about φ = 0.28. With further
increase in local mean volume fraction, the variance of Voronoi volume fraction decreases to a value of about 0.545
for φ = 0.55 in the equilibrium regime. Comparing the result of the elastic limit (e = 1) DEM simulation, it can
be observed that as with the 3Γ distribution, the variance increases, reaches a peak and decreases to the post-shock
equilibrium value. The higher variance values may be attributed to the Voronoi-volume-dependent force fluctuation.
The DEM variance of the elastic limit remains higher not only immediately downstream of the shock, but in the
equilibrium regime after the particle phase has cooled.
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FIG. 16: Case 1: The Voronoi volume fraction variance is plotted for three values of e, as well as the theoretical 3Γ
distribution. The variance is scaled by the initial upstream Voronoi variance present in the DEM simulations. For all
observed restitution coefficients, the variance first increases for intermediate volume fractions during the compaction
of the particles and settles to a lower value in the equilibrium regime. Decreasing the coefficient of restitution is shown
to raise the final resting variance.

(a) (b)

FIG. 17: Case 1: The ensemble-averaged scaled velocity (a) and the ensemble-averaged volume fraction (b). The
coefficient of restitution is shown to have little to no impact upon the mean momentum transfer in the streamwise
direction.

As inelasticity is increased, the peak variance in particle volume fraction increases. Though the volume fraction vari-
ance decreases following the peak value, the asymptotic post-shock value reached for large x is substantially larger
than the value corresponding to the elastic limit and the 3Γ distribution. This clearly suggests that inelastic collisions
promote clustering of particles as discussed before. This trend follows classical results obtained for uniform cooling
problems in granular flow [19, 27]. If a uniform granular gas is given an initial granular temperature and left to cool,
random clusters form, as collisions kill off the fluctuating energy. Particles with close neighbors are the most likely
to undergo a collision, where a portion of the random kinetic energy is lost. Post collision, this pair of particles has
less random kinetic energy and are thus more likely to remain close together at a higher local volume fraction. This in
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turn increases the chance of additional particles colliding with the clustered pair, and nucleates the growth of random
clustered structures as the granular gas evolves toward a perfectly cooled state. Increased inelasticity, however, appears
to slightly slow the rate at which this clustering occurs, as well as the rate at which the gas reaches a cooled state. This
can be observed in the fact that the location of peak variance shifts farther away from the shock for inelastic collisions.
The elastic limit does not experience cooling due to collision, so the change in Voronoi volume fraction variance must
be due to the nonlinear drag force. Thus, the difference between the inelastic coefficients (e < 1), and the elastic limit
signifies the effect of collisions.

Due to the preferential direction of shock propagation in the x-direction, there is inherent anisotropy in the col-
lisional process and granular temperature. Figure 18 shows the granular temperature in each of the three principle
directions as a percentage of the total granular temperature. As the coefficient of restitution is decreased, the anisotropy
increases. Opposing trends are seen in the x-temperature compared to the y and z-temperatures. Since the drag force
acts primarily in the x-direction, velocity fluctuations in the y and z-direction occur primarily due to collisions. As the
coefficient of restitution decreases, collisions dissipate more energy and the granular gas cools more quickly leading
to a diminishing temperature contribution in these directions. Since the contributions of all three directions must sum
to one, this in turn corresponds to the x-direction holding a larger contribution of the total granular temperature. As
with the total granular temperature, a rapid increase before the peak can be observed in the three components as well.

(a) (b)

(c)

FIG. 18: Case 1: Individual components of the granular temperature are plotted showing that the temperature in the
x-direction (a) carries between 56% to 82% of the velocity fluctuations, while the y and z-temperatures (b. and c.)
carry 9% to 22% of the velocity fluctuations.
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2. Effect of volume fraction: Case 2 φ0 = 0.05

Next we investigate a more dilute system where particles enter at an initial volume fraction of φ0 = 0.05, and compact
to an equilibrium volume fraction of φe = 0.256. For φ0 = 0.05, the multiphase shock relations lead to a 5-fold
increase in mean volume fraction, as well as a significant velocity jump across the leading shock. Figure 19 shows
a plot of the average velocity of the system. This more dilute system takes approximately twice as long to relax to
the final equilibrium velocity than that for Case 1, as can be seen by comparing Figures 19 and 17. The increase in
relaxation length is expected due to the quasi-steady drag force dependence on the volume fraction. Additionally, the
equilibrium fluid to particle density ratio is larger which increases the particle time scale. The effect of this density
ratio difference will be discussed further in Case 3.

