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We	 outline	 the	 derivation	 of	 a	 two-phase	 continuum	 theory	 for	 grains,	

jumping	 above	 a	 bed	 of	 sand,	 while	 accelerated	 by	 a	 turbulent	 shearing	
flow,	 colliding	 with	 the	 bed,	 rebounding	 and,	 perhaps,	 generating	 other	
grains.	 Relations	 between	 the	 shear	 and	 normal	 stresses	 and	 vertical	
derivatives	of	 components	of	 the	average	particle	velocity	are	determined	
by	 averaging	 the	 dynamical	 equations	 for	 the	 particle	 trajectories.	 This	
provides	the	closure	for	the	system	of	differential	equations	that	govern	the	
behavior	of	the	wind	and	particles	above	the	bed.	Boundary	conditions	are	
obtained	by	averaging	the	results	of	experiments	on	rebound	and	ejection	
of	particles	from	a	particle	bed.	We	solve	the	resulting	system	of	equations	
subject	 to	 the	derived	boundary	conditions	 for	steady,	uniform	flows	over	
both	 particle	 and	 rigid	 beds,	 and	 obtain	 unsteady	 uniform	 solutions	 and	
steady,	 non-uniform	 solutions	 that	 provide	 information	 regarding	
saturation	times	and	lengths,	respectively.		
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I.	INTRODUCTION	
	

When a turbulent wind blowing over bed of sand becomes sufficiently strong, a grain may be 
lifted from the bed by a strong, localized turbulent eddy. The drag of the air then accelerates it 
and it collides with the bed with increased momentum. Impacting grains rebound and eject other 
grains that may also be accelerated by the wind until a sufficient number of grains are 
participating in the process to diminish the wind near the bed and create a steady balance in the 
exchanges of momentum between the grains and the wind and the grains and the bed. The result 
is a steady cloud of grains with diameters between 100 and 500 microns that jump (Latin: saltare) 
over the bed. This saltation and an associated creep of particles rolling and sliding along the bed 
are the primary modes of the initial sand movement [1-5]. Here, we ignore the creeping grains 
and sketch the development of a two-phase continuum theory for saltation that may be unsteady 
and/or non-uniform.  

Most existing transport models for unsteady or non-uniform Aeolian flows focus on the 
relaxation to equilibrium that results from a temporal or spatial change of the flow strength. The 
characteristic time or length scale necessary to recover the equilibrium regime of transport is 
often referred to as the saturation time or saturation length, respectively [6]. One important issue 
is to determine the key physical mechanisms that drive this process. 	

It has been suggested [7, 8] that the acceleration of the transported particles due to fluid drag is 
the limiting relaxation mechanism, resulting in an inertial saturation length that scales linearly 
with the product of the fluid-to-particle density ratio and the particle diameter. However, this line 
of argument disregards other mechanisms, such as the entrainment of bed particles by the fluid 
drag and/or grain-bed collisions [6], and the feedback of the transport layer on the fluid velocity. 
Later, it was argued [9] that the negative feedback of the particles on the fluid flow is the limiting 
mechanism in the saturation process, also controlled by the inertial length. Measurements in 
wind-tunnel experiments [9] provide an estimation of the saturation length compatible with the 
inertial length.   

Pahtz, et al. [10, 11] have recently developed an analytical model based on a depth-averaged 
continuum approach that takes into account the previously neglected mechanisms. The results of 
the model indicate that the relaxation of the particle speed and the particle concentration occur at 
the same time scale and the two relaxation mechanisms interact.	This is clearly different from that 
based on the inertial length, but shares some common features: first, it is also independent of the 
flow strength, because the equilibrium speed does not depend on the turbulent shear rate; and 
second, it provides a similar order magnitude of about 2000 particle diameters for Aeolian sand. 
The common features prevent the making of a definite statement concerning the relevant 
mechanism involved in the relaxation process. 	

In this paper, we follow the template established in the continuum modeling of 
Sauermann, et al. [6] that initiated the renewed interest in the physics of windblown sand 
and the creation and migration of sand dunes. They formulated a depth-averaged, two-
dimensional phenomenological model to predict the evolution in space and time of the 
average particle density and velocity, driven by a turbulent shearing flow over a 
horizontal particle bed. The model contained parameters that in the absence of better 
information were evaluated in comparisons with experiments and numerical simulations. 
The model predicted the dependence of the saturation flux on the strength of the steady, 
uniform, turbulent shearing flow and the times and distances necessary to reach 
saturation after changes in the strength of the flow or conditions at the bed, these 
mechanisms included both the drag of the wind and the collisional flux of particles from 
the bed. The predictions were in good agreement with those measured in experiments and 
simulations. Here, we take advantage of progress made in characterizing the interactions 



of particles with the bed and in the development of local continuum relations for the 
particle shear and normal stress above the bed to phrase a more detailed continuum 
model. It involves a system of partial differential equations and boundary conditions for 
the values above the bed of particle concentration, particle velocity parallel and 
perpendicular to the bed, and wind velocity. In principle, averaging these equations 
through the depth of the flow would permit us to recover the simpler model of 
Sauermann, et al. [6]. 
In	what	follows,	we	first	indicate	how	measurements	of	particle	collisions	with	a	bed	of	

