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Abstract: Advances in solution-based printing and surface patterning techniques for additive 

manufacturing demand a clear understanding of particle dynamics in drying colloidal droplets 

and its relationship with deposit structure. Although the evaporation-driven deposition has been 

studied thoroughly for the particles dispersed in the bulk of the droplet, few investigations have 

focused on the particles strongly adsorbed to the droplet surface. We modeled the assembly and 

deposition of the surface-active particles in a drying sessile droplet with a pinned contact line by 

the multiphase lattice Boltzmann-Brownian dynamic method. The particle trajectory and its area 

density profile characterize the assembly dynamics and deposition pattern development during 

evaporation. While the bulk-dispersed particles continuously move to the contact line, forming 

the typical “coffee-ring” deposit, the interface-bound particles migrate first toward the apex and 

then to the contact line as the droplet dries out. To understand this unexpected behavior, we 

resolve the droplet velocity field both in the bulk and within the interfacial region. The 

simulation results agree well with the analytical solution for the Stokes flow inside an 

evaporating droplet. At different stages of evaporation, our study reveals that the competition 

between the tangential surface flow and the downward motion of the evaporating liquid-vapor 

interface govern the dynamics of the interface-bound particles. In particular, the interface 

displacement contributes to the particle motion toward the droplet apex in a short phase, while 

the outward advection flow prevails at the late stage of drying and carries the particles to the 

contact line. The final deposit of the surface-adsorbed particles exhibits a density enhancement at 

the center, in addition to a coffee ring. Despite its small influence on the final deposit in the 

present study, the distinct dynamics of surface-active particles due to the interfacial confinement 

could offer a new route to deposition control when combined with Marangoni effects. 
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I. INTRODUCTION 

Evaporation-driven self-assembly and deposition of colloidal materials has been 

recognized as a promising way for preparing functional nanomaterials, [1,2] patterning surface 

for biological/chemical sensors, [3–6] and printing high-performance optic/electronic 

devices. [7–10] In these applications, the functionality and performance of nanomaterials, 

sensors, and devices are critically determined by the deposited colloidal structures. Deposition 

patterns [4,11–13] obtained upon the drying of a colloidal droplet are surprisingly plentiful, 

which are governed by the complex interplay of multiple factors, such as substrate wetting 

property, [4,14] temperature, [15] solvent composition, [16–18] and physicochemical properties 

of particles. [19] “Coffee ring” is perhaps the most famous example, which exhibits substantially 

higher particle density along the perimeter of deposit. [20] This inhomogeneous pattern is often 

undesirable in many applications and thus prompt extensive research efforts on its formation 

mechanisms. [11,15,19,21–23] Advective hydrodynamics in the bulk of a sessile droplet 

developed during evaporation has been widely accepted as the main driver for the coffee 

ring, [20,22,24] since colloidal particles are typically homogeneously dispersed inside the droplet. 

If dry particles can be directly delivered to and adsorbed irreversibly at the liquid-vapor interface 

(e.g. by electrospray technique [25]), the surface flow instead of the bulk flow will govern the 

dynamics of particles confined at the droplet surface and the deposition pattern may be altered. 

However, our understanding of the flow field is incomplete on the droplet surface. Its influence 

on particle dynamics and assembly at the free surface and the subsequent deposition structure 

remains largely unexplored. Direct experimental probe of the surface-adsorbed particle motion 

has been rarely reported [26], mainly due to the continuously moving and curved free surface of 

a drying droplet. Thus, the numerical modeling provides a promising way to reveal the interplay 

between the surface flow and the particle dynamics during droplet evaporation. 

In this paper, we investigate the evaporation-induced particle self-assembly and deposition 

using numerical simulations, and reveal the relationship between the final deposition pattern and 

the initial particle distribution in the droplet. Of particular interest is how the surface flow of the 
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drying droplet modulates the assembly and deposition of particles that are only adsorbed at the 

interface. We apply a two-way coupled lattice Boltzmann-Brownian dynamics (LB-BD) method 

to simulate three-dimensional (3D) colloidal sessile droplets under isothermal and quasi-steady 

evaporation. The lattice Boltzmann method (LBM) has been developed as an efficient and 

promising tool to simulate multiphase flow problems. [27–30] However, modeling coexisting 

phases with density and viscosity contrasts (e.g., liquid-vapor systems) is still a challenging 

problem for the LBM [30–41] due to the density variations across the liquid-vapor interface, 

which severely compromise the numerical stability of the simulation. Nonetheless, the local 

density change could play an important role in the dynamics of the particles adsorbed at the 

interface. Thus, we exploit a hybrid LB-BD method to model 3D fluids with density contrast, [37] 

taking advantage of the recently developed two-dimensional (2D) framework. [42] More 

importantly, we invent a novel scheme to control the contact line motion during evaporation, 

especially to achieve contact line pinning. The ability of modeling an evaporating droplet with a 

pinned contact line permits faithful reproduction of the coffee-ring effect in the simulation. 