FIG. 19: Case 2: The mean velocity relaxation for φ0 = 0.05 is shown to be the same for all coefficients of restitution.

Figure 20 shows a plot of the granular temperature scaled by the peak values. The granular temperature exhibits an
excellent self-similar collapse for all values of e. The scaled peak values are shown in Figure 21, and are 3 to 4
times smaller than the higher initial volume fraction Case 1, shown in Figure 15 . Like the relaxation length scale,
the change in granular temperature profile is expected due to the volume fraction dependence of the quasi-steady
force. The Voronoi volume fraction variance in Figure 22 shows that unlike Case 1, the volume fraction variance
is monotonically increasing. For the dilute case, at the end of the computational domain at x = 500d, the Voronoi
volume fraction varies slowly in its approach to the equilibrium state. This trend is seen in the 3Γ distribution plotted
in Figure 22. As for Case 1, the elastic limit (e = 1) maintains the lowest variance, while the more inelastic cases
(e < 1) attain a higher variance. Since the equilibrium volume fraction in this case is only 0.256 , we do not observe a
decrease in the variance of Voronoi volume fraction as the system is sufficiently far from the close packing limit.
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FIG. 20: Case 2: The scaled granular temperature variation is shown for φ0 = 0.05. Unlike in Case 1, all coefficients
of restitutions collapse into a self-similar curve.

(a) (b)

FIG. 21: Case 2: Peak non-dimensional granular granular temperature (a) and the non-dimensional x-location of the
peak (b).
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(a) (b)

FIG. 22: The scaled Voronoi volume fraction variance for φ0 = 0.05 for Case 2 (a) and Case 3 (b) plotted for 3
values of e as well as the theoretical 3Γ distribution. Unlike in Case 1, the volume fraction variance is monotonically
increasing for all values of e as well as the 3Γ distribution.

3. Effect of post-shock density ratio: Case 3, δ = 0

The evolution of the particles downstream of the shock depends primarily on the ratio of the particle density to
post-shock equilibrium gas density. Using the multiphase shock relations, an effective way to alter this post-shock
equilibrium density ratio is to change the ratio of the specific heat of the particle to the specific heat of the gas (δ). For
the case where δ = 0, there is no heat transferred between the gas phase and the particle phase, and the specific heat
ratio of the mixture γmix is equal to the gas γ. Previously in Case 1 with δ = 1, the particle to fluid density ratio was
approximately 10. For the Case 3 with δ = 0, this density ratio is raised to approximately 25. Table III shows that the
equilibrium velocity for Case 3 is almost twice that of Case 1, and thus the final equilibrium volume fraction is almost
half of that of Case 1. While the pressure ratio across the shock does change between Cases 1 and 3, it only changes
by about 15 percent. By comparing the multiphase shock properties between Cases 1, 2, and 3, we note that many of
the parameters are tightly coupled. Within this framework, it is difficult to study the change of a single parameter in
isolation while remaining consistent with the multiphase shock relations.

Due to the density ratio change, as well as the lower equilibrium volume fraction, a longer relaxation length is
observed for Case 3 in Figure 23 compared to Cases 1 and 2. The granular temperature has a self-similar collapse,
although the peak values of the granular temperature do not follow the trend observed in Cases 1 and 2. Previously,
the peak granular temperature increased as the coefficient of restitution was increased. Figure 25, shows that the
peak granular temperature slightly decreases as e is increased from a value of e = 0.4, and reaches a minimum at an
intermediate value of e = 0.6, after which the peak granular temperature begins to rise again. Scaled granular tem-
perature plots are shown in Figure 24 for the x and the y-directions (the z-direction is not plotted as it has an identical
profile to that of y). The trends for varying coefficient of restitution are consistent with previous results; lowering the
coefficient of restitution leads to higher velocity fluctuations in the x-direction, and lower velocity fluctuations in the
y and z-directions. The difference in the total granular temperature indicates that the relative size of the streamwise
and spanwise velocity fluctuations changes for the different coefficients of restitution. Since the particle time scale,
τp, is larger in Case 3, the velocity fluctuations in the x-direction do not die off as quickly as they did for Case 1. This
leads to a competition between collisional dissipation and aerodynamic drag dissipation. The Voronoi volume fraction
variance has a similar profile to the dilute volume fraction case shown in Case 2. Similar to Case 2, the Voronoi
variance is monotonically increasing and has not leveled off by the end of the simulation domain.
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FIG. 23: Case 3: The mean velocity relaxation for δ = 0 is shown to be the same for all coefficients of restitution
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(a) (b)

