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Abstract

Direct numerical simulation (DNS) combined with the Lagrangian point particle model is used

to study Rayleigh-Bénard convection in order to understand modifications due to the interaction

of inertial, non-isothermal particles with buoyancy-driven turbulence. In this system, turbulence

can be altered through direct momentum coupling, as well as through buoyancy modification via

thermal coupling between phases. We quantify the effect of the dispersed phase by changes to

the total integrated turbulent kinetic energy (TKE) and Nusselt number (Nu). The dispersed

particles experience gravitational settling, and are introduced at the lower wall so that turbulence

must overcome the settling velocity for the particles to vertically distribute throughout the domain.

We focus primarily on particle inertia, settling velocity, mass fraction, and the ratio of the particle to

fluid specific heat. Furthermore, individual contributions by the momentum coupling and thermal

coupling are studied to see which most significantly changes Nu and TKE. Our results show that

particles with Stokes number of order unity maximize Nu, corresponding to a peak of clustering

and attenuation of TKE. Increased mass fractions lead to a linear increase of Nu and decrease of

TKE. With varying specific heat ratio, Nu and TKE exhibit monotonic behaviors, where in the

high limit particles become isothermal and depend upon the initialized particle temperature. It

is also shown that particles two-way coupled only through momentum attenuate Nu and weakens

TKE while thermal-only coupling also weakens TKE but enhances Nu. When both couplings are

present, however, thermal coupling overwhelms the momentum coupling attenuation and the net

result is an enhancement of Nu.

∗ Hpark6@nd.edu
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I. INTRODUCTION

In a wide variety of natural and industrial systems, turbulent flows suspend particulate

matter which, depending on circumstances, can influence the flow and modify the overall

transport of heat, momentum, and mass. This two-way coupling phenomena has been

studied extensively in various wall-bounded and homogeneous turbulent flow simulations

[1–7], where the influences of particle inertia, concentration, and/or settling velocity on a

multitude of statistical and dynamical characteristics of the turbulence have been examined

in detail. Relatively speaking, however, numerical studies on the effects of non-isothermal

particles are much fewer in number, and primarily focus on the ability of heat conducting

particles to modify heat transfer or alter temperature fluctuation statistics of the carrier fluid

[8–11]. Even fewer in number are investigations which consider the multiple feedback effects

of the particles on the turbulent kinetic energy of the fluid — both via direct momentum

exchange as well as thermal feedback through buoyancy forces.

In wall-bounded turbulent flows, it has been repeatedly demonstrated that small, two-way

coupled particles can directly weaken near-wall coherent structures, particularly when the

response time of the particle is near that of the coherent motions [5, 12]. At the same time,

these small particles can have a more complex influence on turbulent kinetic energy since the

suppression of these coherent structures can strengthen near-wall streaks, thereby enhancing

velocity variance near the walls [13–15]. In the presence of thermally coupled particles and

buoyancy-driven turbulence, however, these (and other) influences of momentum coupling

between the carrier and particle phases will be combined with the thermally-induced changes

to the turbulent flow, since in many cases thermally coupled particles are found to enhance

temperature fluctuations and modify mean temperature gradients of the fluid [10, 11].

Recently, Frankel et al. [16] demonstrated that particles heated externally via irradiation

in homogeneous turbulence can significantly modify turbulent kinetic energy (TKE) and

mean particle settling velocities via buoyant plumes emerging from hot, clustered particles.

While in this case the particle temperatures were quite high, buoyant updrafts were created

that could exceed the settling velocity of the particles, and the resulting turbulent kinetic

energy of the carrier fluid can be enhanced due to increased buoyancy production. Charac-

teristics of this particle/buoyancy-induced turbulence is described by Zamansky et al. [17]

and Zamansky et al. [18], where turbulence in otherwise quiescent fields is created by heating
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particles and establishes a feedback loop where turbulence causes particle clustering, which

concentrates the particle heat sources, thereby causing further turbulence production.

In the present study our aim is to further explore the role of thermally and dynamically

coupled particles in buoyancy-driven turbulent flow, however in systems where the particles

are not externally heated. We use turbulent Rayleigh-Bénard (RB) flow as an idealized

test configuration and focus on the relative balance between dynamic and thermal coupling

between the particles and surrounding fluid. In this context, several studies have examined

the role of small bubbles in RB flow. It has been observed that vapor bubbles in liquid can

contribute in multiple ways to the surrounding flow: their growth/decay indicates a sensible

and latent heat exchange with the surrounding fluid and therefore a carrying capacity for

heat across the domain, and their buoyancy can strengthen the cellular up- and downdrafts

commonly observed in RB convection [19, 20]. In many cases the overall Nusselt number

is enhanced, although the bubbles can damp out temperature gradients which give rise to

increased buoyant production of TKE. The enhanced Nusselt number is seen over a wide

range of flow Rayleigh numbers, and the bubbles are particularly effective when they have

large potential for growth [21].