In the discussion below, we first detail the two-way coupled 3D multiphase LB-BD method 

with density contrast and the boundary conditions for evaporation and contact line pinning. 

Using this model, we examine the assembly and deposition of the interface-bound particles and 

compare the results against the ones for the particles in the bulk. We elucidate the complex 

dynamics of the surface-adsorbed particles by analyzing the evaporation-driven flow field. From 

these results, we reveal that the physical confinement of the evaporating liquid-vapor interface 

contributes significantly to the particle motion at the free surface, which leads to an enhancement in 

particle density at the center of droplet footprint.  

II. NUMERICAL METHOD 

1. 3D Multiphase Lattice Boltzmann Model with Density Contrast 

The hydrodynamics of a binary fluid laden with particles under isothermal conditions [37] 

is described by the continuity equation (Eq. 1), the Navier-Stokes equation (Eq. 2), and the 



5 
 

Cahn-Hilliard equation (Eq. 3): 
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t
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Here, 0ρ  is the average fluid density that determines the pressure field according to the 

ideal gas law as 2
0 sp cρ= , where sc  is the speed of sound. ρ  is the local density that varies 

between the liquid density lρ  and the vapor density vρ . η  is the dynamics viscosity and ur  

is the local fluid velocity. The local order parameter φ  represents the fluid phases. Namely, ρ  

is linearly dependent on φ  as ( ) ( )* * * *
l v= 2 2ρ ρ φ φ φ ρ φ φ φ+ − − , where ( )*

l v 2φ ρ ρ= −  is 

the equilibrium order parameter. According to the relation, the local order parameters of values 

*φ  and *φ−  respectively represent the liquid and vapor phase, while 0φ =  indicates the 

interface position. F  is the external body forcing term applied to the fluid use to the presence 

of particle. Mθ  is the mobility of the order parameter field whose transport is governed by the 

chemical potential. 

The chemical potential of the binary fluid with particles is defined as 

( )3 *2 2
p= 4 4Aφμ φ φ φ κ φ ψ φ− − ∇ + ∂ ∂ , where the first and second term represent the contributions 

of the bulk phases and the interface, respectively. The thickness of interface W  and surface 

tension σ  are described in terms of parameters A  and κ  as *2W Aκ φ=  and 

*3= 4 2 3Aσ κ φ . pψ  is the free energy density describing the particle-fluid interaction, given 

by ( ) ( ) ( ) 2
p 0 0, exp ,i ii

r t V r r r r tψ φ φ= − − −⎡ ⎤⎣ ⎦∑r r r r . [42–44] The summation represents the 

influence of all near-by particles on the fluid at the discrete lattice position rr . iφ  is the order 
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parameter of the i th particle at the continuous off-lattice position ir
r , which defines its wetting 

behavior. 0V  dictates the interaction strength, and 0r  controls both the range and strength of 

the interaction. 

The above governing equations are discretized by the lattice Boltzmann method into two 

lattice Boltzmann equations (LBEs) (Eqs. 4 and 5): [37,38] 
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Here, ( ) ( )2 22 4 2
s s s1 2 2i i i ie u c e u c u cω ⎡ ⎤Γ = + ⋅ + ⋅ −⎣ ⎦  and s 1 3c =  is the speed of sound in 

the LBM. fτ  and gτ  are the respective relaxation times for the two LBEs. ie  is the lattice 

velocity, which indicates the direction of the particle distribution functions f  and g  at a 

certain lattice node. For the D3Q19 velocity discretization, we have  
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The corresponding weighting factors iω  are 0 1~6 7~181 3,  1 18,  1 36ω ω ω= = = . The average 

density is defined as 0 = 2 ii
u t fρ ρδ⋅∇ +∑  and the local order parameter is obtained as 

= ii
gφ ∑ . The momentum with local density is calculated from 

2 2 i ii
u t F t f eφρ φ μ δ δ= − ∇ + +∑ . The equilibrium distribution functions eqf  and eqg  are 
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calculated from the macroscopic variables: [37,45] ( )eq
0 +i i i if ω ρ ρ ω= Γ −  and 

