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In a recent study [Khabaz et al. Phys. Rev. Fluids 2 (9), 093301 (2017)], we showed that jammed 
soft particle glasses (SPGs) crystallize and order in steady shear flow.  Here we investigate the 
rheology and microstructures of these suspensions in oscillatory shear flow using particle-
dynamics simulations.  The microstructures in both types of flows are similar, but their evolution 
are very different.  In both cases the monodisperse and polydisperse suspensions form crystalline 
and layered structures, respectively at high shear rates.  The crystals obtained in the oscillatory 
shear flow show less defects compared to those in the steady shear.  SPGs remain glassy for 
maximum oscillatory strains less than about the yield strain of the material.  For maximum 
strains greater than the yield strain, microstructural and rheological transitions occur for SPGs.  
Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for 
sufficiently high maximum shear rates and maximum strains about 10 times greater than the 
yield strain.  Monodisperse suspensions form a face-centered cubic (FCC) structure when the 
maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum 
shear rate is high. In steady shear, the transition from a glassy state to a layered one for 
polydisperse suspensions included a significant induction strain before the transformation.  In 
oscillatory shear, the transformation begins to occur immediately and with different 
microstructural changes.   A state diagram for suspensions in large amplitude oscillatory shear 
flow is found to be in close but not exact agreement with the state diagram for steady shear flow.  
For more modest amplitudes of around one to five times the yield strain, there is a transition 
from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for 
monodisperse suspensions.  At moderate frequencies, the transition is from glassy to HCP via an 
intermediate FCC phase.  The transition from a glassy to layered structure in polydisperse 
suspensions only occurs for maximum strains 10 times or greater than the yield strain.   

PACS: 61.20.Ja, 61.43.Fs, 83.80.Hj, 83.60.-a  
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I. Introduction 

Measurement of rheological properties during oscillatory shear is a common method of 

characterization of complex fluids [1,2].  The rheology of course depends on the microstructure 

of the material.  Application of oscillatory shear flow can alter the microstructure of colloidal 

suspensions and consequently the rheology [3].  Hard sphere suspensions under oscillatory shear 

flow show a variety of microstructures such as face-centered cubic (FCC), stacked and tilted 

layers with hexagonal close-packed (HCP) configuration, and string-like structure [4-8].  It has 

been found that when the strain amplitude and the applied frequency is low, colloidal 

suspensions of hard spheres generally tend to rearrange into the FCC lattice structure.  On the 

other hand, at high frequencies and large amplitudes of oscillations the suspensions form HCP 

structures [4-8]. In general the formation of these phases depends on the degree of 

polydispersity, volume fraction and the flow conditions (i.e., the frequency and strain amplitude).  

In addition these sheared microstructures are not in equilibrium and they return to a liquid-like 

phase on cessation of flow [5,6].   

Koumakis et al. [9] studied the rheology of monodisperse PMMA hard spheres and 

showed that these suspensions form crystalline structures.  The viscous and elastic moduli of 

these crystallized suspensions are significantly lower compared to their glassy counterparts.  It 

was also found that under large amplitude oscillatory shear (LAOS), the crystallization can only 

occur if the strain exceeds the yield strain of the material during the oscillation [10].  For 

colloidal particles with an effective hard sphere volume fraction of 0.62 [7], low frequencies and 

stress amplitudes lead to HCP sheet-like structure after the flow cessation, while high 

frequencies and stress amplitudes result in melting of this structure.   
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While hard sphere glasses only experience forces due to the excluded volume 

interactions, the soft particles glasses (SPGs) are compressed and interact by pairwise elastic 

repulsions.  The average deformation of the particles depends on the volume fraction and contact 

modulus of the particles [11].  These suspensions share a similar equilibrium phase diagram with 

the hard sphere model until they become jammed [12,13].  The glass and jamming transitions 

occur at volume fraction of about 0.58 and 0.64, respectively.  At higher volume fractions, where 

particles are jammed, the elastic contact forces and imposed shear determine the microstructure 

and rheology. Brownian forces are negligible compared to the elastic contact forces [14].  There 

has been a number of experiments reporting ordering of concentrated suspensions of soft 

particles under shear flow. Paulin et al. investigated the response of suspensions of PMMA 

spherical microgels to oscillatory shear flows with variable frequencies and strain amplitudes 

