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Abstract 
The collapse of voids in porous energetic materials leads to hot spot formation and 

reaction initiation. This work advances the current knowledge of the dynamics of void collapse 
and hot spot formation using 3D reactive void collapse simulations in HMX. Four different void 
shapes i.e. sphere, cylinder, plate and ellipsoid are studied. For all four shapes, collapse generates 
complex 3-dimensional baroclinic vortical structures. The hot spots are collocated with regions 
of intense vorticity. The differences in the vortical structures for the different void shapes are 
shown to significantly impact the relative sensitivity of the voids. Voids of high surface area 
generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot 
spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In 
addition, all 3D voids are shown to be more sensitive than their 2D counterparts. The results 
provide physical insights into hot spot formation and growth and point to the limitations of 2D 
analyses of hot spot formation.  
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1. Introduction 
Void collapse is an important mechanism for hot spot formation and reaction initiation in 

heterogeneous energetic materials [1-4]. In real microstructures of energetic materials, voids of 
arbitrary shapes and orientations are present. The sensitivity of voids to imposed loads and 
therefore the formation of hot spots is strongly dependent on void morphology [5-8]. This work 
studies the collapse behavior of voids of various shapes commonly present in the microstructures 
of energetic materials by performing 3D reactive void collapse simulations in otherwise uniform, 
isotropic HMX. The simulations provide important insights into the dynamics of void collapse 
induced hot spot formation and its dependence on void shapes. In particular, the limitations of 
2D simulations of hot spot formation are quantitatively assessed by comparing the sensitivity of 
3D void shapes to their 2D counterparts.  
 Previous 2D void collapse studies [2, 5, 6, 8-14]  provide insight into the mechanism of 
void collapse. For instance, in the hydrodynamic regime material jetting is a dominant collapse 
mechanism for circular voids [6, 7, 11, 14, 15]. On the other hand, the collapse of elongated void 
involves repeated pinching of void surfaces [8]. For both circular and non-circular voids, the 
collapse event involves generation of high intensity baroclinic vorticity fields [8, 14], and the 
cores of the vortices are the sites for maximum reaction progression and temperature rise. The 
generation of the high intensity vorticity field is therefore connected with the sensitivity of the 
voids. However, this understanding is based on 2D analysis. In 3D, the generation of baroclinic 
vorticity field and subsequent instabilities are expected to be more pronounced and can have a 
significant effect on void sensitivity. 
  2D meso-scale simulations show that sensitivity of voids is strongly dependent on void 
shapes [5, 6, 8, 9, 16]. Circular voids have been shown to be less sensitive than  elongated voids 
in both TATB [5] and HMX [8] based energetic materials. In addition, for elongated voids, the 
sensitivity is significantly influenced by changes in orientations and aspect ratios [8]. 
Axisymmetric analysis of spherical and spheroidal (oblate and prolate) voids shows that oblate 
spheroids are more efficient in generating high intensity hot spots [6]. Furthermore, conical and 
elliptical voids show higher sensitivity compared to spherical voids [7]. Therefore, 2D analysis 
provides evidence regarding the dependence of void sensitivity on its shape. However, the effect 
of void shape on sensitivity has not been studied in 3D except through 2D axisymmetric analysis. 
The axisymmetric modeling is only feasible for 3D voids exhibiting two planes of symmetry. It 
is not applicable for voids with arbitrary orientations and aspect ratios that are commonly present 
in the microstructure of energetic materials. Therefore, dependency of void sensitivity on void 
shape remains unexamined in 3D for general shapes and orientations. 
 The literature on the study of void collapse in 3D is not extensive. Among the few studies 
in this field, the analysis is performed for spherical voids only [12]; such studies compare the 
relative sensitivity of 3D and 2D void collapse through  predictions of temperatures following 
inert void collapse. The 3D (spherical) void shows higher temperature rise and increased 
sensitivity than its 2D counterpart. The discrepancies between the prediction of 3D and 2D 
analysis can be even more significant for other void morphologies, such as plate-like or rod-like 
voids. In this paper, the effect of void shape on the sensitivity is studied using four void shapes: 
sphere, cylinder, plate and ellipsoid. For the different shaped voids, a comparative study between 
the sensitivity of 3D voids and the corresponding 2D counterparts is performed to understand the 



 
 

differences between the physics and void sensitivity measures that arise due to 3-dimensionality. 
Since 3D computations of reactive shock dynamics of voids are more expensive than 2D 
computations, and parametric studies are likely to be predominantly 2D in the near future, the 
current work provides insights into the limits of 2D analysis of void collapse.  