(c)

FIG. 24: Case 3: (a) The scaled granular temperature variation for δ = 0 shows a self-similar collapse under the
prescribed scaling. The components of the granular temperature are scaled by the peak total values and plotted for
the case where δ = 0. The trends in the x-temperature (b) and the y-temperature (c) are shown to follow that of
Case 1 where the relative contributions in the x-direction increase as the coefficient of restitution is lowered while the
y-direction contributions increase as the decrease as the coefficient of restitution is lowered.
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(a) (b)

FIG. 25: Case 3: For the δ = 0 case the peak granular temperature (a) has an almost parabolic dependence upon e
first decreasing and then increasing as e is increased. The location of the peak value (b) follows the trend of Case 1
where it approaches the shock location as the coefficient of restitution is increased.

V. CONCLUSION

The propagation of a planar shock over a bed of particles provides a canonical example to investigate the granular
physics of gas-induced particle-particle interaction. This problem nicely complements the classical gravity-driven
granular shear flow problem which has been the subject of intense study in the literature. Similar to classical granular
shear flow problem, the planar shock problem is statistically stationary. Unlike the granular shear flow problem,
however, there is a strong inhomogeneity in the streamwise direction normal to the plane of the shock. One of the
key findings of the present investigation is that a random distribution of particles of uniform probability upstream of
the shock, develops strong clustering both at the macro and microscales as the shock passes through the bed. Using
the Voronoi volume associated with each particle, we observe traveling wave structures that form as the particles pass
through the shock, relative to a shock-attached frame of reference. Alternating layers, with substantially higher and
lower than the mean particle concentration, are observed to travel downstream at post-shock velocity.

A key aspect of this study is the use of an advanced aerodynamic force model to represent the gas induced force
on each particle in terms of quasi-steady, pressure-gradient, and added-mass force contributions. The latter two
inviscid forces are significant only during the short period of the shock passing over the particle, as they decay on
the acoustic time scale. In contrast, the viscous quasi-steady force acts over a long period until the particle velocity
reaches to equilibrium with the post-shock gas velocity. In particular, we model the quasi-steady force to be dependent
on local particle volume fraction and this volume fraction dependent drag force has been known to induce instability.
This gives rise to macroscale clustering of particles which leads to the observed traveling wave structure in the particle
concentration along the inhomogeneous streamwise direction. This particle clustering behavior is observed even in the
limit of elastic collisions. With the introduction of inelasticity, through coefficient of restitution e < 1, the clustering
behavior substantially increases. Inelastic collisions lead to energy dissipation upon each collision and thus promotes
clustering of particles at the microscale. This, in combination with the volume fraction dependent drag induced
macroscale clustering, leads to large amplitude waviness in the particle concentration downstream of the shock.

The ensemble-averaged statistics for the Voronoi volume fraction upstream of the shock wave show good agree-
ment with a theoretical distribution for randomly distributed particles of uniform probability. However, downstream
of the shock wave, the Voronoi volume statistics depart from that of a random distribution, providing a quantita-
tive measure of the clustering behavior. Assuming a synthetic sinusoidal variation in particle volume fraction, we
calculated the corresponding theoretical Voronoi volume distribution and showed that it qualitatively describes the
distribution observed in the DEM simulations. The variance of the Voronoi volume fraction is seen to increase by
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orders of magnitude as the inelasticity of the particle collisions is increased. This is an indicator of the intensification
of particle clustering due to inelastic collisions. At high volume fractions, the Voronoi volume fraction variance is
constrained by the close packing limit. In contrast, dilute systems show a more pronounced clustering behavior.

The granular temperature shows a nearly self-similar collapse when scaled by the peak temperature and the down-
stream location of the peak. The magnitude of the peak temperature increases as the coefficient of restitution ap-
proaches unity. As energy is dissipated due to inelastic collisions, the particle system retains less of its random
fluctuating energy resulting in the lower temperature. A majority of the fluctuating energy is stored in the x-direction,
which is the direction of the aerodynamic drag force.