[15].  They report out of equilibrium phase diagrams which show that above the freezing point 

amorphous suspensions can be driven into FCC, sliding layer structures and mixtures depending 

on the strain amplitude and frequency.  Huang and Mason [16] used large-amplitude shear 

oscillation light scattering (SOLS) [17] to study average droplets deformation and their 

microstructure in oil-in-water emulsions. They showed that application of large amplitude 

oscillatory shear can induce sliding hexagonal layers in the microstructure and the ordering 

depends on the volume fraction and shear history of the sample at the vicinity or above the 

jamming volume fraction [16]. Very recently [18] it was shown that ultrasoft colloidal star 

polymers with volume fraction close to the glass line undergo a crystal-to-crystal transition in 

oscillatory shear flow. In particular it was found that 1,4-polybutadiene stars transform directly 

from a BCC-dominated phase to an HCP-like microstructure at an intermediate range of Péclet 

(Pe) numbers. A fluid-to-crystal transformation was observed for large Peclet (Pe) numbers.   
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In our previous study [19] we used particle-dynamic simulations [20] to explore the 

microstructure of monodisperse and polydisperse suspensions of jammed SPGs in steady shear 

flow. Results demonstrated that SPGs with a low degree of polydispersity undergo a phase 

transition from a glass to an FCC microstructure at low shear rates.  This microstructure persists 

even after flow cessation. Above a critical shear rate, the FCC structure transitions to HCP.  

Again, if the flow stops, the HCP structure persists.  For polydisperse suspensions, a disordered 

structure is observed at low shear rates, and a layered phase is formed at high shear rates.  On 

cessation of the flow, the particles in the layered structure rearrange to become disordered once 

again.  We also showed that the formation of these layers in the steady shear flow is a shear-

activated phenomenon.  A dynamic state diagram of the SPGs was determined as a function of 

the polydispersity and ratio of viscous to elastic forces.   

The rheology of materials is often characterized using oscillatory rather steady shear.  In 

this article, we perform numerical simulations to construct a state diagram of the SPGs under 

oscillatory shear, which is expected to be useful for experimentalists. The simulation is based on 

the micromechanical framework that has been successfully used to investigate the rheology of 

SPGs in steady [19,20] and oscillatory [21] shear flows.  The state diagram and the dynamics of 

the microstructures in oscillatory shear simulations are compared with those in steady shear.  We 

show that the monodisperse suspensions form FCC and HCP crystalline structures at low and 

high frequencies, respectively, and the polydisperse suspensions turn into a layered phase at high 

frequencies.  These structural changes are similar to that seen for steady shear, provided the 

maximum strain is sufficiently high. However the dynamics of the structural transitions in 

oscillatory shear are very different from those in steady shear.  In addition the transitions in 

oscillatory shear do not exhibit an induction strain.   
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II. Simulation Method 

The soft particle glasses are modeled as suspensions of N non-Brownian elastic particles in a 

solvent with a viscosity of sη  which are jammed in a cubic simulation box at volume fractions 

larger than the random close-packing of hard spheres, as shown in Fig. 1 [20,22]. Suspensions 

with volume fractions of 0.7,0.8φ =  and 0.9 are studied.  The radii of the particles are assumed 

to follow a Gaussian distribution with a standard deviation of zero for monodisperse suspensions 

and values of 0.05δ = , 0.1 and 0.2 for polydisperse suspensions.  The average radius of the 

particles is unity; δ  is termed the polydispersity index in the following.  The particles are 

initially placed in a cubic box and the box size is reduced using Lubachevsky and Stillinger 

compression algorithm [23].  After reaching the close-packed structure, the spheres are assumed 

deformable, and the box size is reduced further in small steps.  At contact, particles α and β 

create a flat facet resulting in a deformation of ( ), 0.5 cR R r Rα β α β αβε = + − , where Rα and Rβ are 

the radii of particle α and β, rαβ  is the center-to-center distance, and Rc is the contact radius, 

which is given as ( )cR R R R Rα β α β= + .   

Both elastic repulsion and elastohydrodynamic (EHD) forces between particles were 

considered based on the model proposed by Seth et al. [20].  The elastic repulsion force between 

particles α and β is given by the generalized Hertz law: 

 * 24
3

e n
cCE Rαβ αβε ⊥=f n , (1) 

where E* is the particle contact modulus ( ( )* 22 1E E ν= − , with E being the Young modulus, 

ν = 0.5 is the Poisson ratio).  C and n are parameters that depend on the degree of compression.  
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For 0.1ε <  1.5n = and 1C = , for 0.1 0.2ε≤ <  3n =  and 32C = , and if 0.2 0.6ε≤ < 5n =

and 790C = [20,24].  ⊥n
 is the perpendicular direction to the facet at contact.  The EHD drag 

force, which is due to the existence of a thin film of solvent between the flat facets of two 

particles in contact during the shear deformation, is given by  

 ( ) ( )1 2 2 1 4EHD * 3
,|| ||

n
s cCu E Rαβ αβ αβη ε += −f n ,  (2) 

where uαβ,|| is relative velocity component in the direction of ||n , which is direction parallel to the 

facet at contact.  These two forces are assumed to be pair-wise additive, and the fluid inertia was 

neglected [20,21].  The suspension is subject to an oscillatory shear flow of the following form  

[21].   