( )( )eq 2
s3i i i ig B e u cω φ= + ⋅ , where ( ) 2

0 0 01 3 sB M cφφ ω μ ω⎡ ⎤= − −⎣ ⎦ , ( ) 2
s0

3i i
B M cφμ

≠
= , and 

the numerical mobility parameter is M . The relationship between the mobility Mθ  and the 

numerical mobility parameter M  is given as ( )M 0.5gM tθ τ δ⎡ ⎤= −⎣ ⎦ . The dynamic viscosity 

is related to the relaxation time as ( )2
s= 0.5fcη ρ τ − . Importantly, the difference ( )2

sp cρ−∇ −  

is introduced to the LBE as the forcing term [37] in order to correctly recover the Navier-Stokes 

equation for multiphase flow with density contrast. Unless otherwise stated, the first-order and 

second-order spatial derivatives of the macroscopic properties are calculated using the isotropic 

finite difference scheme. [33] 

2. Two-Way Particle-Fluid Coupling and Particle Dynamics 

Accounting for the particle-fluid interaction, the fluid body force F  consists of the viscous 

drag force dragG  and the force G  associated with the wettability of particles. dragG  is 

obtained as ( )drag drag,i
ii

G r r Fδ= − −∑ , where ( )rδ  is the Dirac delta function and 

( ) ( )drag, ,i
i i iF r r t u r tζ δ δ⎡ ⎤= − −⎣ ⎦  is the drag force acting on the ith particle. ( ) ( )=6i i pr r Rζ πη  

is the Stoke’s drag coefficient and ( ) ( )( )2
s= 0.5i i fr c rη ρ τ −  is the local dynamic viscosity, 

which varies with the particle position across the liquid-vapor interface. G  is calculated from 

( ),ii
G f r t=∑ , where ( ) ( ) ( )0 0, 2 exp ,i i if r t V r r r r tφ φ φ⎡ ⎤= ∇ − − −⎣ ⎦ . 

Considering negligible inertia of small particles, their dynamics is described by the 

overdamped Langevin equation as follows [42,44] 

 ( ) ( ) ( ) ( ) ( ) ( )f pp
p,i i i i i i

i

dtdr u r t dt D r dW t F t F t
rζ

⎡ ⎤= + + +⎣ ⎦   (6) 

Particle positions are updated through Eq. 6 by using a second-order Runge-Kutta method. [44] 
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( ) ( ) ( )p B p6i iD r k T R rπ η⎡ ⎤= ⎣ ⎦  is the particle diffusion coefficient and ( )W t
r

 is a Gaussian 

random variable with variance ( ) ( )
2

6W t dt W t dt+ − = , which satisfies the 

fluctuation-dissipation theorem. ( ) ( )f ,i iF t dr f r t= ∫  is the total force on the ith particle from 

the surrounding fluid. pp
iF
r

 is the particle-particle interaction force defined as 

 ( ) ( ) ( )pp
m

1,

N

i i j i j
j j i

F t r r r rψ
= ≠

= − ∂ − ∂ −∑   (7) 

The summation runs over all the neighboring j  particles. For the particles in the liquid phase, 

the repulsive Morse potential is used in this work to represent the excluded volume effect 

 ( ) ( )( )2

m rep e1 expr r rψ ε λ= − − −⎡ ⎤⎣ ⎦  for er r<  (8) 

where repε  and λ  determine the strength and range of repulsion. er  is the specific distance 

where the force between particles is equal to zero. The attractive force among particles in the 

vapor phase is also described by Eq. 8 for er r>  with a much smaller attε . The attraction 

between particles and the wall is along the normal direction (the y direction) and expressed by

( ) ( ) ( ), , ,
a

i y a i y i yF t r rψ= ∂ Δ ∂ Δ , where ,i yrΔ  is the particle-wall distance. A similar Morse 

potential [46] ( ) ( )( )2

w a1 expr r rψ ε λ= − − −⎡ ⎤⎣ ⎦  for ar r<  is used for the wall attraction. Other 

details about the two-way coupling between fluid and particles and the particle dynamics were 

described in our previous work. [42] 

3. Evaporation, Symmetric Boundary Conditions, and Contact Line Pinning 

We induce the evaporation of liquid masses under isothermal conditions with low 

evaporation rates by imposing a Dirichlet boundary condition on the order parameter 
H HSφ φ= , 

where HS  is an evaporation boundary enclosing the system and the order parameter at the 