like	particles	and	simple	averaging	 lead	 to	conditions	on	 the	average	exchange	of	particle	
mass	and	momentum	at	the	surface	of	the	bed.	This	extends	calculations	in	Creyssels,	et	al.	
[12]	 to	 finite	 particle	 fluxes.	We	 then	 review	how	 local	 relations	 between	 components	 of	
particle	 stresses	 and	 the	 particle	 velocity	 derivatives	 may	 be	 obtained	 by	 averaging	 the	
equations	 that	 govern	 the	 trajectories	 of	 single	 particles	 at	 each	 height	 of	 the	 trajectory.	
Here,	 the	 calculation	 of	 the	 particle	 shear	 stress	 by	 Jenkins	 et	 al.	 [13]	 is	 reviewed	 and	
extended	 to	 include	a	normal	 component	 that	 is	proportional	 to	 the	vertical	derivative	of	
the	vertical	particle	velocity.	 	Finally,	we	use	these	relation,	the	expression	for	the	particle	
pressure,	and	the	usual	mixing	 length	model	 for	the	turbulent	shear	flow,	modified	by	the	
drag	 of	 the	 particles,	 in	 the	 equations	 of	 balance	 for	 the	 mass,	 horizontal	 and	 vertical	
momentum	of	 the	particles,	and	horizontal	momentum	for	the	wind	and	obtain	numerical	
solutions	to	boundary-value	problems	for	a	variety	of	flows.	The	theory	may	be	extended	to	
incorporate	 turbulent	 suspension	 [13, 14]	 and	 the	 particle	 shear	 stress	 and	 pressure	
associated	with	particle	collisions	above	the	bed	[15, 16].	
In	steady,	uniform	situations,	we	calculate	profiles	of	particle	concentration	and	particle	

and	gas	velocities	for	flows	that	interact	with	a	particle	bed	over	a	range	of	wind	strengths	
and	 flows	 that	 interact	with	a	 rigid	bed	 for	a	 single	wind	strength	and	a	 range	of	particle	
holdups.	Then,	we	consider	a	uniform,	unsteady	situation,	associated	with	a	change	 in	the	
strength	of	 the	wind	over	 a	particle	 bed,	 and	determine	 the	 change	 in	profiles	with	 time.	
Next,	 we	 calculate	 the	 evolution	 with	 distance	 of	 steady	 profiles	 over	 a	 rigid	 bed	 and	
determine	that	some	of	these	steady	solutions	are	unstable.	Finally,	taking	as	an	upstream	
boundary	condition	 the	profiles	associated	with	 the	 flow	of	maximum	particle	 flux	over	a	
rigid	bed	at	a	given	wind	speed,	we	determine	their	evolution	with	distance	over	a	particle	
bed.		
The	 structure	 of	 the	 continuum	 theory	 differs	 from	 those	 derived	 in	 the	 past	 in	 two	

respects.	It	includes	expressions	for	the	particle	shear	and	normal	stresses	[13],	calculated	
from	 rough	 averages	 of	 the	 equations	 for	 a	 particle	 trajectory,	 and	 it	 employs	 boundary	
conditions	 at	 the	bed	 [12],	 determined	 from	averages	of	mass	 and	momentum	exchanges	
measured	 in	 experiments	 [17]	 and	 numerical	 simulations	 [18, 19]. The theory is 
complementary to recent discrete numerical simulations of saltation and creep [20-24] that have 
the capacity to describe both steady and unsteady states. Consequently, they also can address 
issues such as the times and distances necessary to equilibrate after a change in the strength of the 
wind or the nature of the bed [10, 11, 24] and have the capacity to test the modeling assumptions 
made in deriving the continuum theory. An understanding of the mechanisms that underlie the 
times and distances that link steady states is important to an understanding of the instability of a 
flat bed [8, 22, 25-27] and the possible evolution of a sand heap into crescent dune with a slip 
face [8, 25, 27-32].	
The	mass	density	and	viscosity	of	the	wind	are	denoted	by	ρf	and	µf	respectively;	and,	in	

what	follows,	lengths	are	made	dimensionless	by	the	grain	diameter	d,	velocities	by	(gd)1/2,	
where	g	is	the	gravitational	acceleration,	and	stresses	by	ρsgd,	where	ρs	is	the	mass	density	
of	the	material	of	the	grains.	



	
	

II.	BOUNDARY	CONDITIONS	
	

We first consider the interaction between grains of the flow and grains of a particle bed. We 
denote the velocity of a grain by ξ ,  its magnitude by ξ,  and its vertical component by   ξ y .  
Measurements of collisions of single grains with a bed of like grains [17] show that the averages 
of the speed and vertical velocity components after a collision are related to values before a 
collision by  

   ′ξ = e(ξ)ξ = (0.87 − 0.72sinθ )ξ  and 
  
′ξ y = ey (ξ) ξ y = 0.30

sinθ
− 0.15

⎛
⎝⎜

⎞
⎠⎟
ξ y ,

 

(1)  

where the primes denote upward values, e and ey are coefficients of restitution, and θ is the angle 
between the incoming velocity vector and the surface of the bed. The total number, N, of particles 
leaving the bed is seen to be   1+13(1− e2 ) ξ / 40−1( ),  if ξ > 40;  if  1≤ ξ ≤ 40;  and 0, if 

 ξ < 2 / sinθ = 3.70.  In the last, more exactly than Creyessels, et al. [12], we employ the vertical 
component of the impact velocity, when defining the particles captured by the bed as those that 
rebound less than a diameter. 