 
( )max

*

coss
x

y t
E

γ ωη ω
∞ =u e , (3) 

where maxγ  is the maximum strain in each oscillation cycle with an applied frequency of ω , and 

xe  is the unit vector in the flow direction.  The frequency is nondimensionalized by *
s

E
ωηω = .  It 

ranges from 10-8 to 10-3 and the oscillatory flow is applied for 500 oscillation cycles. The 

dimensionless equation of motion (length, time, and velocity are non-dimensionalized by R, 

*
s Eη , and *

sRE η , respectively) for each particle can be written as 

 ( ) ( ) ( )1 2 2 1 42 3
,|| ||

4
6 3

nr n
c c

fd C R Cu R
dt R αβ αβ

α
α αβ

β βα

ϕ
ε ε

π
+∞

⊥

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
∑ ∑x u n n ,  (4) 

where αx  is the position of the particle α and ( )rf ϕ  is the mobility function, which was set to 

0.01 in the simulations [20,21].   
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Total number 103 and 104 particles are used to simulate the microstructure and induction 

period of the phase transition (no significant change in the stress-strain curve of these SPGs was 

seen above 1000 particles).  The conditions for the simulations are summarized in Table I.  If the 

strain amplitude is smaller than the yield strain of these materials, the microstructure will 

preserve its initial disordered state.  We note that the three dimensionless groups characterizing 

the system are the volume fraction φ , polydispersity δ , and dimensionless maximum shear rate 

maxγ . In the following, we will characterized the maximum shear rate by the dimensionless 

parameter max max
0

s

G
ωηγ γ= , where 0G  is the low frequency modulus of the suspensions.   

 
FIG. 1.  (a) Configuration of a suspension with a volume fraction of 0.9 and polydispersity index of δ 
= 0.1 that is in shear flow with an applied frequency of ω  and oscillation amplitude of maxγ .  The flow (u), 
gradient ( ∇ ), and vorticity (ω ) directions are shown in the figure.   
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TABLE I.  Range of the parameters used in the oscillatory shear simulations of SPGs at different volume 
fractions. 

Parameter 0.7φ =  0.8φ =  0.9φ =  

*
s

E
ωηω =  

8 310 10− −−  8 310 10− −−  8 310 10− −−  

*
0G E [20] 0.00466  0.0281  0.08  

max max
0

s

G
ωηγ γ=  

96.44 10 4.29−× − 9 11.07 10 7.12 10− −× − × 10 13.75 10 2.5 10− −× − ×

yγ [20] 0.032 0.033 0.0472 

max yγ γ  0.09 606−  0.09 606−  0.06 423.7−  

 

The bond order parameters were utilized to characterize the crystal structure of the 

monodisperse systems studied [19,25].  A bond is defined as a connection between particles i 

and j that are within a cutoff distance, which here is assumed to be 2.20.  The local bond order 

parameter Qlm is defined as  

 ( ) ( ) ( )( ),lm lmQ Y θ φ≡r r r , (5) 

where r is the bond between the neighboring particles, ( )θ r and ( )φ r are the polar and 

azimuthal angles, respectively, and Ylm are the spherical harmonics.  The average bond order can 

be determined by averaging the local bond order parameters over the number of bonds (Nb) in the 

system: 

 ( )
bonds

1
lm lm

b

Q Q
N

≡ ∑ r . (6) 
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To eliminate the dependence of bond order parameters on the rotation of the frame of reference, 

we calculate the second-order (Ql) invariant as follows 

 
24

2 1

l

l lm
m l

Q Q
l
π

=−

≡
+ ∑ , (7) 

The value of the bond order parameter Ql for an amorphous liquid is zero, and it is 

nonzero for even values of l when the structure has some degrees of crystallinity.  We use the Q6  

bond order parameter to determine the crystal structure [25].  This parameter provides a 

quantitative metric to determine whether a crystalline structure for monodispersed suspensions is 

hexagonally closed-packed (HCP) or face-centered cubic (FCC).  The Q6 values for perfect FCC 

and HCP crystals are 0.48 and 0.57, respectively [19].   