9 
 

boundary *
Hφ φ< − . [42,47] We assign the value *

H 1.1φ φ= −  outside a hemispherical surface 

with a radius of 38 LB units enclosing a sessile droplet. The computational phase transition 

model for the LBM has been discussed in a number of papers.  [42,47–50] The evaporation 

model in the work uses the phase field gradient to induce net evaporative flux, thereby driving 

droplet evaporation. [42,47] This approach simulates diffusion-dominated evaporation under 

isothermal and quasi-steady assumptions, owing to the absence of energy equation. [47,51] We 

also note that the use of free-energy LBM is debatable when phase change occurring at the 

liquid-vapor interface. [50] However, previous simulations have shown that this method 

produces physical hydrodynamics and evaporation behavior consistent with experiments and 

theoretical models [42,47,51–53] in the limit of a high thermal conductivity of liquid and 

negligible thermal Marangoni effects. Despite these idealized conditions, the simulation allows 

one to isolate pure hydrodynamic driving force on the particle assembly and deposition, which 

offers unique insight. 

Moreover, it is well known that the thermal, surfactant, and solution Marangoni 

effects [15,17,54,55] can produce complex flow structures in drying droplets and significantly 

influence the deposition pattern. A physical system is likely subject to one or more of these 

Marangoni effects. However, only thermal Marangoni effect induced by the differential 

evaporation and substrate heat transfer is present in an ideal, single component droplet. [54,56] 

Previous studies have shown that the thermal Marangoni flow for a water droplet evaporating at 

room temperature is negligible compared to the evaporation-driven bulk flow toward the contact 

line. [15] Thus, we try to model a simple system in this study by not considering various 

Marangoni effects. 

With the aim to decrease the computational domain size and thus the simulation time, the 

symmetric boundary conditions are applied to the horizontal directions to simulate a quarter of a 

sessile droplet, as shown in Fig. 1a. The symmetric boundary conditions in this work are adapted 

from the half-way bounce-back boundary conditions proposed by Lee and Liu. [30,57] Instead of 

bouncing back at the boundary node sxr  (Fig. 1b), the outgoing particle distribution function if  
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reflects back at the symmetric boundary following the rule of specular reflection (Fig. 1c). Thus, 

we have ( ) ( )ˆ s siif x f x=r r , where î  represents the incoming direction that satisfies 

( )ˆ 2i iie e e n n= − ⋅r r r r r  for 0ie n⋅ ≠r r , where nr  is the inward normal direction of the boundary. The 

collision process occurs on the boundary nodes and their macroscopic properties are updated. 

The same rule applies for the distribution function ig . In order to prevent unphysical influences 

of the boundary nodes during evaporation, the normal derivatives of macroscopic properties are 

set to zero at the symmetric boundaries. 

Due to the presence of off-lattice particles in the system, we introduce ghost particles 

outside the simulation domain as the mirror images of the real particles with respect to the 

symmetric boundary, which is similar to the implementation in molecular dynamics simulations 

with periodic boundary conditions. The mutual forces ppF
r

 between the real and ghost particles 

are taken into account to capture correct particle dynamics in the vicinity of the symmetric 

boundaries. In addition, the specular reflection is applied to the particles that move across the 

symmetric boundaries. 

The wetting properties of the solid substrate are controlled by the surface energy 

formulation. [28] The method prescribes the normal derivative of the order parameter at the solid 

substrate as ( )s
n hφ κ∂ ∂ = − , where 

 ( )2*
eq2 2 sgn cos 1 cos

2 3 3
h A π α αφ κ θ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

  (9) 

and ( )2
eqarccos sinα θ=  for a given equilibrium contact angle eqθ . In multiphase systems 

without evaporation, the contact line can be readily pinned by replacing eqθ  in Eq. 9 with the 

local apparent contact angle, which is measured at each time step. [58] However, we find that the 

evaporation model based on the advection-diffusion of the order parameter [47] perturbs the 

surface free energy and thereby influences the contact angle. As a result, the contact line cannot 
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be pinned steadily through the update of h  value according to the instantaneous contact angle. 

 To overcome this issue, we implemented a new method to pin the contact line under 

evaporation, which combines the full-way bounce-back scheme on the solid nodes with the 

isotropic finite difference approximation [33] on the adjacent fluid nodes. In particular, the 

regular full-way bounce-back boundary condition is applied to the solid nodes. By treating the 

solid nodes as ghost nodes, the macroscopic properties of the solid nodes are not updated and 

remain unchanged. As shown in Fig. 2a, when the contact line needs to be pinned during 

evaporation, the isotropic finite difference scheme is applied to calculate the derivatives on the 

fluid nodes immediately adjacent to the solid boundary. Thus, the macroscopic properties of the 

solid nodes influence the evolution of fluid properties. The constant order parameters on the solid 

nodes result in contact line pinning. Once the maximum distance between the liquid-vapor 

interface and the solid substrate reduces to a value comparable to the interfacial thickness (3 LB 

units in this work), the one-sided finite difference method [59] is used instead to exclude the 

influence of solid nodes (Figs. 2b and 2c). Consequently, the pinned contact line is released and 

thus starts to recede. The motion of contact line is then governed solely by the surface free 

energy with equilibrium contact angle set to be eq 0θ = . 