While the effects of bubbles and boiling have far-reaching implications on heat transfer in

buoyancy-driven systems, we are instead focused, in this study, on the effects of solid particles

in gas-phase turbulence, particularly when the particles must be lifted by the turbulence from

the lower boundary into the interior of the domain. In a somewhat similar setup, Oresta and

Prosperetti [22] performed simulations of RB flow where solid particles were allowed to settle

from the top boundary downwards, and whose temperature was specified (i.e. the particles

were isothermal). Simulations were performed over a wide range of particle diameters and it

was found that mechanical and thermal coupling can both substantially change the overall

heat transfer, mean particle settling velocities, and flow patterns in the system. We intend to

further this understanding by investigating particles whose temperature is non-isothermal,

and whose suspension is dictated by the turbulence which it can modify through both

mechanical and thermal coupling.
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II. METHOD

Our goal is to investigate the influence of thermally conducting particles which are smaller

than the smallest scales of the turbulence, so we therefore invoke the point particle assump-

tion and track individual particles as Lagrangian points with their own mass and tem-

perature. At the same time, the continuous carrier phase is solved via direct numerical

simulation (DNS) on an Eulerian grid and is subject to the Navier-Stokes equations under

the Boussinesq approximation:

∂ui
∂xi

= 0, (1)

ρf
Dui
Dt

= − ∂p

∂xi
+ µf

∂2ui
∂x2j

+ βT ′gρfδ3i + Fi, (2)

ρfCp,f
DT

Dt
= kf

∂2T

∂x2j
+ S, (3)

where ui is the fluid velocity, ρf is the fluid density, p is the pressure, µf is the fluid

dynamic viscosity, Cp,f is the specific heat of the fluid, kf is the thermal conductivity of

the fluid, g is the acceleration of gravity, δ is the Kronecker delta, and β = 1/T0 is the

thermal expansion coefficient (assuming the Boussinesq limit and an ideal gas, where T0

is the reference temperature). The temperature deviation T ′ = T − T0 is the deviation

of the temperature from the reference state (taken herein as the cold plate temperature).

The terms Fi and S represent the momentum and thermal two-way coupling between the

carrier and dispersed phases, and are computed by summing the net momentum and energy

gained/lost by the particles and distributing to the surrounding grid points.

Likewise, mass, momentum, and energy conservation of the dispersed phase yields the

following equations for each individual particle:

dxi
dt

= vi, (4)

dvi
dt

=
1

τp
(uf,i − vi) + gδ3i, (5)

dTp
dt

=
(Tf − Tp)

τT
(6)
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where terms other than gravity and hydrodynamic drag have been neglected from the par-

ticle momentum equation since the density ratio between the carrier and particle phase is

large, and Stokes drag is assumed because the particle Reynolds numbers remain small [23].

The particle position xi evolves according to its velocity vi, and Tp is the particle temper-

ature. The fluid velocity uf,i and temperature Tf at the particle location are interpolated

using sixth-order Lagrange interpolation. In equation 5, τp = (ρpd
2
p)/(18µf ) is the Stokes

acceleration timescale of the particle, where dp is the particle diameter and ρp is the particle

density. In equation 6, τT = (3τpPrCp,p)/(Cp,fNup) is the thermal timescale of the particle,

where Cp,p is the particle specific heat and Pr = νf/αf is the fluid Prantdl number, where

νf = µf/ρf is the fluid kinematic viscosity and αf = kf/(ρfCp,f ) is the fluid thermal dif-

fusivity. For flow past a spherical droplet, Nup is obtained from a dimensionless empirical

correlation [24]:

Nup = 2 + 0.6Re1/2p Pr1/3, (7)

where Rep = |vi − uf,i|ρfdp/µf is the particle Reynolds number. The notation |vi − uf,i|

refers to the magnitude of the vector difference between the fluid and particle velocities.

Equations 1 – 6 are solved using the same numerical code as used previously in our re-

search group [7, 25–27], so only a brief summary is provided here. The code is periodic

in the horizontal x and y directions, and uses a stretched grid in the vertical z direction.