In this work, the mechanism of void collapse leading to hot spot formation and reaction 
initiation is analyzed using 3D reactive void collapse simulation in an otherwise uniform HMX 
matrix under shock loading. A sharp Cartesian-based Eulerian framework [17-20] is used to 
perform the void collapse simulations. HMX chemical decomposition is modeled using Tarver’s 
3-step reaction model [21]. The rest of the paper is organized as follows. Section 2 presents a 
brief outline of the governing equations and numerical framework used for the 3D analysis. In 
section 3.1, the dynamics of void collapse and hot spot formation is presented for all four void 
shapes. Following this, section 3.2 quantifies the sensitivity of the four void shapes. Section 3.3 
then compares the sensitivity prediction of 3D voids and their 2D counterparts. Finally, 
conclusions and further possible extensions of the work are discussed in Section 4.  

2. Methods 
A sharp interface Cartesian grid based Eulerian framework is used to perform 3D void 

collapse simulations. A detailed description of the numerical framework is presented in previous 
work [14, 18]. Here, a brief description of the governing equations and material models is 
provided. 

2.1. Governing Equations 
The governing equations are comprised of hyperbolic conservation laws for mass, 

momentum and energy: 
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where, ሬܸԦ is velocity, ρ is density, E is the total specific energy (including internal and kinetic 
energy) and ߪ is the Cauchy stress tensor. The stress state of material ߪ can be decomposed into 
a deviatoric part S and dilatational part P: 
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In the current Prandtl-Reuss formulation [22] the deviatoric stress tensor S is obtained by 

solving the evolution equation in the rate form: 
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where, D is strain rate tensor, and G is the shear modulus of material. 

In the present framework, temperature is obtained from the calculated internal energy 
from equation 3 using the relationship given in [23]: 
 ܶሺܸ, ݁ሻ ൌ ܶሺܸ ܸ⁄ ሻ௰  ݁ െ ݁ሺܸሻܥ    (6)

where, ܥ is the specific heat at constant volume, ܶ is the reference temperature i.e. 298K, ܸ is 
the reference specific volume, ܸ is the specific volume and ߁ is the Gruneisen coefficient. 
Detailed description of temperature calculation is provided in previous work [14]. 

2.2. Constitutive Model for HMX 
The material models for HMX used to perform the current 3D meso-scale analysis are 

based on the work of Menikoff et al. [23]. A Birch-Murnaghan equation of state is used for the 
dilatational response of HMX. The equation of state properties are provided in Menikoff et al. 
[23]. The deviatoric response is obtained by modeling the visco-plastic behavior of HMX under 
shock loading. Void collapse under shock loading can lead to the melting of HMX; therefore 
thermal softening of HMX is modeled using the Kraut-Kennedy relation with model parameters  
provided in the work of Menikoff et al. [23]. Once the temperature exceeds the melting point of 
HMX the deviatoric strength terms are set to zero. The specific heat of HMX is known to change 
significantly with temperature. The variation of specific heat is modeled as a function of 
temperature as suggested in [23]. 
 
2.3. Reactive Modeling of HMX 

The chemical decomposition of HMX is modeled using a 3-step mechanism proposed by 
Tarver et al. [21]. A detailed description of the implementation of the 3-step model in the current 
numerical framework is presented in previous work [14]. Here, a brief overview of the reaction 
model and its implementation is provided. 

Chemical decomposition of HMX takes place in 3 steps involving four different species. 
The three steps are: 
 
 Reaction 1: ܺܯܪ ሺܥସ଼ܪ ଼଼ܱܰሻ ՜ ݏݐ݊݁݉݃ܽݎ݂ ሺܪܥଶܱܰܰଶሻ   (7)

 
 Reaction 2: ݂ݏݐ݊݁݉݃ܽݎ ሺܪܥଶܱܰܰଶሻ ՜ ݁ݐܽ݅݀݁݉ݎ݁ݐ݊݅ ݏ݁ݏܽ݃ ሺܪܥଶܱ, ଶܱܰ, ,ܰܥܪ ଶሻ   (8)ܱܰܪ

  
 Reaction 3:   2 ൈ ݁ݐܽ݅݀݁݉ݎ݁ݐ݊݅ ,ଶܱܪܥሺ ݏ݁ݏܽ݃ ଶܱܰ, ,ܰܥܪ ଶሻܱܰܪ ՜݂݈݅݊ܽ ݃ܽݏ݁ݏ ሺ ଶܰ, ,ଶܱܪ ,ଶܱܥ  ሻܱܥ

  (9)

 
 The conversion of solid HMX (species 1, ଵܻ) to the final gaseous products (species 4, ସܻ) 
completes the decomposition of HMX and causes increase in temperature because of exothermic 
reactions. The chemical species which are formed after decomposition of HMX are evolved in 
time by solving the species conservation equation: 



 
 

 
 డఘሾሿడ௧  ሬܸԦሾߩ൫ݒ݅݀ ܻሿ൯ ൌ ሶܻ  (10)

 
where ܻ is the mass fraction of the ݅௧ species and ሶܻ is the production rate source term for the ݅௧ species. 