We introduce the simple velocity distribution function 

   
  
f (ξ) =

n0

2πT
exp

−(ξx − u0 )2 −ξ y
2

2T

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,    (2)   

in which the n, u, and T are, respectively, the dimensionless number density, average flow 
velocity, and mean square of the velocity fluctuations, the subscript 0 indicates a quantity 
evaluated at the bed, and T is uniform through the flow. The dimensionless number density is 
related to the concentration c by   n = 6c / π .  We use the distribution function and Eq. (1) to 
calculate fluxes of mass and momentum at the bed. It differs from that measured by Ho, et al. 
[33] in that it ignores the creeping particles.  

The flux of mass,    !m,  from the bed is calculated in the Appendix:
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 (3) 
This expression improves upon an approximation in Creyssels, et al. [12] that is limited to 

values of the slip velocity, u0, less than 40. The corresponding fluxes of momentum in the 
horizontal and vertical directions are, respectively [12], 

  
   
!Mx = − π

6
( ′ξ x − ξ x )ξ y f (ξ)dξ

ξ y≤0∫ = c0T 0.35+ 0.07
u0

T 1/2 − 0.33T 1/2

u0

⎛
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⎞
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  (4) 

and 
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6
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In unsteady flows above a particle bed, Eq. (3) provides a relation between the values at the 
bed of the averages of the vertical velocity, v0, the concentration, c0, and the particle velocity, u0. 
In such flows, we employ it either in its exact form or as a linearization about the steady value of 



the slip velocity,   u0
0 :  

   
!m = v0c0 = β u0 − u0

0( ),  where  β = 1.7 ×10−3.  When the rate of vertical 

momentum transfer, 
   
!M y ,  is equated to the pressure at the bed,   p0 = c0T ,  Eq. (5) determines the 

ratio   u0
0 / T 1/2  to be 4.6. Then Eq. (4) relates the shear stress at the bed to the pressure, 

   
!Mx = s0 = 0.6 p0 . In steady flows, the mass flux vanishes; then, Eq. (3) requires that   u0

0 = 23.06  
and   T = 25.14.   

Numerical simulations of collisions of single grains with a bumpy, rigid bed [34] show that the 
averages of the speed and vertical velocity components after a collision are related to values 
before a collision by  

   ′ξ = e(ξ)ξ = (0.90− 0.25sinθ )ξ  and 
  
′ξ y = ey (ξ) ξ y = 0.65

sinθ
ξ y .

 

(6)  

In this case, the mass flux (3) is not relevant, while [12]	 	  
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and    
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With these, at   y = 0,    u0 = 4.6T 1/2  and   s0 = 0.53c0T . Here, for simplicity, we ignore the detailed 
difference between the coefficients of restitution, the momentum fluxes, and the particle shear 
stress at rigid and particle beds and employ the values for a particle bed for both particle and rigid 
beds. Finally, in steady flows over a rigid bed, the particle, or slip, velocity is not specified, but is 
given as a part of the solution when the dimensionless measure of the total mass over a unit area 
of the bed, the particle holdup   M

*,  is given. This is done by introducing an additional 

differential equation for the partial hold-up, 
  
I ( y) = c(ς )dς ,

0

y

∫  with boundary conditions   I (0) = 0  

and   I (h) = M *.   
	

III.	Particle	stress	
	

We next consider the motion of grains above the bed and the transfers of momentum associated 
with their trajectories in a turbulent shearing flow and review how manipulating these equations 
and averaging the result leads to continuum relations between components of the particle stress 
and derivatives of the components of the particle velocity across the flow [13].  

When the vertical drag on a particle is neglected, the x-components of the equations of motion 
for the upward and downward parts of a particle trajectory may be written 

   
  
′ξ y

d ′ξx

dy
= D
σ

(U − ′ξx )  and 
  
′ξ y

dξx

dy
= − D

σ
(U −ξx ),    (9) 

where y is the upward vertical coordinate, D is the dimensionless drag coefficient,   σ ≡ ρ s / ρ f  
and U is the local average fluid velocity. When we multiply these by   c ′ξ y ,  sum them, and 
average, we obtain 

 
  
c ′ξ y

2 d
dy

′ξx +ξx( ) = c(D /σ ) ′ξ y ( ′ξx −ξx ).   (10) 



In this, we make the identifications of the average particle velocity,   2u ≡ ( ′ξx +ξx ),  the average 

particle pressure,   p ≡ c ′ξ y
2 = cT ,  and the average particle shear stress   2s ≡ c ′ξ y ( ′ξx −ξx ),  and 

assume that the averages of products are products of averages. The result is a relation between the 
particle shear stress and the derivative of the particle velocity that involves the particle pressure 
and the drag coefficient [13]: 