Structural properties of the system were characterized by determining the pair 

distribution function in suspensions with N = 104 particles. The pair distribution functions 

( )ug ρ∇ and ( )ug ω ρ  in the flow-gradient and flow-vorticity planes were computed at different 

strain values and frequencies to investigate the structural rearrangement as a function of the 

simulation time.  Here ρ  is the magnitude of the two-dimensional position vector of a given 

particle in the flow-gradient and flow-vorticity planes that is normalized by the radius of the 

particle.  

III. Results and Discussion 

III.A. Microstructure of Monodisperse Suspensions 

 

Snapshots of suspensions at a volume fraction of 0.8 in the simulation box at low (

7
max 1.78 10γ −= ×%& ) and high ( max 0.00178γ =%& ) maximum shear rates are shown in Fig. 2 for SPGs 

of different polydispersity indexes.  The strain amplitude in both cases is max 0.5γ = , which is about 
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10 times greater than the yield strain of the SPG.  After 200 oscillations, the structures of the 

initially disordered monodisperse suspensions become FCC or HCP at low or high frequencies, 

respectively. As the polydispersity increases to 0.1, suspensions preserve their glassy structures 

at the lower maximum shear rate.  On the other hand, layered microstructures are formed at the 

high maximum shear rate. These layers are parallel to the flow-vorticity plane. At a 

polydispersity of 0.2, the microstructure shows a weaker degree of the ordering compared to the 

polydispersity of 0.1. The same structural transitions occur for suspensions at other volume 

fractions.  These structures are similar to  recent simulations of these suspensions in steady shear 

flow [19].    

 

FIG 2.  Snapshot of simulation box of soft particle glasses under low (left) 7
max 1.78 10γ −= ×%&  (

* 8/ 10ω ωη −= =s E ) and high (right) max 0.00178γ =%&  ( * 4/ 10ω ωη −= =s E ) maximum shear rate 
after 200 cycles.  The strain amplitude of the oscillations is max 10yγ γ = . The polydispersity δ  
increases from top to bottom.  
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In order to quantify the microstructure and rheology of the monodisperse suspensions, the 

shear stress and bond order parameters (BOP) Q6 was calculated [19,25] as a function of the 

simulation time or strain. In order to compare the stress-strain behavior in oscillatory shear 

simulations with steady state results, the average of absolute values of the shear stress in each 

oscillation was computed and plotted against the strain.  Results are shown in Fig. 3 for a 

monodisperse suspension with a volume fraction of 0.8.  At a low shear rate, the shear stress of 

monodisperse suspension in steady shear simulations initially is constant and then it shows 

fluctuations at high strain values.  These fluctuations are due to the appearance of defects in the 

FCC crystalline structure. On the other hand, in oscillatory shear simulations, stress initially 

shows fluctuations and then it reaches a constant value.  As seen in Fig. 3b, the values of Q6 for a 

monodisperse suspension sheared at a shear rate of 7
max 1.78 10γ −= ×%&  are around 0.40 in the 

steady shear flow, which are slightly different from the values expected for a perfect FCC lattice.  

In the oscillatory shear flow, at the same maximum shear rate, the value of Q6 is around 0.50, 

which is in a good agreement with the value of a perfect FCC crystal.  At a high shear rate, the 

shear stress in the steady shear simulations shows a plateau region during the induction period 

[19] up to a strain value of 10, and then decreases to a steady state, while the stress continuously 

reduces and reaches a steady state value at high strain values in the oscillatory shear flow.  

Furthermore, as seen in Figs. 3d,  Q6 is around 0.36 in the steady shear flow that is smaller than 

the value of perfect HCP lattice [25].  By contrast oscillatory shear flow results in the formation 

of a better HCP-like structure; the value of Q6 ≅0.44, is in a good agreement with that of a 

perfect HCP crystal.   

In both steady and oscillatory shear flows, the microstructure of the monodisperse 

suspensions shows a FCC crystalline structure at low maximum shear rates.  An increase in maxγ%&  
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leads to a formation of an HCP-like microstructure [19].  This behavior is also seen for other 

volume fractions.  In all cases, the quality of the shear-induced lattice is significantly better in 

terms of fewer defects in the oscillatory shear flow compared to the steady state flow.  We 

attribute this observation to the annealing character of the oscillatory shear flow [3,26]. 