A pseudospectral discretization is used in the horizontal directions, and second-order finite

differences are used in the vertical direction. Time integration for both the particle and car-

rier phases is done with a third-order Runge-Kutta scheme, and the divergence-free velocity

field of the carrier phase is enforced via a fractional step method.

The numerical domain is rectangular with a size of 3H × 3H × H and a grid of

[Nx, Ny, Nz] = [128, 128, 128]. A stretched, non-uniform grid is used in the z-direction

to resolve the boundary layers. Boundary conditions for the carrier phase are of Dirichlet

type at the upper and lower boundaries: no-slip for all three velocity components and

specified temperatures Ttop = 300.15 K and Tbot = 310.15 K at the upper and lower bound-

aries, respectively. For the particles, an elastic reflection is enforced at the upper boundary

(equivalent to a no-flux condition), and the particle is removed when crossing the lower

boundary.

In this study we are particularly interested in systems where the dispersed phase must be

6



suspended by the turbulence from below, akin to physical processes such as aeolian saltation

[28]. Therefore for each particle which is removed at the lower boundary due to gravitational

settling, we re-insert a particle which possesses the same velocity and temperature as the

exiting particle, and place it at a randomly chosen location in the lower 10% of the domain.

By giving the new particle the same properties as the exiting particle, we ensure that the

particle phase does not represent an external source of heat or momentum, unlike previous

studies [22]. The maximum reinsertion height of z/H = 0.1 is based on the crossover point

between diffusive and turbulent momentum fluxes; at this point turbulent transport of heat

and momentum begins to dominate over diffusive transport, and we take this as a location

where turbulence can potentially lift particles into the interior of the domain. The reinjection

percentage (the average number of particles reinjected per time step, normalized by the total

number of particles) is around 0.2% for St ≈ 10.0 and much smaller (0.002%) for St ≈ 0.1

for low settling velocities. This percentage increases with settling velocity at all St.

For all numerical simulations herein, the Rayleigh number of the flow, Ra = (gβ∆TH3)/(νfαf ),

is set to 2× 106, where ∆T = Tbot − Ttop is the difference in plate temperature. In all cases,

the particle temperature is initialized at Tp,init = 305 K. Other constant properties of the

simulations are shown in Table I. Unladen simulations were validated against experimental

Nu-Ra relationships [29], while Nu from isothermal, particle laden simulations were com-

pared to previous numerical results [22] (Nu defined below). The Taylor-scale Reynolds

number Reλ is approximately 50. Particle-laden simulations are initialized by placing parti-

cles at random locations within a previously-obtained unladen turbulent field. We perform

a series of simulations to investigate four key dimensionless parameters which govern this

multiphase system:

1. The particle inertia, as described by the Stokes number St = τp/τf , where τp

was defined above and where τf is chosen here as the Kolmogorov fluid timescale

τf = (ν/ε)1/2, where ε is the vertically-averaged rate of dissipation of turbulence ki-

netic energy. The local Kolmogorov time scale does not vary significantly from the

effects of the two-way coupled system, and the vertical profile of ε does not deviate

significantly from the vertically averaged value (see Fig. 8(a)).

2. The dimensionless particle settling velocity Vg/Ubuoy, where Vg = τpg is the particle

terminal velocity and Ubuoy =
√
gβ∆TH is a buoyancy velocity scale.
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3. The particle mass fraction φm, which is defined as the total mass of particles in the

system to mass of carrier phase.

4. The specific heat ratio Cp,p/Cp,f .

TABLE I. Baseline fluid and particle properties. These parameters are constant unless specifically

varied in subsequent sections.

Parameter Value

Ra 2 × 106

H 0.116 m

Lx, Ly 0.348 m

Ubuoy 0.204 m s-1

ρf 1.29 kg m-3

νf 1.37× 10−5 m2 s-1

αf 2.02 × 10−5 m2 s-1

Pr 0.678

∆T 10.0 ◦C

φm 0.05

Cp,f 1.0 kJ kg-1 K-1

Cp,p 4.179 kJ kg-1 K-1

We also vary the couplings (i.e. thermal and dynamic) to determine which leads to a

larger influence on the carrier phase heat transfer and turbulence. In the next section, the

findings from each of these simulation sets will be described in detail.