The numerical stiffness in solving the reactive set of equations is circumvented by using a 
Strang operator splitting approach [24], where first the advection of species is performed using 
the flow time step to obtain predicted species values: 

  డఘሾሿכడ௧  ሬܸԦሾߩ൫ݒ݅݀ ܻሿכ൯ ൌ 0 (11)
 

In a second step, the evolution of the species mass fraction due to chemical reactions is 
calculated:  

  ௗൣశభ൧ௗ௧ ൌ ሶܻכ (12)
    

The change in temperature because of the chemical decomposition of HMX is calculated 
by solving the temperature evolution equation, 

ܥߩ  ሶܶ ൌ ሶܳோ  ܶ߂ߣ  
  

(13) 
  

where, ߩ is the density of HMX, ܥ is the specific heat of the reaction mixture, ܶ is the 
temperature, λ is the thermal conductivity of the reaction mixture, ߂ is the Laplacian operator 
and ሶܳ ோ is the total heat release rate from all the reactions.  

The species evolution Eq. (12) and temperature update Eq. (13) are advanced in time 
using a 5th-order Runge-Kutta Fehlberg [25] method, which uses an internal adaptive time-
stepping scheme to deal with the stiffness of the chemical kinetic equations. 

 
2.4. Numerical Algorithms and Interfacial Conditions 
 The conservation laws of mass, momentum and energy (Eq. (1-3)), along with the 
evolution of deviatoric stresses (Eq. 5) and reactive set of equations (Eq. 10) are spatially 
discretized using a 3rd order shock capturing ENO scheme [26]. The time integration is 
performed using a 3rd order Runge-Kutta scheme. Narrow-band levelset based tracking [27] is 
used in the current framework to sharply track the material interfaces. The use of levelset 
function allows handling of large deformation of interfaces that occurs during void collapse 
events. The interfacial conditions between the HMX and void  are modeled by applying the free 
surface conditions at the interface using a modified ghost fluid method [28]. It is important to 
note that void region in HMX is not modeled in the current analysis. Detailed descriptions of the 
numerical algorithms, level set implementation and interface treatment are provided in previous 
works [17-20].  



 
 

3. Results and discussion 
 3D reactive void collapse analysis is performed in the present work to understand the 
void collapse behavior leading to hot spot formation and reaction initiation. Voids of shapes 
commonly present in real micro-structures of pressed HMX (for example in Class III and Class 
V pressed explosives [29]) are idealized to represent the primary geometric features. Idealized 
shapes, i.e. sphere, cylinder, plate and ellipsoid (Figure 1), are employed to capture key attributes 
of real voids. The rationale for choosing these shapes is as follows: 1) The cylindrical void 
captures the effect of aspect ratio and orientation with respect to the incident shock and therefore 
deviates in two respects from the spherical void; 2) The plate-shaped void further alters the 
aspect ratio along a second (orthogonal) direction relative to the cylindrical void, as can be seen 
from Figure 1(b) and (c); 3) The ellipsoidal void perturbs the cylindrical shape by changing the 
curvature along the length of the void, moving from high curvatures at the major axes of the 
ellipsoid to low curvatures at the minor axes as shown in Figure 1(d). This last shape therefore 
represents a rather modest perturbation of the cylindrical shape. One objective of this paper is to 
examine how alterations in aspects of geometry, represented by the above three types of 
differences, contribute to changes in void sensitivity. A second objective is to examine what 
differences, if any, exist between the aforementioned 3D shapes and their 2D counterparts in 
their response to shock loading. 

The sensitivity behavior of the four void shapes is quantified and compared in two 
different aspects: a) First, the  differently shaped voids (i.e. sphere, cylinder and plate), are 
studied for  the same loading conditions and the same void volume, so that only  differences in 
the shapes of the voids contribute to differences in hot spot morphologies and void sensitivity; b) 
Second, the more subtle effect of void shape on sensitivity is analyzed by comparing the 
behavior of cylindrical and ellipsoidal voids. For all the simulations, voids are embedded in an 
otherwise uniform HMX material and are subjected to the same shock loading in the form of a 
rectangular pulse of strength 9.5 ܽܲܩ and duration of 1.5 ݊ݏ from the west face of the domain 
boundary, as shown in Figure 1. All other domain boundaries are supplied with zero-gradient 
boundary conditions. The results obtained from the simulations are presented in three sections. 
Section 3.1 is focused on understanding the collapse behavior and its implications on the reaction 
initiation for the four different void shapes mentioned above. In Section 3.2, the sensitivity of the 
voids is quantified and compared by calculating the reacted HMX mass and hot spot 
temperature. Section 3.3 is aimed at evaluating the relative sensitivity of the 3D void shapes 
relative to their 2D counterparts, with the objective of assessing how assessments of sensitivity 
calculations and hot spot formation in 2D compare with the 3D cases.   