4. Simulation Parameters 

Our computational domain is 40 40 40× ×  LB units. The two-phase fluid is modeled with 

dimensionless densities for the liquid phase l 1ρ =  and the vapor phase v 0.1ρ = . The 

relaxation times are 0.875fτ =  for the mass-momentum LBE and 0.7gτ =  for the phase-field 

LBE. Dimensionless dynamic viscosities can be calculated from the local density and exhibit a 

ratio of 10 :1 between the liquid and vapor phases. Other fluid parameters are the mobility 

parameter M 5θ = , the interfacial thickness 5W = , and surface tension 41 10σ −= × . The 

parameters of the particle model are listed as follows: the dimensionless radius p 0.032R = , 

rep 1.0ε = , 7
att 1 10ε −= × , 0.6λ = , 0 0.6r = , e 1.2r = , a 0.6r =  and 5

0 1 10V −= × . 7
B 1 10k T −= ×  
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is the default value based on the parametric study, while 61 10−×  and 51 10−×  are applied to test 

particle depositions under different Pe  number. A vertical force with a magnitude of 63.6 10−×  

is applied to the particles in the vapor phase to mimic particle deposition. The fluid dynamics is 

solved by LBM and the particle dynamics is updated by BD. One LB fluid time step tδ  

consists of 20 particle time steps. The droplets initially have a radius of drop 28R =  LB unit and 

are centered at the origin. Due to the discrete nature of our particle model, a sufficient total 

number of particles is vital to obtain statistically and physically meaningful deposition profiles. 

The total particle number np 250N =  is used in this study, which shows reliable statistics. All 

droplets require 52 10×  time steps to reach the equilibrium state before the introduction of 

particles and the subsequent evaporation. The evaporation of sessile droplets needs 

6(0.67 0.76) 10×  time steps to complete dry. All results are generated by an in-house C code. 

III. RESULTS AND DISCUSSION 

We first examine the effect of the pinning scheme by monitoring the variations of contact 

angle and contact area as well as the total volume of a sessile droplet during evaporation. The 

instantaneous local contact angle is calculated using the normal vector of the liquid-vapor 

interface in φ φ= ∇ ∇r  at the contact point. [60] Since the free-energy-based multiphase LBM 

generates a diffuse interface, we average the values of local contact angles localθ  calculated on 

the points that are both in close proximity to the nominal interface ( 0φ = ) and located in the first 

and second layers of fluid nodes adjacent to the solid boundary. The droplet volume is estimated 

by the total number of lattice nodes in the liquid phase (i.e., 0φ > ). The contact area is 

estimated by the number liquid nodes on the first layer of fluid nodes. Figure 3a shows the localθ  

variation during evaporation for droplets with pinned contact line and the constant contact angle 

( eq 90θ = ° ) mode. The local contact angle of the droplet with pinned contact line decreases 
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monotonically to 9° until the release of pinning, while the contact angle of the free-slipping 

droplet fluctuates near the equilibrium value with small variation. In other words, the pinning 

scheme allows us to simulate an evaporating droplet with a receding contact angle of 9°. After 

the release of pinning, the contact line immediately recedes and the contact angle increases. As 

shown in Fig. 3b, the contact area of the pinned droplet remains approximately constant, which 

confirms the pinning of contact line. The contact area of the droplet in the constant contact angle 

mode exhibits a linear decrease, indicating the contact line velocity during receding is 

approximately constant. 

The similar droplet volume profiles in Fig. 3c suggest that the different dynamics of 

contact line has no significant influence on the evaporation rate of droplets. However, during the 

latter stage of evaporation, the droplet with the pinned contact line does evaporates slower than 

the one with the moving contact line. This behavior is attributed to the increasing influence of the 

solid nodes when the droplet height reduces. The removal of such influence leads to a sudden 

change of volume when the contact line is released. These simulation results are consistent with 

reported experiments. [61] In Fig. 4, we plot the evaporative flux of the two droplets to further 

the understanding of the evaporation behavior. The evaporative flux in this model is defined 

based on the Cahn-Hilliard equation as Mj φθ μ= − ∇
r

. [47] The droplet with pinned contact line 

exhibits differential evaporative flux, which increases from the apex to the contact line along the 

liquid-vapor interface. In contrast, the free-slipping droplet with eq 90θ = o  has uniform 

evaporative flux as shown in Fig. 4b. Notably, the simulation does not show strong evaporative 

singularity at the pinned contact line as predicted by the theory,  [20,22,62,63] which is 

attributed to the diffuse interface character of the free-energy LBM. 