III. RESULTS

A. Particle inertia and settling velocity

It is well-known that particle inertia leads to preferential clustering [30], and that the

combination of inertial clustering and gravitational settling can lead to preferential sweeping
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and enhanced vertical velocities [31, 32]. Therefore in light of this interplay between inertia

and gravity, we begin by discussing results from a series of simulations which vary St and

Vg/Ubuoy independently, in order to understand the relative roles of inertia and settling on

modulation of turbulence in the system. Numerous simulations were run across the two-

dimensional parameter space ranging between 10−1 < St < 15 and 10−4 < Vg/Ubuoy < 0.1.

In all cases, once the simulations reaches t∗ ≈ 175, where t∗ = tUbuoy/H, a statistically steady

state is achieved. From this point, time averaging is performed until t∗ ≈ 1400, leading to

average quantities (such as vertical particle concentration and temperature distribution)

statistically converged within 1%.

FIG. 1. Instantaneous snapshots of normalized temperature contours in a top-down view at a

height of z/H = 0.8 for (a) St ≈ 0.1, (b) St ≈ 1, and (c) St ≈ 10. Black dots represent particles,

and the slice is taken at a height of z/H = 0.85. Vg/Ubuoy = 10−3 for these cases.

Fig. 1 qualitatively demonstrates the effect of particle inertia on clustering by providing

instantaneous snapshots of normalized fluid temperature (color contours) and particle loca-

tion (black dots) for varying St at constant Vg/Ubuoy = 10−3. From the figure is it apparent

that particles with St ≈ 1 tend to cluster into bands which are closely aligned with the

up- and downdrafts of the RB convection cells, while for much larger and smaller St, the

particles remain more homogeneously distributed throughout the domain. Note that the

number of particles is different since the mass concentration is held constant at φm = 0.05

(φm is the ratio of particle mass to fluid mass in the system).

As with shear-driven turbulent flows, particles drift toward the walls in the absence of
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FIG. 2. Profiles of normalized number concentration for (a) varying St at a constant Vg/Ubuoy =

10−3 and (b) varying Vg/Ubuoy at a constant St ≈ 1

gravitational settling due to turbophoresis [33, 34], despite significant differences in near-

wall coherent structures between turbulent channel and RB flows. Fig. 2(a) shows that

this effect is of similar magnitude at both St ≈ 1 and St ≈ 10, and that for St ≈ 0.1 the

particles are more or less distributed evenly across the vertical direction since they behave

mostly as fluid tracers (except at the walls, where boundary conditions cause deviations).

The relatively small settling velocity in Fig. 2(a), Vg/Ubuoy = 10−3, induces a small measure

of asymmetry in all three profiles, but this settling is not large enough to overcome the drift

toward both walls.

At a constant Stokes number of St ≈ 1, the effect of increasing the settling velocity is

shown in Fig. 2(b). Here, small increases of settling velocity actually increase the concentra-

tions near the centerline (z/H = 0.5), as the downward settling begins to overcome upward

turbophoretic drift. Eventually, at strengths around Vg/Ubuoy = 0.05, the gravitational set-

tling becomes too strong for the flow to maintain suspension, and by Vg/Ubuoy = 0.1 the

particles are nearly all settled at the bottom. For these largest settling velocities, there is a

sharp discontinuity in concentration at z/H = 0.1 due to the random injection location of

regenerated particles in the bottom 10% of the domain.

As a basis for understanding and explaining modifications to turbulence and heat transfer

due to the two-way coupling of the particles, Fig. 3 presents several quantities associated

with the particles’ ability to thermally interact with the flow, as a function of St at a constant
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Vg/Ubuoy = 10−3. First, Figs. 3(a) and 3(b) show that the overall mean temperature

FIG. 3. Normalized, mean vertical profiles of (a) fluid temperature 〈T 〉, (b) particle temperature

〈Tp〉, (c) difference between average particle temperature and average fluid temperature seen by the

particles 〈Tp〉 − 〈Tf 〉, and (d) difference between fluid temperature and fluid temperature seen by

the particles 〈T 〉 − 〈Tf 〉. The dashed horizontal reference line represents the maximum reinjection

height of z/H = 0.1. Shown are three different Stokes numbers at a constant Vg/Ubuoy = 10−3.

in the system is only slightly modified as a result of the two-way coupled particles, but

the particle temperature can deviate substantially from the local fluid temperature. For

Cp,p/Cp,f = 4.179, the thermal time scale τT is about 4 times that of the Stokes acceleration

time scale τp (see for example Nakhaei and Lessani [11] or Zonta et al. [8]). This, in effect,

leads to a thermal Stokes number (defined as StT = τT/τf ) to be 4 times that of the
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momentum based St. As the Stokes number increases, the overall magnitude of the difference

between the fluid and particle temperatures increases due to the particles’ higher thermal

inertia. The reinjection procedure of setting the new particle temperature equal to the

departing particle temperature causes a small kink at z/H = 0.1 for high particle inertia,

which again results because higher St particles cannot adjust their temperature as quickly

as low St particles.