 Detailed verification and validation studies for the void collapse problem in HMX are 
presented in the previous work [14]. Extensive grid convergence studies for different shock 
strengths and void geometries i.e. circular and elongated are shown in previous work as well [8, 
14]. The grid refinement studies in [14] have provided guidelines for suitable refinement criteria 
to obtain grid independent solutions; the guidelines developed from the previous analysis are 
used to resolve the voids in the current study.  Specifics of grid resolution for each void shape 
are provided below. All simulations presented in the following are performed on DoD HPC 
machines using 6400 processors. 
 



 
 

3.1. Dynamics of void collapse for various void shapes 
 Dynamics of void collapse for different void shapes in inert and reactive media has 
previously been studied using 2D analysis [2, 5, 8-11, 14] or axisymmetric modeling [6, 7]. 
Although the physics of void collapse is well understood in 2D for different void shapes, 3D 
effects on the collapse behavior and hot spot formation remain to be examined. In this section, 
the collapse of spherical and non-spherical voids is analyzed. 
 
3.1.1 Collapse behavior of a spherical void 
 Figure 1(a) shows the computational set-up. A spherical void of diameter 1.55 μ݉ is 
embedded in a HMX domain of size 4.5 μ݉ ൈ  3 μ݉ ൈ  3 μ݉. A uniform grid of size 7.75 ݊݉ 
is used to resolve the spherical void, amounting to 200 grid points across the sphere diameter 
requiring roughly 85 million grid points in the domain.  
 Previous 2D void collapse work [8, 14] involving circular and elongated voids indicated  
the formation of strongly rotational velocity fields at the sites of void collapse. The rotational 
flows arise due to the generation and instability of baroclinic vortices as the void collapses under 
the shock load. The collapse and heating of the material lead to density gradients that are 
misaligned with the pressure gradients accompanying the shock loading, leading to the formation 
of baroclinic vortices. In 2D, instabilities of the vortex sheets lead to roll-up and formation of 
concentrated vortical structures, as commonly observed in a wide class of shear layers [30]. The 
generation of baroclinic vorticity and subsequent instabilities are expected to be more 
pronounced in 3D, with the additional degree of freedom leading to instabilities in and normal to 
the plane of the shear layer. To visualize the vorticity field in 3D, standard ߣଶ method [31] is 
used. The eigen values of the tensor, ܵଶ   ଶ is computed, where ܵ is the rate of deformationߗ
tensor and ߗ is the spin tensor. The iso-surface of negative eigenvalue of the ܵଶ    .ଶ is used to visualize the vortex structuresߣ .ଶ tensor, i.eߗ

Figure 2 shows the time variation of the iso-surface of ߣଶ colored with the contours of Z-
component of vorticity i.e. ߗ௭, the deforming spherical void surface under the prescribed shock 
loading and centerline Z-axis projection showing the contours of the ߗ௭ in mid XY-plane (i.e. 
along the symmetry axis). Figure 2(a) shows that the early deformation of the void occurs with 
little vorticity generation. As the collapse progresses, a material jet is formed causing the impact 
of the front surface of the void onto the downstream surface as shown in Figure 2(b). This initial 
jet impact causes the generation of baroclinic vortices as seen from the contour plots of ߗ௭ in 
Figure 2(b). After the void completely collapses, the baroclinic vortices take the form of vortex 
rings as the curved vortex sheet rolls up, as seen from the iso-surface plot of ߣଶ in Figure 2(c). 
The vortex rings grow and eventually dissociate into multiple rings (Figure 2(d)). The resulting 
multiple vortex rings are advected by the post-collapse blast wave and eventually dissipate.  
 The collapse of the spherical void leads to the formation of baroclinic vortex rings. It was 
observed from the 2D analysis of circular voids [14] that the core of the baroclinic vortices 
coincide with regions of maximum temperature rise and reaction progress. The coincidence of 
high temperature and chemical reaction is also expected in the case of spherical void. To 
understand the behavior of spherical void, Figure 3 shows the time series contour plots of iso-
surface of ߣଶ colored with the contours of final reaction products ( ସܻ) in the Tarver 3-step model 
(Eq. (9)), the deforming void interface and centerline Z-axis projection showing the contours of 



 
 

temperature. As shown in Figure 3(a), the shock first starts to deform the front surface of the 
void and causes the bulk heating of HMX. The formation of the material jet leading to the impact 
of the front surface of the void to the downstream causes the initial rise in temperature and 
reaction initiation (Figure 3(b)). After the void has completely collapsed, the temperature rise 
and reaction completion are localized in the core of the baroclinic vortices. This can be seen in 
Figure 3(c) and (d). The vortex rings eventually disintegrate and dissipate leaving behind a hot 
spot of high temperature and hot reaction products (Figure 3(e)). Note that the dissipation of the 
vortex rings created at the end of the collapse process result from the combined effects of plastic 
dissipation, the flow of material from the site of the collapse, advection of the vortex ring and 
numerical dissipation at the high gradient regions as the concentrated hot spot forms. In 
summary, the primary features in the collapse of a spherical void are material-jetting followed by 
baroclinic vortex ring formation and breakdown. The change in the void collapse features with 
void shape is presented in the following section. 
  