For modeling particle-laden droplets, interface-bound and bulk-dispersed particles are 

distributed homogeneously in the corresponding regions before evaporation starts, as shown in 

Figs. 5(a,b). Due to the prescribed fluid-particle interaction, the interface-bound particles are 

confined within the liquid-vapor interface, while the bulk-dispersed particles stay in the bulk 
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liquid phase. During evaporation, particle dynamics is dictated by the interplay of advective flow, 

Brownian motion, fluid-particle interaction, and particle-particle interaction. Both particle 

trajectories and particle density profiles show that the particles adsorbed at the interface exhibit 

different dynamics compared to the particles in the bulk. Surprisingly, Figures 5c and 5d reveal 

that most particles move slowly towards the apex of droplet between * 0t =  and * 0.27t = , 

except the ones originally near the apex, which do not show noticeable net motion (see Movie 

S1 [64]). *t  is the normalized evaporation time with respect to the total time for complete 

evaporation of solvent. The inward movement slightly increases density in the region of 

5 15r< <  and reduces the peak height around 25r =  in Fig. 5e. As contact angle decreases, 

the particles initially migrating to the apex reverse their directions and thus aggregate and deposit 

near the contact line, which is evident from the density variation. Notably, the particles near the 

apex still remain stationary, corresponding to high local density that is invariant during 

evaporation. The final profile exhibits a significant peak at the contact line representing the 

coffee ring pattern with a small but unexpected densification at the center as a result of the 

bi-directional particle transport on the interface. Moreover, a depletion zone located in the region 

of 10 15r< <  can be observed. 

In contrast to the interface-bound particles, the radial density of bulk-dispersed particles 

away from the contact line decreases monotonically throughout the entire evaporation, while the 

edge density drastically increases. This density evolution indicates that the bulk-dispersed 

particles consistently migrate toward the contact line, which is confirmed by Movie S2 [65]. 

Eventually, the final deposition of the bulk-dispersed particles reproduces the classical coffee 

ring with no center deposit. The trajectories of bulk-dispersed particles closely follow the 

streamlines predicted by the theoretical solutions [22,63] for evaporating sessile droplets with 

pinned contact line. 

The Pe  number, defined as p pPe /UR D= , characterize the relative magnitude of 

advective transport and Brownian diffusion of particles, where U  is the average particle 
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velocity, pR  is the particle radius, and pD  is the average particle diffusion coefficient. The 

discrepancy between simulation and experiments is due to the difficulties of measuring particle 

velocity. However, different particle dynamics among different Pe number in simulations are 

able to reveal its influence on the particle depositions. We explore the influence of Pe  number 

on the final particle deposit by tuning the particle diffusion coefficient. Figure 6 shows similar 

depositions from particles having the reference value of diffusion coefficient (red lines) and 

those with p 0D =  (cyan lines). Thus, weak Brownian motion does not alter the deposition 

pattern. In typical experiments, the Pe  number of the particles dispersed in the bulk during 

droplet evaporation varies from 1  to 200 , [66,67] which depends on the side and material 

properties of both droplets and particles. More vigorous Brownian motion with larger pD  

reduces radial inhomogeneity. When Pe 0.002= , the density peak of interface-bound particles 

near the contact line significantly decreases and widens. The peak even shifts outwards, which is 

attributed to weakened interfacial confinement under strong Brownian diffusion. Notably, our 

model considers no fluid-particle interaction force fF
r

 in the vapor phase. The interface-bound 

particles can enter the vapor region easily with strong Brownian motion and thus widen their 

distribution across the interface. For the bulk-dispersed particles, the density peak also becomes 

lower and broader as the Pe  number decreases, as shown in Fig. 6b. 