   
  
s = σ p

αD
du
dy

.   (11) 

Comparison with discrete numerical simulations [13] indicates that the coefficient α  is about 20. 
Repeating the argument for the y-components of the equations of motion of the upward and 

downward trajectories with vertical drag now incorporated results in a similar relation between 
the vertical derivative of the vertical velocity   v ≡ ( ′ξ y +ξ y ) / 2  the vertical component of the 

normal stress   b ≡ −c ′ξ y ( ′ξ y +ξ y ) / 2,  where the quantity in parenthesis vanishes when the upward 
and downward velocities have equal magnitude.. 

These expressions for the shear and normal stress of the particles permit the phrasing of a 
continuum theory for unsteady, uniform flows or steady, inhomogeneous flows that interact with 
rigid or particle beds.  

	
IV.	GOVERNING	EQUATIONS	

 
Here, we write down the continuum equations that govern unsteady, non-uniform flow. We 

then employ the Matlab solver bvp4c to obtain steady, uniform solutions and the solver pdepe to 
obtain solutions for both uniform, unsteady flows and steady, developing flows. The uniform, 
unsteady solutions are associated with the evolution with time of a uniform flow to a change in 
the shear stress of the wind at a large distance above the bed, and the steady, developing solutions 
apply to the adjustment with horizontal coordinate x of a flow at constant wind speed to a change 
from a rigid to a particle bed. The advantage in writing continuum equations is that these existing 
solvers can easily be implemented to generate numerical solutions, and other mechanism of 
momentum transfer such as turbulent suspension [13, 14], and collisions above the bed [15], can 
easily be incorporated into the theory. Solutions of the resulting equations can then provide 
information regarding characteristic times or distances associated with each mechanism. 

 
A. Unsteady, non-uniform flows 

	
The system of equations that governs an unsteady, uniform, turbulent shearing flow with height 

h of sand grains in air subject to a dimensionless turbulent shear stress S* at the top of the flow is 
the balance of horizontal particle momentum,  

   
  
c
∂u
∂t

+ cu
∂u
∂x

+ cv
∂u
∂y

= ∂s
∂y

+ c
D
σ

(U − u),    (12) 

where s is given by Eq. (11) and  

   
  
D ≡ 0.3 U − u( )2

+ v2⎡
⎣⎢

⎤
⎦⎥

1/2

+18.3 / Re,    (13)      (10) 

with 
  
Re ≡ d(gd)1/2 / µ f / ρ f( ),

 

in which   g = 980 cm/sec2  is the gravitational acceleration; the 

balance of vertical particle momentum, 

    
  
c
∂v
∂t

+ cu
∂v
∂x

+ cv
∂v
∂y

= ∂
∂y

(− p + b)− c
D
σ

v − c,   (14) 



where   b =σ p ∂v / ∂y( ) / (αD);  the conservation of particle mass, 
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+ c
∂u
∂x

+ u
∂c
∂x

+ c
∂v
∂y

+ v
∂c
∂y

= ε ∂
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∂c
∂y

− c
T

⎛
⎝⎜

⎞
⎠⎟

,  (15) 

where the last term is included to facilitate the numerical solution with the solver pdepe that 
requires a flux term in each equation, here with  ε = 0.01  a small parameter and an expression for 
the flux that vanishes in a steady, uniform flow; and the balance of horizontal fluid momentum,  

   
  

∂U
∂t

+U
∂U
∂x

=σ ∂S
∂y

− cD(U − u),   (16) 

where, with the assumption that the bed is hydro-dynamically rough, 

  
S = (1/σ ) κ y + y0( ) ∂U / ∂y( )⎡⎣ ⎤⎦

2
,  in which  κ = 0.41  and   y0 = 1/ 30  is the bed roughness. For a 

hydro-dynamically smooth bed, not considered here, 
   
S = (1/σ ) 1/ Re+ ℓ2 ∂U / ∂y( )⎡⎣ ⎤⎦∂U / ∂y,

 
 

where, following van Driest [35], 
   
ℓ =κ y 1− exp − ρ f S

0* y / µ f( )1/2

/ 19
⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

.   

Because the value of T in these equations is to be a constant, equal to that at the bed, where it is 
related to the particle velocity, we employ the diffusion equation,   ∂T / ∂t = δ ∂2T / ∂y2 ,  with δ  a 
constant of order one, to propagate the value of T at the bed into the interior. Because pdepe 
requires a finite interval, the height of the flow is taken to be 500 particle diameters. A definite 
flow height also facilitates comparison between different flows over a rigid bed and the transition 
between flows over rigid and particle beds. 

The boundary conditions employed in the Matlab solver pdepe at   y = 0  at a particle bed are

  U = 0,    s = 0.6cT ,  
  
v = β u − u0( ),  and   ∂c / ∂y = −c / T ,  where   T = u / 4.6( )2

.  At a rigid bed, there 

is no vertical velocity and the particle holdup or the value of some other parameter must be 
provided. The boundary conditions at  y = h  are   s = 0,    S = S*0 + S*′ ,    b = 0,  and   ∂c / ∂y = −c / T ,  
where here, the prime denotes a perturbation from a steady solution and, again, the superscript 0 
denotes a value in the steady flow.  