3.1.2 Collapse of a high aspect ratio cylindrical void 
 2D simulations [5-8] of void collapse, hot spot formation and reaction initiation have 
shown a strong dependence on void shape, particularly on the aspect ratio and orientation of non-
spherical voids [8]. To understand the impact of void shape on sensitivity in 3D, three other void 
shapes (i.e. cylindrical, plate and ellipsoid), are analyzed.  In all the cases of non-spherical shape 
the orientation of voids is maintained at 15° to the incoming shock; 2D simulations [8] show that 
this orientation lies in the range contributing to the highest sensitivity of elongated voids. 
Variations of orientation and other complications of shape are not investigated in this work to 
maintain focus on elucidating the physics of the primary shape features. 

First, the collapse of a cylindrical void is presented. Figure 1(b) shows the numerical set 
up. A cylindrical void of diameter 0.5 μ݉ and length 10 μ݉ oriented at an angle of 15° with the 
positive X-axis is analyzed. The cylindrical void is resolved with 40 points across the cylinder 
diameter i.e. 0.5 μ݉, leading to a grid size of 12.5 ݊݉. The simulation is performed with 86 
million grid points. The same visualization strategy as in the case of spherical void collapse is 
used in the current analysis.  
 Figure 4 shows the time variation of iso-surface of ߣଶ colored with the contours of final 
reaction products, the deforming cylindrical void interface; and centerline Z-axis projection 
showing the contours of temperature. Figure 4(a) shows that the collapse of the cylindrical void 
proceeds with the formation of a material jet near the upstream surface of the void. The collapse 
of the cylindrical void occurs through repeated pinching events along the length of the void as 
shown in Figure 4(b). This is similar to that observed during the collapse of 2D elongated voids 
[8]. As the collapse progresses, vortices are generated as can be seen from the iso-surface of ߣଶ. 
Figure 4(c) shows the generation of a horse-shoe vortex following the start of the collapse. A 
succession of collapse events follows, generating more horse-shoe shaped structures. The horse-
structures interact with each other and are subject to three-dimensional disturbances which lead 
to a contorted field of vorticity (Figure 4(c)). The regions of high vorticity concentration 
coincide with the regions of high temperature and maximum reaction progress (Figure 4(d)). 
This observation is similar to what is seen in the case of a spherical void, except for the 
difference in the shape of the vortex structures. The vorticity field eventually dissipates as in the 



 
 

case of the spherical void leaving behind a hot spot of high temperature and reaction products. 
The hot spot and reaction zones are localized with regions of high vorticity and micro-mixing.  
 
3.1.3 Collapse behavior of plate void 
 Next, the collapse behavior of a plate-shaped void is analyzed. Figure 1(c) shows a plate 
void of dimensions 10 μ݉ ൈ 0.21 μ݉ ൈ 0.45 μ݉ oriented at an angle of 15° with positive X-
axis and embedded in HMX matrix of size 11 μ݉ ൈ  3.2 μ݉ ൈ  1.3 μ݉ is analyzed under the 
applied shock load (Figure 1(c)). Grid resolution corresponding to 40 points across the plate 
thickness (0.21 μ݉), leading to a grid of size 5.25 ݊݉ used to resolve the void. This grid 
resolution leads to a problem size of 275 million grid points.  
 Figure 5 shows the time variation of key quantities that evolve during void collapse and 
hot spot formation. The collapse of the plate-shaped void starts with formation of a horse-shoe 
vortex as can be seen in Figure 5(b), similar to the cylindrical void. The progression of the 
collapse is characterized by a repeated pinching mechanism (Figure 5(c)). Due to each 
successive pinching event, there are a series of vortices formed following the initial horse-shoe 
vortex. The location of these vortices coincides with the regions of maximum temperature rise 
and reaction completion (Figure 5(d)). The interactions of these vortices with each other causes 
enhanced mixing of reactants, leading to concentration of reaction completion at the locations of 
intense vorticity. The vortices eventually dissipate and leave an elongated hot spot (Figure 5(d)). 
The collapse behavior of the plate-shaped void appears to be mechanistically similar to the 
cylindrical void; however, the vorticity concentration is higher in the case of plate-shaped void. 
This is because, for the same volume of the void, the plate-shaped void presents a larger surface 
area than the cylindrical void. The slenderness of the plate-shaped void leads to higher 
concentrations of vorticity, higher levels of instability of the vortex sheet, and therefore more 
intense micro-mixing than in the case of the cylindrical void. More quantitative comparisons of 
the relative strengths of the hot spots because of different void shapes will be presented in 
Section 3.2. 
 