To understand the intriguing dynamics of interface-bound particles, we present the flow 

field analysis based on an evaporating particle-free droplet with pinned contact line. Due to the 

diffuse interface produced by the free-energy LBM, there are multiple interfacial velocity points 

for each radial position. Figure 7 shows that fluid velocity vectors point downwards and 

outwards (i.e., from the droplet apex toward the contact line) with magnitudes increasing from 

the center to the contact line. Figures 8 and 9 plot the two-dimensional flow field is extracted 

from the x-o-z plane of 3D simulation results. We also plot the analytical solution for Stokes flow 

inside an evaporating droplet given by Masoud and Felske [63,68] for comparison. At the early 

stage of evaporation (i.e., at large contact angle), the simulation velocities in the bulk are highly 
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consistent with the theoretical prediction, regarding both direction and magnitude, as shown in 

Figs. 8 and 10a. As contact angle reduces upon evaporation, the magnitude of simulation 

velocities deviates progressively from the theory (see Fig. 9), despite the well-aligned directions 

shown in Fig. 10b. The large discrepancy between the analytical solution and simulation results 

at low contact angle could be induced by two reasons. First, the theoretical solution [22] is 

derived for Stokes flow with an approximate evaporative flux, while the LBM method fully 

recovers the continuity and Navier-Stokes equations. Second, although our model captures the 

differential evaporation along the surface of pinned droplet as shown in Fig. 4a, the evaporation 

flux near the contact line does not show strong singular behavior when the contact angle is small 

due to the diffuse-interface model, in contrast to the theory. [20,22,62,63] We speculate the 

absence of evaporative singularity in the simulation yields weaker bulk advection in the droplet. 

Along a certain radial position, the interfacial flow is weaker than the bulk flow close to the 

interface when contact angle is large, as shown in Fig. 8. The simulation results reveal small but 

indiscernible radial velocities pointing to the droplet apex. The negative velocity occurs near the 

outer boundary of the interfacial region at small r, which is relevant only to particles near the 

apex. This negative velocity contributes to particle migration towards inwards at the early stage 

of evaporation. As the droplet contact angle decreases, the maximum velocity shifts into the 

interfacial region and the negative radial velocities in the interfacial region vanish. This flow 

variation explains why the “rush hour” effect [69] also appears for the interface-bound particles 

at the end of drying. Figure 11 shows the variation of particle distribution modeled as a 

one-dimensional advection process in toroidal coordinates, [68] which confirms the influence of 

interfacial flow on the interface-bound particles.  

However, the inward radial flow carries only particles already near the apex to the center, 

while other particles should be advected to the contact angle by the outward flow. We further 

probe additional effects that yield the inward movement of particles away from the droplet apex. 

We speculate that the downward displacement of evaporating droplet surface also plays an 

important role in the dynamics of particles confined at the interface. As shown in the inset of Fig. 
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12, with only fluid-particle interaction force pF
r

, particle trajectories closely follow the θ  

axis [63] of a toroidal coordinate with the origin at the contact line. In other words, the moving 

interface effectively maps particles to the substrate. Time evolution of particle density profiles 

confirms that the interface-bound particles migrate toward the apex under the mapping of drying 

surface. When the interfacial flow is weak at the startup of evaporation, the inward particle 

motion is mainly induced by the physical constraint of droplet surface. However, this backward 

motion is only present for a short period. As evaporation continues, the interfacial advection 

quickly enhances and overpowers the surface-induced displacement, therefore reversing the 

direction of particle motion. 

IV. CONCLUSIONS 

In this paper, we apply a 3D LB-BD model to simulate particle self-assembly and 

deposition in drying droplets. We find that the particle dynamics at the liquid-vapor interface are 

different from that in the liquid phase. The deposit of the interface-bound particles exhibits a 

small density enhancement at the center of the droplet footprint after drying, in addition to the 

pronounced coffee ring pattern. In order to explore the formation mechanism for this center 

deposit, we interrogate the flow field induced by evaporation, especially the interfacial flow on 

the droplet surface. The interfacial flow is weaker than the bulk flow at the early stage of 

evaporation, however, directing to the droplet center in the region near the apex. Furthermore, 

the constraint of the evaporating liquid-vapor interface generates inward displacement for all 

interface-bound particles. Together, the advective flow along the droplet surface and the 

downward motion of the surface itself yield the enhanced density at the center. This work 

provides important hydrodynamic insight of particle assembly at the liquid-vapor interface 

induced by isothermal and quasi-steady droplet evaporation. The present model does not capture 

the thermal and surfactant Marangoni effects from the evaporative cooling, substrate heating, and 

surfactant contamination. The particle dynamics at the liquid-vapor interface could be even more 

complicated with those effects considered. For example, the presence of the Marangoni 

convection can significantly disturb the surface flow or even reverse it. Due to the interfacial 
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confinement, the surface-adsorbed particles can experience more pronounced influences from the 

surface advection than the particles in the bulk, where the advection toward the contact line will 

eventually prevail. We envision that harnessing the interfacial flow and surface confinement for 

the surface-active particles can provide a new avenue for controlling deposition pattern from 