The work presented in this paper is greatly simplified by the assumption of the equilibrium gas state immediately
downstream of the multiphase shock. Furthermore, we have used the Voronoi volume of the particles to model the
gas-mediated force fluctuations that are seen by the particles. Remarkably, these fluctuations form a wave-like clus-
tered particulate structure that follows known instabilities in fluidized beds. Thus, despite the simplifying assumptions,
the simulations presented in this paper point to an important particulate structure present in shock-particle interaction
problems that future simulations and experiments should be mindful of. Future work should employ more realistic
gas dynamics that account for the fully four-way coupled nature of this problem. Additionally, we have demonstrated
the use of Voronoi tessellation for both introducing force fluctuations, as well as to quantify clustering of particulate
structures.

Appendix A: Appendix

For the case of a planar shock wave passing over a particle, Equation (20) for the inviscid unsteady force can be
expressed as assuming the particle velocity to be much smaller than the shock velocity in the laboratory frame

f̃ iu,i =
12

ρ̃p

∫ ∞
0

Kiu(ζ)
[(
ρ̃1ũ1 − ρ̃0ũ0

)(
ũs(τ − ζ)− 1

2

)2
ũs

]
dζ ex (A1)

Further, in the limit of a small Mach number, the inviscid Kernel has been explicitly given as

Kiu(ζ) = e−ζ cos(ζ) . (A2)

Plugging the kernel (A2) into (A1) and taking the constant gas properties outside of the integrand, we explicitly
evaluate the integral. For the case of a shock passing over a particle, we define τa as the non-dimensional arrival time
when the shock touches the front of the particle. Till this time (i.e., for τ < τa) the particle is unaware of the shock
and therefore f̃ iu,i = 0. After the shock arrival time the particle will experience inviscid unsteady force, along with
the other force components. We identify two separate time regimes over which the force is active. The first is from τa
to the time τe when the shock reaches the back-end of the particle. During this first regime the shock is located over
the particle and the volume-averaged gas properties as seen by the particle change over time. After this time τe, the
gas properties averaged over the particle is no longer changing, and the inviscid unsteady force is only in response to
relative acceleration that happened during τa ≤ τ ≤ τe. Equation (A2) is broken into the two following integrals.

f̃ iu,i =
12

ρ̃p
ũs
(
ρ̃1ũ1 − ρ̃0ũ0

) ∫ τ−τa

0

e−ζ cos(ζ)
(
ũs(τ − τa − ζ)− 1

2

)2
dζ ex for τa ≤ τ ≤ τe

f̃ iu,i =
12

ρ̃p
ũs
(
ρ̃1ũ1 − ρ̃0ũ0

) ∫ τ−τa

τ−τe
e−ζ cos(ζ)

(
ũs(τ − τa − ζ)− 1

2

)2
dζ ex for τ ≥ τe

(A3)

We note that the difference between the shock departure and shock arrival time can be approximated as τb−τa = 1/ũs
if we ignore the negligible relative motion of the particle during this brief period. Furthermore we shift the time from
the shock arrival time to define τ ′ = τ − τa. Equation (A3) can be analytically integrated to obtain,
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f̃ iu,i =
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1

4

)
+
(
e

1
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(A4)

[1] J. Ai, J.-F. Chen, J. M. Rotter, and J. Y. Ooi. Assessment of rolling resistance models in discrete element simulations. Powder
Technology, 206(3):269–282, 2011.

[2] G. Akiki, T. Jackson, and S. Balachandar. Force variation within arrays of monodisperse spherical particles. Physical Review
Fluids, 1(4):044202, 2016.

[3] G. Akiki, T. Jackson, and S. Balachandar. Pairwise interaction extended point-particle model for a random array of monodis-
perse spheres. Journal of Fluid Mechanics, 813:882–928, 2017.

[4] G. Akiki, T. L. Jackson, and S. Balachandar. Pairwise interaction extended point-particle (piep) model for a random array of
monodisperse spheres. Journal of Fluid Mechanics, 2016 (under review).

[5] S. Annamalai and S. Balachandar. Faxén form of time-domain force on a sphere in unsteady spatially varying viscous com-
pressible flows. Journal of Fluid Mechanics, 816:381–411, 2017.

[6] R. Beetstra, M. Van der Hoef, and J. Kuipers. Drag force of intermediate reynolds number flow past mono-and bidisperse
arrays of spheres. AIChE Journal, 53(2):489–501, 2007.
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