 
FIG. 3.  Shear stress (a), (c) and bond order parameter Q6 (b), (d) for monodisperse suspensions under 
steady and oscillatory shear flows as a function of strain.  The horizontal dashed lines show the values of 
these parameters for perfect FCC and HCP crystals.  The applied strain amplitude max yγ γ  is 10 and the 

applied frequencies are * 810s Eω ωη −= =  (top panels) and * 410s Eω ωη −= = (bottom panels), 

which correspond to maximum shear rates of 7
max 1.78 10γ −= ×%&  and max 0.00178γ =%& , respectively.  

The volume fraction of suspension is 0.8φ = .   
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In order to investigate the effect of the strain amplitude (specially close to the yield point 

of the suspensions) on the microstructure of the monodisperse suspensions in an oscillation 

cycle, we have determined the bond order parameter of Q6 during a cycle as seen in Fig. 4a and 

4b at low and high maximum shear rates, respectively, for a suspension with a volume fraction of 

0.8. At a low shear rate of 7
max 1.78 10γ −= ×%& , when the strain amplitude is less than the yield 

strain of the material i.e. max 0.1yγ γ = , the microstructure remains glassy. In this case as 

expected, the Q6 parameter is close to zero revealing the amorphous nature of the suspension.  As 

the strain amplitude increases ( max 3yγ γ = ), this parameter increases to the limiting value for an 

HCP lattice.  A further increase of the strain amplitude leads to the formation of the FCC lattice 

at low frequencies as seen for max 5yγ γ = .  On the other hand, when the frequency is 

* 410s Eω ωη −= = the Q6 parameter is close to zero and the microstructure remains glassy 

during a cycle of oscillation when the strain amplitude is small.  This observation occurs up to a 

strain value of max 3yγ γ =  as shown in Fig. 4b.  A further increase in the strain amplitude leads 

to the formation of HCP microstructure.  In all cases the suspension shows a uniform lattice 

microstructure in a cycle of oscillation and the lattice structure is not a function of the oscillation 

time. In particular we do not observe melting of the crystallized or layered suspensions.   

Experimentally, it was shown that a concentrated solution of triblock copolymer poly(ethylene 

oxide)106-poly(propylene oxide)68- poly(ethylene oxide)106 (Pluronic F127) crystallizes and melts 

in a cyclic fashion under large amplitude oscillatory shear experiments [27].  The volume 

fraction of the sample in this experimental study was around 0.28 [28], which is significantly 

smaller than the required value for jamming transition in SPGs.  At this low volume fraction (
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0.28φ = ), the Brownian motion is important that is not captured nor important in our model for 

SPGs.   

 
FIG. 4. Variation of the Q6 parameter during a single oscillation in (a) a low frequency of 

* 810s Eω ωη −= = and (b) a high frequency of * 410s Eω ωη −= =  for monodisperse suspension 
with a volume fraction of 0.8.  For the low frequency oscillation, the transition from a glass to an 
HCP structure occurs at max 1yγ γ = .  For high frequency oscillation, this transition requires the 
maximum strain amplitude maxγ  to be much greater than the yield strain yγ . 

 

III.B. Microstructure of Polydisperse Suspensions 

 

In order to analyze the microstructure of the polydisperse suspensions, we computed the 2D 

distribution functions in the flow-gradient ( ( )ug ρ∇ ) and flow-vorticity ( ( )ug ω ρ ) directions [19] 

for SPGs that form either layered and glassy structures under oscillatory shear deformation.  

Layering occurs at high shear rate and the glassy structure is preserved at low shear rate.  As 

shown in Fig. 5a, the distribution functions of polydisperse suspensions in the flow-gradient 

plane shows distinct peaks over extended distances at a shear rate of max 0.0178γ =%& .  Similarly, in 
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the flow-vorticity plane as seen in Fig. 5c, ordered microstructures are observed.  This ordering 

is more like a formation of hexagonal pattern with some defects, which was also seen in the 

steady shear simulations [19].  These observations indicate the formation of layers parallel to the 

flow-vorticity plane.  The degree of ordering is weaker inside the flow-vorticity plane of the 

suspension with the highest degree of polydispersity as the peaks disappear at 12r ≈  R.  On the 

other hand when the maximum shear rate is low ( 7
max 1.78 10γ −= ×%& ), the distribution functions 

indicate that the liquid-like structure is preserved in the oscillatory shear flow.  As mentioned 

earlier, the applied strain amplitude must be larger than the yield strain of the suspension, 

otherwise the suspension will preserve its initial microstructure (simulations with a layered 

starting configuration were performed to confirm this phenomenon).   