3.1.4 Collapse behavior of ellipsoidal void 
 The collapse behavior of an ellipsoidal void under shock load is analyzed in this section. 
Figure 1(d) shows an ellipsoidal void of length 10 μ݉ with equal semi-major and minor axes of 0.2165 μ݉, oriented at an angle of 15° with respect to the positive X-axis. The ellipsoid void is 
embedded in a HMX matrix of dimensions 11 μ݉ ൈ  3.2 μ݉ ൈ  1.3 μ݉. The ellipsoidal void is 
resolved with a grid size of 5.25 μ݉. The grid size is maintained to keep 40 points across the 
minor axes of the ellipsoid.  

The collapse of the ellipsoid is characterized by the generation of series of interconnected 
horse-shoe shape vortices as can be seen in Figure 6(b). The cores of these vortices correspond to 
the region of maximum temperature rise and reaction initiation (Figure 6(c)). This is similar to 
the case of other voids as well, except that the shape of the vortices in this case is more uniform 
along the length of the ellipsoid. Pinching of the void surfaces is the dominant collapse 
mechanism for the ellipsoid void (Figure 6(d)). The complete collapse of the void forms an 
elongated hot spot of high temperature, as can be seen in Figure 6(e). The primary differences 
between the ellipsoidal void and the cylindrical void are the sharp ends of the void, i.e. the 



 
 

variation of surface curvature along the void. While this feature may appear to represent a detail 
in the shape of the void, it does have significant impact on the shape and intensity of the hot spot. 
A quantitative measure of the difference in sensitivity of the ellipsoidal void relative to the rather 
similar cylindrical void will be presented in Section 3.2. 

 
3.1.5 Comparison of collapse behavior of voids 
 To understand the difference between the vortical structures that arise following complete 
collapse of the different voids, Figure 7 shows the ߣଶ iso-surface colored with the final reaction 
product for all four voids at a given instant of time during the collapse. For the spherical void, 
the vorticity field is in the form of concentric rings resulting from the instability of a larger 
vortex ring structure which disintegrated into the observed smaller structures, as shown in Figure 
7(a). Unlike the spherical void, the cylindrical void starts with the formation of a horse-shoe 
vortex followed by a series of contorted vortex structures that interact with each other and are 
subject to instabilities due to disturbances in the flow field (Figure 7(b)). Similar to the 
cylindrical void, the plate-shaped void also starts with the formation of a horse-shoe vortex, 
although the shape of the horse-shoe is more elongated when compared to the cylindrical void, as 
can be seen in Figure 7(c). Following the initial horse-shoe vortex, there arise a series of 
complex-shaped vortices that interact with each other to produce smaller scale structures. One 
key difference between the vorticity field of cylindrical and plate voids is that the surface area of 
the iso-surface of the vorticity field for the plate void is larger than that for the cylindrical void. 
This leads to greater mixing and it is expected—and quantitatively verified later in this paper – 
that higher rates of reaction will result in the case of the plate-shaped void than in the cylindrical 
case. Note that the 2D counterparts of both the cylindrical and plate-like voids will have an 
identical shape. 3D simulations are required to distinguish between the sensitivity of these two 
types of voids. The vorticity field for the ellipsoidal field is significantly different from the other 
three void shapes, as can be seen in Figure 7(d). The collapse of the ellipsoidal void generates a 
series of horse-shoe vortex structures that are interconnected in a braid-like pattern which is 
commonly observed in vortex wakes behind bluff bodies [30]. The shape of these vortical 
structures has important implications for the total volume of reacted HMX and the temperature 
rise in the hot spots.  

Apart from the differences between the vorticity fields, the spherical void and non-
spherical voids differ significantly in terms of the collapse mechanism. The spherical void 
collapses because of the formation of a material jet, while the collapse of the other voids involve 
successive pinching type mechanisms. This is analogous to the 2D case [8, 14] involving the 
circular and elongated voids as pointed out in previous work.  The next questions to address are: 
what do 3D simulations reveal regarding the relevance of 2D simulations in understanding hot 
spot formation and energetic material sensitivity? And, how do the different void shapes 
compare in terms of quantitative measures of their sensitivity for a given loading regime? These 
questions are taken up in the following sections. 
   
3.2. Quantitative comparison of void sensitivity behavior   

Sensitivity of the different voids shapes is quantified using two measures: 1) The total 
mass of reaction products when the void has completely collapsed and 2) The average 



 
 

temperature of the hot spot formed after collapse. These two quantities together determine the 
intensity of the hot spot, in alignment with the critical hot spot criteria of Tarver et al. [21]. The 
total mass of reaction products is obtained by integrating the mass fraction of final gaseous 
species ( ସܻ) over the computational domain, and normalizing with respect to the equivalent mass 
of HMX in the undeformed void: ܨ ൌ ௩ௗܯ௧ௗܯ ൌ  ߩ ସܻܸ݀ߩுெ ௩ܸௗ 

 
(14)

 
In the above equations ρ is the density, ସܻ is the mass fraction of the final gaseous products ((Eq. 
(9)), ܸ is volume of the HMX material, ߩுெ is the initial density of unshocked HMX 
(1900 ݇݃/݉ଷ), ௩ܸௗ is the undeformed void volume. ܯ௩ௗ for the spherical, cylindrical and 
plate void is 3.7 ൈ 10ିଽ μ݃ and ܯ௩ௗ for the ellipsoid void is 1.82 ൈ 10ିଽ μ݃. 
 