 
B. Steady, uniform flows  

 
In steady, uniform flows, the vanishing of the mass flux at the bed determines that   u(0) = 23.06  

and, in the system (12), (14), (15) and (16), the vertical particle velocity and derivatives with 
respect to t and x vanish. Then, Eq. (12) is  

     

ds
dy

= −c D
σ

(U − u);    (17) 

the inversion of Eq. (11) serves to determine the particle velocity:  

   
  

du
dy

=αD s
p

,   (18) 

where  α = 20 ; the particle mass balances reduces to
   

     

dc
dy

= − c
T

,   (19)
 

where   T = 25.14;  and the fluid velocity is determined by 



   
  

dU
dy

=
S* − s( )σ⎡

⎣
⎤
⎦

1/2

κ y + y0( ) .
  (20) 

 

 

 
The Matlab solver bvp4c is used to determine steady solutions, only some of which we later 

show to be stable. At y = 0, this solver employs the boundary conditions   u = 23.06,    s = 0.6cT ,  
and   U = 0  at a particle bed. The last two of these are given at a rigid bed and, while it is natural 
to specify the mass holdup at a rigid bed, we find it easier to obtain convergence by specifying 
the slip velocity and calculating the associated mass holdup. At y = h, we assume that s = 0. For 
both beds, the concentration at the bed is determined as part of the solution. 

Because pdepe and bvp4c employ slightly different boundary conditions, a steady solution of 
bvp4c may differ slightly from the corresponding long-time, stable, solution of pdepe. 

 
	

V.	NUMERICAL		SOLUTIONS	
 

A. Steady, uniform flows 
 

1. Particle bed 
 

We first obtain a solution of the system of Eqs. (13) through (15) for a steady, uniform flow, in 
which u = 23.06, T = 25.14, and s = 0.6cT at the bed, using the Matlab solver bvp4c for two-
point boundary-value problems. We take the distant shear stress S* to be 0.035, 0.050, 0.065 and 
0.080 and consider sand particles with diameter d = 0.025 cm., specific mass in air σ = 2200,  and 
kinematic viscosity    µ

f / ρ f = 0.15 cm2 / sec.   
 

 
 

Fig. 1 Logarithm of the concentration versus dimensionless height for d = 0.025 cm. spherical 
grains of sand in air at S* = 0.035, 0.059, 0.065 and 0.080. Line weights increase with increasing 

values of S*  
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The parts of the predicted concentration profiles above a concentration of 10-5 are shown in Fig. 

1. Jenkins, at al. [13] indicate the relationship between these and those measured in experiments 
by Creyssels, et al. [12]; the decay of the predicted concentration profiles is about half as fast as 
that measured in the experiments, but it can be increased to a value near that measured by 
incorporating suspension by the turbulent velocity fluctuations in the particle vertical momentum 
balance. 

 

 
 

Fig. 2 Average dimensionless particle and gas velocities versus dimensionless height for d = 
0.025 cm. spherical grains of sand in air at S* = 0.035, 0.059, 0.065 and 0.080. Line weights increase 

with increasing values of S*.  
 

The predicted profiles of particle and gas velocity are shown in Fig. 2. Again, Jenkins, et al. 
[13] indicate that these profiles are in good agreement with those measured by Creyssels, et al. 
[12], and the agreement is improved by incorporating suspension by the turbulent velocity 
fluctuations. 

We next test the profile of the stress predicted in such a steady, uniform  situation against the 
results of a relatively simple numerical simulation [12]. The simulation employs particles ejected 
into a turbulent shearing flow with a Gaussian distribution of initial velocities and allows them to 
achieve a steady state through repeated interactions with the drag of the gas and collisions with 
the bed. The comparison is shown in Fig. 3. The agreement is good and offers additional support 
to the modeling in Sec. 3 that led to continuum expressions for the shear and normal stresses.  
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Fig. 3 Dimensionless continuum particle shear stress (dashed lines) and measured simulated 
particle shear stress (solid lines) versus dimensionless height for d = 0.025 cm. spherical grains of 

sand in air for   u0 = 23.06,  T = 25.14,  S* = 0.050 and α=20.   
 