 

FIG. 5.  Pair distribution functions in the flow-gradient (a and b) flow-vorticity (c and d) planes for the 
glassy and layered suspensions at a high (a and c; 2

max 1.78 10γ −= ×%&  and max 10yγ γ = ) and a low (b 

and d; 7
max 1.78 10γ −= ×%&  and max 10yγ γ = ) maximum shear rates.   
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In order to find the similarities and differences between the layering in the steady and 

oscillatory shear flows, the shear stress was compared as a function of the strain at a high shear 

rate. As shown in Fig. 6a, in the steady shear, the stress is constant during the induction period, 

and then decreases and reaches a steady state value at high strains [19].  This decrease in the 

shear stress coincides with the transformation of the microstructure from a glassy to a layered 

state.  The evolution of the stress in oscillatory shear is distinctly different.  It decreases 

continuously and takes a larger number of strains to reach a steady-state value.   

The maximum values of the 2D pair distribution functions in the flow-gradient and flow-

vorticity planes were also determined as a function of the strain to show the difference in the 

evolution of the microstructure in steady and oscillatory shear flows of polydisperse suspensions.  

The maximum of the distribution function in the flow-gradient plane during the stress plateau in 

steady shear flow, remains constant and decreases to a steady state value after layering as it was 

observed in our previous study (see Fig. 6b).  In oscillatory shear this parameter increases and 

then decreases to a steady state value.  In Fig. 6c the maximum of the flow-vorticity pair 

distribution function is plotted against the strain.  In both cases the rearrangements of the 

microstructure occur continuously until the layered structure is formed.  As noted earlier, the 

microstructure is glassy at low frequencies and is independent of the strain amplitude. The shear 

stress is constant as a function of the strain in both steady state and oscillatory shear, and the 

maximum of the flow-gradient and flow-vorticity distribution function does not change as a 

function time, which confirms that the suspensions remain in a glassy state. 
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FIG. 6.  (a) Shear stress and the maximum of pair distribution function in (b) flow-gradient, and (c) flow-
vorticity planes as a function of the strain.  The maximum shear rate is max 0.0178γ =%&  and the strain 
amplitude is max 10yγ γ = ).  The volume fraction of the suspension is 0.8 and the polydispersity index 
is 0.1.   

III.C. Dynamic State Diagrams 

 

Using the quantitative microstructural parameters, we constructed a state diagram of the SPGs in 

the oscillatory shear flow for maximum strain amplitudes greater than the yield strains.  The 

microstructure of the suspension is determined by its polydispersity, maximum strain and shear 

rate max max 0γ ωη γ= s G . The state diagrams are shown in Figs. 7a, 7b, and 7c for volume 

fractions of 0.7, 0.8, and 0.9, respectively.  As illustrated in Fig. 2, the monodisperse suspensions 

form FCC-like lattices at low shear rates, and they transform into HCP-like microstructures at 

higher shear rates.  This phase change for different suspensions occurs at approximately 

5 5
max 2 10 4 10γ − −= × − × , which is in very close agreement with our previous steady shear 

simulations [19], which showed a transition around 5
max 3 10γ −= × .  For polydisperse 

suspensions, the glassy structure is preserved at low shear rates, while the structure becomes 

layered at high shear rates.  We note that as the polydispersity increases for volume fractions of 

0.7 and 0.9, the onset of the layering shifts to higher shear rates.  The transition to the layered 
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phase occurs over a shear rate range of 4 3
max 8 10 5 10γ − −= × − ×  depending on the volume fraction 

of the suspension.  This is slightly different from our observation in steady shear flow, where the 

border between the glassy and layered phases was almost a vertical line around a shear rate of 

310− [19].   

 

FIG. 7.  The state diagram of the SPGs at a volume fraction of (a) 0.7, (b) 0.8, and (c) 0.9 in the 
oscillatory shear flow.  The lowest relative strain used to construct the state diagram is max 3γ γ =y . 

 

The state of the SPGs in oscillatory shear flow depends on both applied oscillation 

frequency and strain amplitude.  To understand the behavior of SPGs close to the yield point, we 

have constructed dynamical state diagrams for two extreme cases (i.e. monodisperse and 

polydisperse suspension with 0.2δ =  at different volume fractions) in Figs. 8a and 8b. 