This inability of particles to quickly adjust to the local fluid temperature is what drives

the thermal coupling between the dispersed phase and the fluid, which in turn modifies

heat transfer and turbulence in the RB system (more will be said on this below). To further

quantify this thermal disequilibrium, Fig. 3(c) shows mean profiles of the difference between

the particle temperature and the fluid temperature seen by the particles. It is this quantity

which appears in the right hand side of Eq. 6, driving heat exchange between the particle

and fluid. In the study of Oresta and Prosperetti [22], the particle temperature was assumed

constant, so this quantity only reflected fluid temperatures seen by the particle, and would

not be as sensitive to the Stokes number. Here, Fig. 3(c) shows that with increasing Stokes

number, the overall degree of disequilibrium between the particle temperature and the local

fluid temperature increases, which again is consistent with the higher thermal inertia of

the larger St particles. A similar feature is seen in Nakhaei and Lessani [11]. Above the

reinjection height of z/H = 0.1, particles are almost all warmer than their surroundings,

while below z/H = 0.1 the particles are always cooler due to their removal/replacement as

they settle out of the bottom domain.

Finally, Fig. 3(d) shows a slightly different quantity: the difference between horizontally

averaged fluid temperature and the average temperature seen by the particles. In the case

of particles which are homogeneously distributed across the horizontal plane, this difference

would be zero since the particles would uniformly sample all of the fluid temperatures in

the plane. Therefore, the difference 〈T 〉− 〈Tf〉 indicates particles preferentially collecting in

regions where the temperature does not equal the true horizontal mean. Indeed, Fig. 3(d)

shows that particles of St ≈ 0.1 show very small differences between these temperatures,

which is consistent with the qualitative observation of Fig. 1(a). In the upper portion of

the domain, this difference is maximum and positive for St ≈ 1, indicating that particles

are preferentially residing in areas where the local temperature is cooler than the horizontal

average (i.e., downdrafts). Near the bottom, the particles reside in regions warmer than the
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mean (i.e., updrafts), and this effect is modified by the lower boundary condition.

An alternative way to identify particle clustering can be done through Voronöı diagrams

[35]. Here, Voronöı cells are drawn and their areas are inversely related to the local concen-

trations; their statistical distribution can be used to quantify clustering. In Fig. 4(a), the

Voronöı cell areas are visualized for a representative slice taken at z/H = 0.5 for the St ≈ 1,

Vg/Ubuoy = 10−3 case. We then compare the statistical distribution of Voronöı areas to that

of a random Poisson process and compare the standard deviation σV to identify clustering.

FIG. 4. (a) Instantaneous Voronöı diagram for St ≈ 1 taken at z/H = 0.5 for a slice of thickness

2η (the Kolmogorov length scale) with Vg/Ubuoy = 10−3. (b) Standard deviation of the normalized

Voronöı area σV , normalized by that of a random Poisson process, σRPP , as a function of St.

Figure 4(b) presents the ratio σV /σRPP as a function of St for Vg/Ubuoy = 10−3, where

σRPP is the standard deviation of Voronöı areas if particles were randomly distributed. The

figure shows the greatest clustering for St at order unity. In the limits of low and high St,

σV approaches σRPP as particles become tracers on the low end, and as particles become

unresponsive to velocity fluctuations on the high end.

In this study we focus on two intertwined effects of the particles: altering the cross-

channel heat transfer, and modifying the characteristics of the turbulence. The former is

quantified by the channel Nusselt number: Nu = qH/ (kf∆T ), where q is the total heat flux

from the bottom to the top boundary. The latter we measure by the vertically integrated

turbulent kinetic energy: TKE = 1
H

∫ H
0
kdz, where k(z) = 1

2
〈u′2 + v′2 + w′2〉 is the mean

TKE at each height.
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FIG. 5. Normalized (a) Nu and (b) TKE as a function of Vg/Ubuoy for St ≈ 1 with two-way

thermal and mechanical coupling. The dashed horizontal lines are the unladen values reflect the

unladen values.