2. Rigid bed 
 

We now obtain solutions of the system of Eqs. (13) through (15) for a steady, uniform flow 
over a rigid bed. In this case, because the particle velocity at the bed is not specified, in addition 

to the distant shear stress, the total particle holdup, 
  
M = c dy

0

h

∫ ,  or the total particle flux, 

  
Q = cu dy

0

h

∫ ,  must be specified. However, we find it easier to obtain convergence if the problem 

is phrased in terms of the particle velocity at the bed - the slip velocity - rather than the flux or 
holdup. We take  S

* = 0.05,  consider a range of slip velocities, and use the one-to-one relationship 
between the slip velocity and the holdup to relate the two parameterizations. As before, we 
consider sand particles with diameter d = 0.025 cm. specific mass in air and kinematic 
viscosity   µ

f / ρ f = 0.15 cm2 / sec.    
In Figs. 4 and 5 we show profiles of concentration and velocities for four values of the slip 

velocity. The height of the profiles increases with slip velocity, as the flow becomes less 
concentrated. The relationship between the total particle flux and the slip velocity is shown in 
Fig. 6, and Fig. 7 indicates the relationship between the particle flux and the holdup. Both the 
particle flux and the particle holdup are doubled-valued over the range of slip velocity. Jenkins 
and Valance [34] and Berzi, et al. [36] obtained a similar but less complete relationship between 
the flux and holdup when considering periodic trajectories. They conjectured that the branch on 
which the flux decreases with increasing holdup is unstable. We will address this in a later 
section. 
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Fig. 4 Concentration versus dimensionless height for slip velocities of 15, 33, 48 and 60, with the line 
weights increasing with slip velocity. The corresponding values of the particle flux and holdup are 0.7 and 

0.04, 1.8 and 0.04, 2.1 and 0.03, and 1.8 and 0.02, respectively. 
 

 

 
 

Fig. 5 Dimensionless particle and gas velocities versus dimensionless height for slip velocities of 20, 
39, 59 and 80, with the line weights increasing with slip velocity. The corresponding values of the particle 

flux and holdup are 1.8 and 0.072, 3.5 and 0.065, 4.3 and 0.052, and 3.5 and 0.032, respectively. 
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Fig. 6 The relationship between dimensionless particle flux and dimensionless particle slip velocity for 
S* = 0.05. 

 

 
 

Fig 7 The relationship between dimensionless particle flux and dimensionless particle holdup for S* = 
0.05. 

 
 
 
 
 

0 20 40 60 80 100
Slip Velocity

1.5

2

2.5

3

3.5

4

4.5

Pa
rti

cl
e 

Fl
ux

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Particle Holdup 

1.5

2

2.5

3

3.5

4

4.5

Pa
rti

cl
e 

Fl
ux

 



B. Unsteady, uniform flow over a particle bed  
 
We first use the unsteady solver to determine the evolution of the flow over a particle bed 

after a perturbation,   S
*′ = 0.0025  to an initial, steady solution for which  S

* = 0.05,    u0
0 = 23.06,  

and   h = 500.  The resulting profiles of particle concentration and the horizontal particle and gas 
velocities differ little from those at S* = 0.05 and are not shown. The evolution of the profiles of 
vertical particle velocity and temperature are shown in Figs. 8 and 9.  

 
 

 
 

Fig. 8 Evolution of the dimensionless particle vertical velocity in space at three equal intervals 
between 0 and 12,000 in units of dimensionless time with δ = 10, for d = 0.025 cm spherical grains of sand 

in air at S*’ = 0.0025, S* = 0.05 and u0
0 = 23.06. Line weights increase with dimensionless time. 

 
The evolution of the profile of the particle vertical velocity is somewhat complicated; while, 

in contrast, that of the temperature, with the value of the parameter δ = 10, remains relatively 
uniform as it varies in time. 
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Fig. 9 Evolution of the dimensionless temperature in space at in space at three equal intervals between 0 
and 12,000 in units of dimensionless time with δ = 10, for d = 0.025 cm. spherical grains of sand in air at 

S*’ = 0.0025, S*0 = 0.05 and u00 = 23.06. Line weights increase with dimensionless time.  
If the unsteady versions of Eqs. (12) and (15) are combined and rearranged, an equation of 

evolution for the local particle flux,  is obtained: 

  

∂
∂t

cu( ) = − ∂
∂y

vcu( ) + ∂s
∂y

+ D
σ

cU − cu( ) + εu ∂c
∂y

− c
T

⎛
⎝⎜

⎞
⎠⎟    (21) 

If we average this equation through the depth of the flow and neglect the term proportional to 
ε, we obtain an expression for the total particle flux,   

  
  
dQ
dt

= v0c0u0 − s0 +
1
σ

D cU − cu( )
0

h

∫ dy,  (22) 

where we have assumed that the product vcu is negligible at the top of the flow. Assuming that 
the depth average of a product is the product of the depth averages and using the boundary 
condition on v, this may be written as 

 
  
dQ
dt

= βc0u0 u0 − u0
0( )− s0 +

D
σ

hcU −Q( ).  (23) 

in which the over-bars denote depth averages. Similarly, if the unsteady version of Eq. (15) for 
the concentration is averaged through the depth, we obtain an equation for the total particle hold-
up,  

   
dM
dt

= c0v0.
  (24)

 

Eqs. (23) and (24) correspond roughly to the two-equation continuum model of Sauermann, et al. 
[6],  which they express more simply by modeling some terms and closing others by comparison 
with experiment. 