Monodisperse suspensions at low frequencies show a glassy microstructure when the strain 

amplitude is smaller than the yield strain.  At a fixed frequency, increasing the strain amplitude 

leads to the formation of the FCC microstructure.  At intermediate frequencies and high strain 

amplitudes, we also see a transformation from FCC to HCP crystalline structures.  Furthermore, 

at high frequencies, the transformation directly happens from a glassy structure to HCP phase 

upon increasing the strain amplitude. We note that some of the simulations show a 

polycrystalline phase (i.e. mixture of FCC and HCP) at vicinity of the borderlines for these 
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crystalline structures, which can be due to a system size effect.  Finally there is a limited domain 

of the phase diagram located at low strain amplitudes and low frequency where the oscillatory 

shear flow melts the FCC crystalline structure into a disordered state.  On the other hand, 

polydisperse suspensions form amorphous microstructures at all strain amplitudes at low 

frequencies.  As seen in Fig. 8b, the layered phase is only formed at high frequencies and large 

strain amplitudes at all volume fractions.   

Paulin et al. [15] performed oscillatory shear experiments on close to monodisperse 

swollen PMMA microgels.  Using light scattering in the vorticity-velocity plane, they observed 

the transition of the suspension from a glass to FCC to so-called sliding layer structures with 

increasing strain.   The prediction in Fig. 8a of the transition from a glass to crystalline structure 

for sufficient strain is consistent with these experimental observations.  For intermediate shear 

rates, the glass is predicted to go first to FCC and then HCP, sliding layer, with increasing strain.   

 
FIG. 8.  The state diagram of the (a) monodisperse and (b) polydisperse ( 0.2δ = ) SPGs at different 
volume fractions.  Following symbols are used to distinguish the state of SPGs with different volume 
fraction: 0.7φ = : glass ( ), FCC ( ), HCP ( ), and FCC-HCP mixture ( ).  0.8φ = : glass ( ), 

FCC ( ), HCP ( ), and FCC-HCP mixture ( ).  0.9φ = : glass ( ), FCC ( ), HCP ( ), and FCC-
HCP mixture ( ).  For layered phase in monodisperse SPGs the same symbols as the HCP phase in 
monodisperse SPGs are used.  
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IV. Discussion: Stability and Reversibility of the Shear-Induced Structures 

 

As mentioned earlier if the maximum strain is less than the yield strain, the microstructural state 

of the system remains unchanged from the initial jammed state. For the monodisperse 

suspensions, there is no transition from FCC to HCP and the microstructure is always glassy.  

Similarly no layered phase was observed for the polydisperse suspensions when the strain 

amplitude was less (or slightly larger) than the yield strain.  As in the steady shear simulations, 

the stability and reversibility of these microstructures under oscillatory shear flow were 

examined. Starting from a glassy structure of monodisperse suspensions, given the strain 

amplitude is larger than the yield strain of the material, at low frequencies particles rearrange 

into a FCC-like lattice and at high frequencies they form a HCP-like crystal.  In order to 

investigate the stability of these crystals, the shear flow was switched off, and the microstructure 

of the monodisperse suspensions was analyzed as a function of the simulation time.  As seen in 

Fig. 9, for a suspension with a volume fraction of 0.9, the Q6 parameter initially increases from 

zero when the suspension is subjected to the oscillatory shear flow (with a low frequency), and 

reaches to a value of 0.52, which confirms the formation of a FCC lattice.  At this point, when 

the suspension is kept at rest (i.e. no flow), the particles first rearrange slightly so that the Q6 

parameter increases to a value of 0.56, which is in a close agreement with a value of 0.57 for a 

perfect FCC lattice, and then the microstructure remains unchanged in time.  Let us now subject 

the FCC structure obtained at rest to a high frequency oscillatory shear flow as seen in Fig. 9. In 

this high frequency regime, the Q6 parameter decreases to a value of 0.48, which indicates that 

the microstructure becomes HCP.  The HCP microstructure is also stable and ceasing the flow 
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does not alter the lattice structure.  As seen in the figure, the Q6 parameter is constant after flow 

cessation once the transition to HCP occurs.  Finally, the HCP-like crystal obtained after flow 

cessation transforms into a FCC-like crystalline structure when subjected to low frequencies as 

the bond order parameters become very close to the limits of the FCC crystalline lattice.  The 

important point here is that the transformation from FCC-to-HCP (and HCP-to-FCC) occurs 

without any intermediate amorphous step.  This finding is in agreement with the recent study by 

Ruiz-Franco et al. [18] that showed that ultrasoft star polymers close to the glass transition 

packing undergo crystal-to-crystal transition without any intermediate step in steady and 

oscillatory shear flow at a moderate Pe number range.  Furthermore, we checked that the FCC 

and HCP crystalline microstructures produced by applying a large strain max 10yγ γ = ), are 

preserved when subjected to small amplitude oscillatory shear simulations (results are not shown 

here).   