Fig. 5 presents a cross section of our results holding St ≈ 1 constant while varying

the settling velocity, in order to observe changes to heat transfer and turbulence. From

Fig. 5(a), the addition of non-isothermal, two-way coupled particles leads to an increased

Nu compared to the unladen case, regardless of settling velocity. In the limit of vanishing

gravitational settling, Nu approaches a gravity-free limit of roughly 15% higher than the

unladen value, while in the limit of high settling velocity, Nu approaches the unladen value

as all of the particles are confined to the lowest 10% of the domain. Between these limits,

peaking around Vg/Ubuoy ≈ 10−3, the enhancement of Nu reaches a maximum, which we

argue is linked to the increased concentration in the domain center as gravitational settling

overcomes upwards turbophoretic drift (cf. Fig. 2(b)).

Fig. 5(b), on the other hand, shows that the turbulence of the system is actually weakened

compared to the unladen case for nearly all settling velocities. Again, the limit of low

Vg/Ubuoy approaches the gravity-free damping of TKE while the upper limit approaches a

value near the unladen case, and the peak damping of TKE occurs now closer to Vg/Ubuoy ≈

10−2.

For understanding the effects of particle inertia, Fig. 6 shows the converse of Fig. 5: the

settling velocity is held constant at Vg/Ubuoy = 10−3 while St is varied between 0.1 < St < 15.
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FIG. 6. Normalized (a) Nu and (b) TKE as a function of varying St for Vg/Ubuoy = 10−3 with

two-way coupling. The horizontal lines are the unladen values.

Again, Nu is enhanced while TKE is suppressed for all St compared to the unladen

values. Fig. 6(a) shows a distinct peak of Nu enhancement at St ≈ 1, which is associated

with particle clustering [36, 37]. In the limits of high and low St, Nu approaches its unladen

value. The TKE of the system, however, has a more unique dependence on St, as shown in

Fig. 6(b). Here, there is not a single maximum of TKE reduction, and there exists a local

minimum in TKE reduction at St ≈ 1. We note that for low St, Fig. 6(b) does not yet

approach the unladen TKE as our thermal inertia based on τT is still non-negligible. Thus

St ≈ 0.1 corresponds to StT closer to 0.4, and we expect an approach to unladen values of

TKE at even lower St. Given that we hold φm constant, these simulations are too expensive

for the large number of small particles required.

In this flow particles have the ability to modify turbulence in two ways, via direct mo-

mentum coupling between phases, and through modifications to the temperature profile.

To therefore better understand Fig. 6, Fig. 7 presents two of the normalized components

of the heat flux: qturb = 〈w′T ′〉, which is the turbulent heat flux, and qpart, which is the

vertical heat flux due to the particle source term S in Eq. 3. The modification of qturb is

non-monotonic with St, in that maximum centerline reductions occur for both St ≈ 0.1 and

St ≈ 2.5 (other St curves are not shown for clarity). These correspond to the maximum

TKE reductions in Fig. 6(b), which is consistent since buoyancy production of TKE is

proportional to 〈w′T ′〉. For these St, the primary effect of the particle is therefore to reduce
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FIG. 7. Overall heat flux contributions due to (a) turbulent flux, and (b) particle source flux

buoyant production of TKE, while the effect of direct momentum coupling is much smaller

(this is further discussed in the next section). The behavior of qpart, meanwhile, exhibits

only a single peak, with a maximum particle heat flux at St ≈ 1. This peak is associated

with particles clustering in up- and downdrafts of the flow, and leads to the peak of Nu

enhancement at St ≈ 1.

This additional mode of heat transfer, namely that being carried by particles via qpart,

disrupts certain of the canonical features of Rayleigh-Bènard flow. For instance, the exact

relationship between turbulence dissipation and heat transfer, ε = ν3Ra(Nu− 1)/(H4Pr2)

[38], no longer holds because the two are not simply linked via local flow quantities. In the

present case, for instance, dissipation ε is only slightly changed via two-way coupling (Fig.

8(a)), while Nu can be increased as a result of particles (Fig. 6).

Furthermore, in Fig. 8(b) it is found that, analogous to the turbulence dissipation ε,

the thermal dissipation rate εT = αf 〈∇T ′ · ∇T ′〉, where ∇T ′ is the temperature fluctuation

gradient, does not change significantly due to the particle thermal exchange with the fluid.

The profiles in Fig. 8 suggest that dissipation (and other small-scale) mechanisms actually

do remain intact in particle-laden Rayleigh Bènard flow, and that the primary effect is the

additional heat transfer mechanism through qpart and corresponding reduction of qturb.