drying droplets for various applications. 
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Figure 1. (a) Representative simulation box with the symmetric boundary conditions applied to 

all four horizontal boundaries for simulating a quarter droplet. The schematic diagrams of the 

directional change of the particle distribution functions at the (b) bounce-back boundary and (c) 

symmetric boundary, where ier  represents the incoming direction and îer  is the outgoing 

direction at the boundary, respectively. nr  is the boundary normal toward the fluid. 
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Figure 2. Schematic diagrams of the pinning and releasing scheme. The orange dots represent the 

fluid nodes. The blue dots are the solid nodes. The orange arrows indicate the nodes whose 

macroscopic properties are used when calculating derivatives on the corresponding fluid node. (a) 

During the pinning stage, the derivatives on the first fluid nodes are calculated from both the 

inner fluid nodes and the solid nodes. (b) When the droplet height is lower than the critical value, 

we only use the information on the neighboring fluid nodes but not the solid nodes to calculate 

the derivatives. (c) After the information from the solid nodes is excluded in the derivative 

calculation, the contact line starts to recede. 
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Figure 3. Time evolutions of the (a) local contact angle, (b) contact area, and (c) droplet volume 

for the evaporating droplets with pinned contact line (orange) and free-slipping contact line (blue) 

at constant contact angle ( eq 90θ = ° ).  
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Figure 4. Instantaneous evaporative flux in the x-o-z plane when * 0.61t = , for the evaporating 

droplets with (a) pinned contact line and (b) free-slipping contact line at constant contact angle 

( eq 90θ = ° ). The blue lines represent the inner boundary, central position, and outer boundary of 

the interfacial region. The red arrows represent the local evaporative fluxes. 

  



30 
 

 
Figure 5. (a) Top views and (b) side views of a quarter droplet with the interface-bound particles 

at the beginning of evaporation. (c) Top views and (d) side views of the final deposit after the 

solvent completely dries. The blue dots represent the particle positions. The green line shows the 

trajectories of particles during evaporation. (e) Time evolutions of the interface-bound particle 

number projected per unit area along the radial direction. *t  is the normalized evaporation time 

with respect to the total time for complete evaporation of solvent. Error bars denote the standard 

deviations calculated from four simulations with different random seeds. Notably, the variations 

of initial particle density along the radial direction in (e) are attributed to the projection of 

homogeneous particle distribution in the 3D space onto the 2D x-o-y plane. The insets in (a-e) 

display the results for the droplet with the bulk-dispersed particles, whose positions are marked 

by the red dots. The corresponding views of the droplets during evaporation are shown in Movie 

S1 and S2. [64,65]  
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Figure 6. Density profiles of the final deposits with different Pe  numbers for the (a) 

interface-bound particles and (b) bulk-dispersed particles. Error bars represent the standard 

deviations calculated from four simulations with different random seeds. pD  in the interfacial 

region decreases linearly from the bulk value to 0, depending on the particle position. In contrast, 

it keeps a constant in the liquid phase. This variation leads to different Pe  numbers for the 

bulk-dispersed particles and the interface-bound particles with the same diffusion coefficient 

defined in the bulk. 
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Figure 7. (a) Top view and (b) side view of the flow vectors and streamlines in a particle-free 3D 

droplet. 
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Figure 8. Profiles of the (a) vertical velocity components *
zu  and (b) radial velocity components 

*
ru  at different radial position when the local contact angle is local 84θ = o . The interfacial flow 

(blue dots) from the simulation results is connected with the bulk flow (red dots) at the same 

radial position. The analytical flow field (cyan solid lines) within the liquid phase is plotted at 

the same time step for the same contact angle. The black circle in (d) highlights the negative 

radial velocities. The numerical velocity profiles start from 1z = , because the macroscopic 

velocity is not calculated at 0z = . 
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Figure 9. Profiles of the (a) vertical velocity components *
zu  and (b) radial velocity components 

*
ru  at different radial position when the local contact angle is local 33θ = o . Other details are the 

same as Fig. 8. 
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Figure 10. Flow fields in the x-o-z plane when local contact angles are (a) local 84θ = o and (b) 

local 33θ = o . 

  



36 
 

 

Figure 11. Time evolution of the 1D theoretical particle density profile obtained by the 

theoretical solution in Ref. 62. 
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Figure 12. Time evolutions of the projected density of the interface-bound particles along the 

radial direction without advection along the droplet surface. The inset shows a comparison of the 

projected particle trajectories in the r-o-z plane for non-Brownian simulations of the 

interface-bound particles with (blue) and without (red) advection. 