 

25.1 25.15 25.2 25.25
Temperature

0

100

200

300

400

500

H
ei
gh
t

  cu,



 
 

Fig 10 Dimensionless particle flux versus time in seconds for spherical grains of sand in air showing the 
evolution with time on a particle bed for S* = 0.05, from initial states that are steady states on a rigid bed 
with slip velocities of 19.0, 21.6, 23.1, 24.4 and 26.1, indicated by increasing line weights. Here, d = 0.25 

mm, ε = 0.01, and δ = 5, 
 

In Fig. 10, we show the variation of the total particle flux with time in the numerical solutions 
that evolve with time over a particle bed from different initial conditions. These show the particle 
fluxes evolving toward an equilibrium value from values below and above from initial conditions 
that correspond to steady states over a rigid bed. The slip velocity of the steady state on the 
particle bed at S* = 0.05 is u0 = 23, so for d = 0.025 cm, ten seconds corresponds to roughly, 
eleven and one-half meters. Bagnold (Fig. 6 in [1]) shows that uniform flow is attained in about 
seven meters and, when the initial particle flux is much smaller than the equilibrium particle flux, 
there is no overshoot; Andreotti, et al. (Fig. 1 in [9]) see similar behavior over a shorter distance. 

In Fig. 11, we show the evolution with time from an initial condition that corresponds to a 
steady state with a very small flux on a particle bed with increases in Shields number from 0.002 
to 0.008, corresponding to a range of friction velocities from 0.22 to 0.30 m/sec. This figure 
reproduces the both overshoot and monotone approaches to equilibrium seen in experiments and 
simulations (e.g, [36]). The simple two-equation model of Sauermann, et al. [6] also has the 
capacity reproduce the relaxation seen in Figs. 10 and 11, and Fig. 11 is similar their Fig. 3 
generated using the two-equation model; however, our results exhibit a slightly larger relaxation 
time. While we believe that the variation of Q seen in experiments can be described as the 
behavior of a damped oscillator and, consequently, a linear two-equation model, we have not 
been able to write the right-hand sides of Eqs. (23) and (24) solely in terms of Q and M. That is, 
we have not yet been successful at deriving a two-equation model from the system of equations 
(12) through (16).  
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Fig 11 Dimensionless particle flux versus time in seconds showing the evolution with time on a particle 
bed from a very small initial value (Q = 0.005 at S* = 0.009) for increases in Shields numbers of 0.002, 

0.003, 0.004, 0.006 and 0.008, indicated by increasing line weights. Here, d = 0.25 mm, with ε = 0.01 and δ 
= 1. 

 
C. Steady, non-uniform flow over a rigid bed 

 
We next use the Matlab solver pdepe on the non-uniform version of the system of Eqs. (9) 
through (12) over a rigid bed to test the stability of steady solutions by using them as initial 
conditions. In earlier work [34, 37], we anticipated that solutions over a rigid bed for which the 
particle flux decreased as the particle hold-up increased were unstable. We test this by 
determining whether a steady uniform solution will change when allowed to move along the rigid 
bed. This change can occur because of the presence of the terms on the left-hand side of the 
system, and an unstable solution and its particle flux can evolve with distance into that of a stable 
solution.	

In Fig, 12, we show the persistence of the particle flux of a a stable solution and the migration 
of the particle flux from an unstable, steady solution to that of the steady, stable solution with the 
maximum particle flux.  
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Fig.	12	Evolution of dimensionless total particle flux with distance over a rigid base for S* = 0.05. The slip 
velocities of the three stable solutions (solid) are 59, 78, and 83; while those of the unstable solution are 37 

(dotted), 40 (dot-dashed), and 45 (dashed). 
 

Finally, we consider the steady, non-uniform situation in which a steady, uniform flow over an 
upstream rigid bed encounters and flows over a particle bed, adjusting with distance along the 
particle bed to the new conditions. We solve the non-uniform form of Eqs. (9) through (12) for  a 
Shields parameter of 0.05, using the steady solution over the rigid bed with the maximum particle 
flux for u0 = 47. This is the stable solution over the rigid bed that involves the largest particle 
flux. 

Fig. 13 shows the significant change in the profiles of concentration with distance along the 
particle bed. 
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Fig. 13 Concentration versus height for four equal intervals of dimensionless distance between 0 and 106, 
with S* = 0.05, u0 = 59 and δ  = 5. Line weights increase with distance. 

 
As shown in Fig. 14, the initial velocity profiles approach the final velocity profiles in a non-

monotonic way and the difference between the initial and final particle profiles is significant, 
particularly within a hundred particle diameters of the bed. 

 
 

 
 

Fig. 14 Horizontal Velocities versus height for four equal intervals of dimensionless distance between 
0 and 106, with S* = 0.05, u0 = 59 and δ = 5. Line weights increase with distance. 
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Figs. 15 and 16 show profiles of particle vertical velocity and temperature. These profiles 
have nearly returned to zero and uniformity at a steady value for a particle bed after106 diameters 
of evolution.  

 
 

 
 

Fig. 15 Vertical Velocity versus height for four equal intervals of dimensionless distance between  0 
and 106, with S* = 0.05, u0 = 59 and δ = 5. Line weights increase with distance. 