The average hot spot temperature is computed by calculating the volume-average of the 
temperature field in the hot spot location. Note that for the shock strength used in the current 
paper, corresponding to a pressure of 9.5 ܽܲܩ, the bulk temperature in HMX is around 550 ܭ. In 
the current analysis, the hot spot is defined as a region of elevated temperature which is more 
than the bulk temperature of HMX. The definition of hot spot chosen here aligns with the hot 
spot definition provided by Field [1] where the hot spot is defined as the region where 
temperature is greater than 700 ܭ. Furthermore, for the Tarver-Nichols 3-equation HMX 
decomposition model [21], hot spots with temperatures more than around 700K are required for 
sustained growth of the reaction front to occur on micro-second time scales. Therefore, in this 
work the temperature greater than 700 ܭ is used for the hot spot definition: 

 

Average hot spot temperature, തܶ ൌ  ఘ் ೞௗೇ  ఘௗೇ   
(15)

 
where ܶ௧ ௦௧ is the temperature of the hot spot region. The volume integral is performed only 
in the hot spot location. 
 The sensitivity of the four void shapes are quantified and compared with respect to the 
geometrical measures of the voids, such as void volume and surface area, in the next section.  
 
3.2.1 Effects of void shapes on sensitivity 
 To evaluate the effect of void shape, sensitivity of the sphere, cylinder and plate voids is 
compared. All three voids have the same void volume of 1.94 μ݉ଷ. Therefore, the dependence 
of sensitivity on the void shapes is analyzed for the same porosity and loading conditions. The 
time variation of F and  തܶ for the spherical, cylindrical and plate void is shown in Figure 8. For 
the same porosity and loading conditions, the plate-shaped void leads to higher values of F as 
compared to the cylinder and spherical void as can be seen in Figure 8(a). A similar trend is 
observed in the തܶ behavior in Figure 8(b), where the plate void leads to higher temperature rise 
followed by the cylindrical and spherical voids in that order. Both sensitivity measures indicate 
that the plate-shaped void is the most sensitive and the spherical void is the least. This 



 
 

observation relates to the vorticity field generated during the collapse of these voids. For the 
plate-shaped void, the volume occupied by the region of high vorticity is high compared to the 
cylindrical and spherical void. Since reaction progress is associated with vorticity concentration, 
the higher volume of vorticity resulting from the collapse of the plate-shaped void corresponds to 
enhanced micro-mixing, production of F and higher value of  തܶ. 
 
3.2.2 Effects of void surface morphology 
 The difference in the sensitivity behavior of the three voids (i.e. sphere, cylinder and 
plate), indicates that void surface morphology has significant influence on sensitivity. To further 
analyze the importance of void morphology, sensitivity behavior of two relatively similar-shaped 
voids i.e. the cylindrical and ellipsoid void of section 3.1 is compared under the same loading 
conditions. As pointed out earlier, the ellipsoidal void is a modest perturbation of the cylindrical 
void in regards to changes in curvature along its length; the ellipsoidal void shows high curvature 
at the tip of the void, which varies to a lower value at the center. Therefore, the comparison 
between these two voids can show how strongly void sensitivity is dependent on details of the 
surface morphology. 

Figure 9 compares the time variation of the reacted mass of HMX and average hot spot 
temperature, തܶ for the two voids. The collapse of cylindrical void leads to greater HMX 
decomposition and reaction product formation, as can be seen in Figure 9(a). However, the hot 
spot temperature rise for both the voids is in the comparable range (Figure 9(b)). Although the 
temperature rise for both the voids is comparable, the high amount of reacted HMX mass for the 
cylindrical void shows higher sensitivity than the ellipsoid. The difference in the sensitivity of 
the two voids is related to the vorticity field generated during their collapse. For the ellipsoidal 
void, the vorticity field is characterized by a series of uniform, tightly formed connected horse 
shoe vortices, as opposed to the cylindrical void where the vorticity field is more spread out. The 
spreading of the vorticity field for cylindrical void is a result of complex vortex interactions 
arising from instabilities of vortices due to disturbances and the induced velocity fields of the 
interaction vortical structures. The vortex interaction causes intense mixing and reaction, leading 
to high value of F. The differences in the behavior of cylindrical and ellipsoid void show that 
even modest differences in void morphology can have important implications for void 
sensitivity.  