Finally, as an overview of the behavior described above, Fig. 9 presents a two-dimensional

contour map of the fractional change of Nu and TKE as a function of both St and Vg/Ubuoy,

compiled using over 30 simulations. Several important features are noted. First, in Fig. 9(a),
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FIG. 8. Dissipation rate ε and thermal dissipation rate εT normalized by the vertical average (va)

of its corresponding components. Plots have been zoomed in to highlight behavior in the domain

center.

FIG. 9. Normalized (a) Nu and (b) TKE as a function of both St and log10(Vg/Ubuoy). The solid

lines represent evenly spaced contour levels for better clarity of the features.

it is clear that the heat transfer enhancement due to particles is much more strongly affected

by St than by settling velocity. The primary effect of Vg/Ubuoy is to shut off the enhancement

at sufficiently high values (returning to blue along the top of the figure). At all intermediate

and low values of Vg/Ubuoy, Nu behaves in the same way as shown in Fig. 6(a) — a peak at

St ≈ 1, falling off to the unladen value at asymptotically high or low values.

The turbulent kinetic energy, on the other hand, behaves in a more complex way as a
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FIG. 10. Normalized (a) Nu and (b) TKE for all 3 types of couplings

function of St and Vg/Ubuoy. First, for increasing inertia, the amount of gravitational settling

needed to approach the unladen case decreases, as identified by the sloping boundary between

yellow and blue at the upper right hand corner of Fig. 9(b). Furthermore, the Stokes number

corresponding to the minimum in TKE (i.e. the maximum reduction) also changes slightly

with settling velocity, as seen by the orientation of the dark blue region on the left side of

the contour map. This interdependence is related to the maximum centerline concentration

seen in Fig. 2(b) at intermediate settling velocities, and Fig. 9(b) shows that the global

minimum of TKE occurs for St ≈ 2 and Vg/Ubuoy ≈ 10−2.

B. Coupling, specific heat ratio, and mass fraction

In the previous section we focused on the role of St and settling velocity on heat transfer

and turbulence modulation, and identified that St had the strongest effect on Nu and

TKE. In this particle-laden Rayleigh-Bènard system, however, a few remaining factors can

potentially influence the particle-turbulence interaction.

First, we consider the effects of coupling — thermal versus mechanical — by turning each

on and off independently. We take St ≈ 1 and Vg/Ubuoy = 10−3 for all cases, and Fig. 10

shows the independent contributions of momentum and thermal coupling on both Nu and

TKE. For any St, momentum coupling weakens the heat transfer, while thermal coupling

enhances it. From Fig. 10(a), the thermal coupling overwhelms the momentum coupling
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effect, shown by the nearly identical Nu between the both and thermal coupling, resulting

in an overall increase in Nu. Again, for limits of both high and low St, the unladen Nu

is recovered. For St ≈ 1, the effect of preferential concentration exhibits itself only in the

thermal coupling, whereas the changes in Nu due to momentum coupling only are a weak

function of St.

As previously discussed, the interplay between direct momentum coupling and thermally-

induced changes to buoyancy are both factors which vary the strength of TKE reduction.

Fig. 10(b) shows that, similar to Nu, the thermal coupling between phases is a larger portion

of the overall effect of TKE. However in this case, the direct momentum coupling is similar

in magnitude, and both work to reduce TKE compared to the unladen case. With only

momentum coupling, a maximum attenuation is found at St ≈ 2, while thermal coupling

again results in a local attenuation minimum around St ≈ 1. This local peak, seen in

Fig. 6(b), is clearly a result of thermal coupling, and as discussed above is caused by the

thermally-induced reduction of the turbulent heat flux qturb (see Fig. 7(a)).

Secondly, all simulations presented in the previous section had a set specific heat ratio and

mass fraction (see Table I). Again holding St ≈ 1 and Vg/Ubuoy = 10−3, we independently

vary these quantities to assess their impact on Nu and TKE. Note that the thermal time

scale, τT , will now vary with Cp,p/Cp,f while the aerodynamic time constant, τp remains the

same. This, in turn, will affect only StT while the momentum-based St ≈ 1 is constant. Fig.