 

 
 

Fig. 16 Granular Temperature versus height for four equal intervals of dimensionless distance between  
0 and 106, with S* = 0.05, u0 = 59 and δ = 5. Line weights increase with distance. 
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Fig. 17 Total particle flux versus dimensionless downstream distance, with S* = 0.05, u0 = 59 and δ = 
5.  

 

 
 

Fig. 18 Initial variation of the total particle flux versus dimensionless downstream distance, with S* = 
0.05, u0 = 59 and δ  = 5.  

 
Fig. 17 indicates that the total particle flux has ceased to vary after this distance; while Fig. 

18 focuses on the initial variation, which is significant over a distance of 104 diameters. This is 
the variation that is accessible in laboratory wind tunnels [1, 2, 9, 12, 33, 38, 39]. 
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VI. Conclusions 
	
We	 have	 outlined	 the	 development	 of	 a	 two-phase	 continuum	 theory	 for	 unsteady	 or	

non-uniform	 saltation	 that	 includes	 boundary	 conditions	 and	 stress	 relations	 for	 the	
particle	phase.	 
We	have	employed	the	Matlab	solver	pdepe	to	solve	the	resulting	system	of	equations	for	

the	uniform	evolution	in	time	that	resulted	from	a	small	increase	in	the	shear	stress	of	the	
wind	 far	 from	 a	 particle	 bed.	  For these, the predictions of our model are similar to those of 
Sauermann, et al. [6] who employ a simpler model, but differ from those of the Pahtz model [11, 
12] in at least one respect. For an arbitrary small change of the fluid shear stress, we obtain a non-
monotone relaxation characterized by damped oscillations that are absent in the Pahtz model. 
Regarding the characteristic length scale of the relaxation process, our model suggest that the 
saturation length is proportional to   T / (βg) = (u0

0 )2 / (23βg) ≈ 30(u0
0 )2 / g,  where β is the 

coefficient in the linearized vertical flux. This result is analogous to those of the Sauermann, et al. 
[6] and Pahtz models. It emphasizes that the relaxation process is crucially dependent of the 
splash process through the coefficient β. 

We also treated non-uniform flows over a rigid base, which are considered here for the first 
time. We found, in particular, that for a given Shields number, the steady states for which the 
particle flux decreases with increasing particle hold-up are unstable when permitted to spatial 
evolve and they relax to the solution with the peak value of the particle flux. During the 
relaxation process, the particle hold-up has to decrease to the value of the peak. Thus, the 
characteristic length scale of this process is expected to depend both on the deposition rate and 
the saltation hop length over a rigid bed. We find that for S* = 0.05, the saturation length is about 
100 times the saltation hop length, or about 107 particle diameters. 

Finally, we determined the steady, non-uniform solution for the flow over a particle bed that 
develops with distance from a steady solution over a rigid bed. The behavior of the particle flux 
jn this transition has been successfully described by Sauermann, et al. [6] in their two-equation 
continuum model. Our treatment involves boundary conditions that can distinguish between a 
rigid and a particle bed and a system of partial differential equations that predict profiles of 
concentration, particle and wind velocity over the beds. This provides more information to test 
against measurements, in the context of a theory that employs fewer modeling parameters than 
that of Sauermann, et al. [6]. We hope eventually to find way to close the depth-averaged version 
of our equations and to better understand the relationship between the two models. 

In any case, we believe that the development of the continuum theory outlined here should 
encourage additional measurements made in developing flows in wind tunnels (e.g., [1, 2, 9, 12, 
33, 38, 39]) and tests of the modeling assumptions against the results of discrete simulations of 
saltation over rigid and particle beds [20-24]. We look forward to this activity. 
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Appendix 

 
Here, we calculate the upward velocity 
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in which   1− e2 = 1− A2 + 2ABsinθ − B2 sin2θ .   
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The coefficient of 2AB is
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where   x ≡ ξ / T ,   x0 ≡ ξ0 / T ,  and 4.6 = u0 / T .   
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in which 
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in which 

 
   

− 1
v2 + u0 / 2T

e
− v2

2

dv2
ξ0−u0

2T

∞

∫ = − 1
w

e
− w−u0/ 2T( )2

dw
ξ0 / 2T

∞

∫ ! −0.32 e
− v2

dv
ξ0−u0

2T

∞

∫

= −0.32 π
2

erfc
ξ0 − u0

2T
⎛
⎝⎜

⎞
⎠⎟  (A17)

 

 
and 



 
  

2T
u0

T
v2 +1− ξ0 − u0( )u0

T
⎡

⎣
⎢

⎤

⎦
⎥e

− v2
2

dv2
ξ0−u0

2T

∞

∫

= T
2

⎛
⎝⎜

⎞
⎠⎟

1/2 u0

T
e

− ξ0−u0( )2
2T + 1− ξ0 − u0( )u0

T
⎡

⎣
⎢

⎤

⎦
⎥

π
2

erfc
ξ0 − u0

2T
⎛
⎝⎜

⎞
⎠⎟

 (A18) 

 
Upon collecting only those terms with an argument   ξ0 − u0( ) / 2T ,  
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Expressing this as a function of u0, using T = (u0/4.6)^2, 
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Finally, with A = 0.87 and B = 0.72, 
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