 
FIG. 9.  The bond order parameter Q6 (left axis) and maximum shear rate (right axis) as a function of 
strain for a suspension with a volume fraction of 0.9.  The initial configuration of the suspension i.e. 

0γ =  is a glass.  When the suspension is at rest: max 0γ = . 
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While the transformations from HCP to FCC and vice versa occur relatively fast for 

monodisperse suspensions upon reducing/increasing the oscillation frequency, the polydisperse 

suspensions show a different behavior.  The 2D distribution function is a great indicator of the 

formation of a layered microstructure in shear flow. This distribution function shows several 

peaks at large distances between the reference particle and the test particle due to the formation 

of layers parallel to the flow-vorticity plane.  Here we only track the magnitude of the second 

peak of ( )ug ρ∇  as a function of the strain applied to the suspension as shown in Fig. 10.  

Initially when the glassy suspension is subjected to the high frequency oscillations (

4
* 10s

E
ωηω −= = ), the value of the second peak increases and reaches a constant value.  At this 

point, the layered structure is subjected to two independent simulations.  In one case a low 

frequency of 8
* 10s

E
ωηω −= =  is applied to the suspension, and as seen in the figure the value of 

the second peak reduces to the original value of an amorphous suspension.  This behavior shows 

that the layering phenomenon is reversible for polydisperse suspensions.  We also note that as 

strain increases, the layers start disappearing and the magnitude of the peaks at larger distances 

decrease too.  Similarly, in the second case the oscillatory shear flow was turned off (see the red 

line), the magnitude of the second peak reduces and reaches a value which is close to that of a 

glassy suspension. A similar behavior also was seen for the flow-vorticity pair distribution 

function (results are not shown).  These observations demonstrate that the shear-induced layered 

microstructure is not a stable configuration.   
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FIG. 10.  Magnitude of the second peak of the ( )ug ρ∇  (left axis) and the maximum shear rate (right 
axis) as a function of the strain.  The suspension has a volume fraction of 0.9 and polydispersity index of 
0.2.  The initial state i.e. 0γ =  is a glassy structure.  When the suspension is at rest: max 0γ = .  The 
shear rate evolution is shown with a dotted line. 

 

IV. Summary and Concluding Remarks 
 

We have shown that jammed SPGs can form a variety of microstructures in oscillatory shear 

flow.  Similar to steady shear flow [19], the monodisperse suspensions transform into FCC-like 

and HCP-like phases at low and high maximum shear rates, respectively when the amplitude of 

the strain is larger than the yield strain of the material.  On the other hand, the polydisperse 

suspensions form a layered phase at high frequencies.  A dynamic state diagram, which relates 

the state of these suspensions under oscillatory shear flow to processing parameters such as 
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particle volume fraction, polydispersity, and elasticity, and the flow properties like the amplitude 

of frequency and viscosity, is provided that is in agreement with the state diagram obtained in the 

steady shear simulations.   

These transitions observed in the monodisperse and polydisperse suspensions are 

reversible.  The FCC crystals obtained at low frequency regime, can be turned into HCP-like 

phases by subjecting the FCC crystals to high frequencies and vice versa.  Similarly, a layered 

phase obtained at high frequency regime in polydisperse suspensions transform into an 

amorphous structure when the shear rate decreases.  Our results clearly show that the 

monodisperse crystals (i.e. FCC and HCP-like crystals) obtained in oscillatory shear flow are 

stable and the flow cessation does not change their microstructures, while the layered phase in 

polydisperse suspensions turn into a glassy phase upon flow cessation. The out-of-equilibrium 

nature of the layered phase has been reported in experiments in the case of dense emulsions [29]. 

Another important parameter that emerge from our study is the polydispersity.  It is 

striking that jammed suspensions with a polydispersity as high as 20% can order under flow into 

layered microstructures.  This suggests that it would be useful to carefully revisit the current 

literature on the subject and prompts for future experiments with well characterized particle size 

distributions.  Other open questions concern the role of Brownian motion and the form of the 

repulsive interparticle potential.  This might explain why ultrasoft star polymer exhibit a BCC 

crystalline structure at low shear rates and not the FCC symmetry described in this work [ref].  

In conclusion subjecting amorphous jammed suspensions to oscillatory shear flows is a 

powerful tool to assist the design of materials with a desired microstructure.  Oscillatory shear 

can generate FCC and GCP crystals which are much less defective that in steady shear flows.  

Layered structures can be fabricated but they need to be rapidly quenched upon flow cessation to 
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maintain their organization.  Our hope is that the results reported here will provide guidelines to 

experimentalists and material scientists to develop tailored colloidal materials.  
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