11 shows the effect of changing the ratio Cp,p/Cp,f over 3 orders of magnitude. Above and

below a ratio Cp,p/Cp,f ≈ 1, the behavior of Nu and TKE is distinct. For low Cp,p/Cp,f ,

the particles carry vanishingly small amounts of heat relative to the same mass of fluid,

and actually reduce Nu relative to the unladen case (Fig. 11(a)). Since the carrying of

heat by particles is one of the primary mechanisms for enhancing Nu (see Fig. 7(b)),

reducing their heat capacity below that of the fluid means that the same mass of particles

carries less heat than the same mass of fluid. Furthermore, in the limit of zero particle

heat capacity, the flow is dominated by momentum coupling, which, as shown in Fig. 10(a),

results in the attenuation of Nu. As Cp,p/Cp,f increases above unity, the particles effectively

become isothermal (a case considered by Oresta and Prosperetti [22]) and therefore Nu

depends entirely on their initial temperature (Tp,init = 305.15 K, the average of the plate

temperatures). For TKE, (Fig. 11(b)) the results are similar: in the limit of small Cp,p/Cp,f ,

the attenuation of TKE saturates, since the flow is dominated by momentum coupling alone.
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FIG. 11. Normalized (a) Nu and (b) TKE for varying Cp,p/Cp,f , holding St ≈ 1 and Vg/Ubuoy =

10−3 with both couplings.

As the heat capacity ratio increases, the enhanced thermal interaction between phases causes

a larger decrease of buoyant TKE production, thereby reducing TKE relative to the unladen

case.

Finally, Fig. 12 shows the influence of the mass fraction φm. In the limit of zero φm, the

changes of Nu and TKE tend toward the unladen values as expected. From there, increased

φm yields an enhancement of Nu (for both couplings) and an attenuation of TKE which is

roughly linear with φm. For all combinations of thermal and mechanical coupling, this linear

relationship is generally true, and for each φm, the relative balance between the different

couplings is roughly the same. At higher values of φm, particle-particle interactions would

require consideration [39].

IV. CONCLUSION

In this study, a DNS model is used to simulate canonical Rayleigh-Bénard flow laden

with thermally and dynamically coupled particles, to investigate the response of turbu-

lence and heat transfer. We focused in particular on the independent roles of particle

inertia, as specified by the Stokes number, and the settling velocity, normalized by a buoy-

ancy velocity scale, all at a constant Rayleigh number. In a broad sense, we are seeking

an understanding of the nondimensional functionalities Nu(φm, Cp,p/Cp,f , St, Vg/Ubuoy) and
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FIG. 12. Normalized (a) Nu and (b) TKE with all 3 types of couplings while varying φm at

constant St ≈ 1 and Vg/Ubuoy = 10−3.

TKE(φm, Cp,p/Cp,f , St, Vg/Ubuoy) at constant Ra. We find that the dependence of both of

these quantities on the mass fraction φm is roughly proportional, and that both are relatively

insensitive to Vg/Ubuoy for Vg/Ubuoy < 10−2; above this particles settle significantly towards

the bottom of the domain and the turbulence and heat transfer approach unladen values.

In this regime, the full dependence of Nu and TKE simplifies to Nu = φmf(St, Cp,p/Cp,f )

and TKE = φmg(St, Cp,p/Cp,f ), where f and g are dimensionless functions. At constant

Cp,p/Cp,f , Nu and TKE ultimately become only a function of St, whose shape is indicated in

Fig. 6. Likewise, in the limit of vanishing specific heat ratio (Cp,p/Cp,f < 10−1), the particles

become permanently in thermal equilibrium with the flow and the momentum coupling is

the only means of particle influence on the flow — again St becomes the only meaningful

independent parameter.

At all St, Nu was enhanced, while the effects of preferential concentration near St ≈ 1

resulted in a peak of Nu enhancement by up to 20%. Total integrated turbulent kinetic

energy was found to be attenuated in all cases, due to both direct momentum coupling

as well as reduced buoyancy production via particle-fluid thermal coupling. The primary

cause of the enhancement of Nu is due to the direct particle contribution, as particles carry

heat upwards during their vertical transport. The turbulent flux of heat is reduced, which

is responsible for the decrease in TKE. The finding that thermal coupling overwhelms

momentum coupling depends on the specific heat ratio, and in the limit of small Cp,p/Cp,f ,
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momentum coupling dominates. In addition, we anticipate that momentum coupling may be

more important relative to thermal coupling in the non-dilute regime, where particle-particle

collisions would need to be considered.

In this flow, where two-way coupling has multiple paths of influence (i.e. both thermal and

mechanical coupling), we find a complex interplay between the direct momentum feedback

between phases, and the modified buoyancy production of turbulent kinetic energy. As

a result, some single-phase relationships (i.e. turbulence dissipation and heat transfer)

that were established in previous studies are not applicable for coupled particles. Fruitful

extensions of this system could include higher Rayleigh numbers, particle evaporation, or

particle-particle interaction.
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