 
3.2.3 Effects of void shape on hot spot formation 
 To establish the relationship between the void collapse mechanism and hot spot features 
for different void shapes, hot spot information for the four voids is extracted and compared in 
this section. The hot spot shape for all the voids is obtained by extracting the iso-surface of the 
final reaction product, ସܻ of value 0.8. The value of 0.8 for ସܻ indicates the regions where 80% 
HMX is reacted and temperature rise is high. Figure 10 shows the iso-surface of ସܻ colored with 
temperature contours for all the four voids after the voids are collapsed and hot spots are formed. 
The spherical void forms a mushroom shaped hot spot as shown in Figure 10(a). The formation 
of the mushroom hot spot is related to the material jetting and focusing mechanism of collapse 
where the jet kinetic energy is localized at the center of the mushroom. The cylindrical void on 
the other hand forms an elongated hot spot (Figure 10(b)) generated by the successive pinching 



 
 

mechanism. The plate void generates a long and thin plate shape hot spot with a higher surface 
area (Figure 10(c)) than the cylindrical void hot spot. The collapse of the ellipsoid void forms a 
thin, pointed and elongated hot spot (Figure 10(d)). The hot spot shape varies with void 
morphology and is directly related to the initial shape of the void. Therefore, a void with high 
surface area will form a large hot spot. High surface area of the hot spot increases the reaction 
growth rates and causes increased sensitivity. 
 
3.3. Comparison of 2D and 3D analysis 
 The above 3D void collapse simulations have provided insights into the effect of void 
shapes on the dynamics of void collapse. However, 3D reactive void collapse analysis is 
computationally expensive, partly due to rather stringent spatial and temporal resolution 
requirements [14]. Well-resolved computations in 3D will be intractable for fields of voids that 
are typical of real microstructures. Currently, the only way to circumvent this problem is to use 
2D analysis or axisymmetric modeling. However, axisymmetric modeling is limited to void 
shapes that have planes of symmetry; this constraint precludes real microstructures. On the other 
hand, the validity of 2D modeling is not established in the literature. It is particularly important 
to assess the applicability of 2D analysis for elongated voids because in 3D an elongated void 
can be present in various shapes i.e. plate, cylinder etc. To this end, the comparison of 2D 
elongated and circular void against their 3D counterparts is performed for a shock loading of 9.5 ܽܲܩ rectangular pulse with duration of 1.5 ݊ݏ.  
 
3.3.1 Comparison of the collapse of a spherical void with its 2D counterpart 
 The reaction sensitivity and hot spot behavior of the spherical void presented in section 
3.1.1 is compared with that of a 2D circular void of the same diameter as the spherical void of 1.55 μ݉ embedded in a HMX domain of size 4.5 μ݉ ൈ 3 μ݉. 
 Figure 11 compares the final gaseous mass fraction F and average hot spot temperature, തܶ for the circular and spherical void. The spherical void collapse leads to greater reaction product 
F and higher hot spot temperatures, when compared to the circular void. The spherical void is 
therefore more sensitive than the circular void. This is because of greater shock focusing in the 
case of spherical void under 3-dimensional loading and collapse than for the 2D case of the 
circular void. Furthermore, three-dimensionality leads to instabilities, such as the breakdown of 
the vortex ring into smaller structures that enhance mixing and increase the effective area of heat 
transfer to the surrounding unburnt HMX. These observations align with previous results [12] 
where spherical voids were shown to be more sensitive than 2D circular voids. 
 To gain a deeper understanding of the shape of the hot spot and reaction zones for 
spherical and circular voids, contour plots of temperature, final gaseous species, ସܻ and Z-
component of vorticity tensor, ߗ௭ are presented in Figure 12. For the spherical void, the contour 
plots are shown for the central Z plane to directly compare with the results of circular void. 
Figure 12(a) and (b) show that the temperature rise after the collapse of the spherical void is 
higher than the circular void. This observation also applies to the product mass fraction contours 
and vorticity contours, each of which display stronger magnitudes in the 3D case. The shape of 
the hot spot in the central plane can be outlined from the temperature contours (by identifying the 
hot spot as the region with temperatures higher than 700K); the hot spot shapes for the 3D and 



 
 

2D cases are quite different from each other. The spreading of the two side-lobes formed after 
the initial material-jetting induced collapse of the voids increases the size of the reaction zones in 
the case of spherical void, resulting in greater temperature rise and mass reacted. 
 The above results show that the reaction sensitivity of 3D and 2D voids differ 
significantly and that 2D estimates of hot spot size and intensity can under-predict the hot-spot 
induced sensitivity of porous energetic materials. 
 
3.3.2 Comparison of elongated and cylindrical voids in 3D 
 Elongated voids are prevalent in real microstructures of pressed explosives [29]. The 
collapse and energy localization behavior of elongated voids was analyzed in previous work [8] 
using 2D analysis. The limitations of the 2D analysis for elongated voids, are examined in this 
section in comparison to the behavior of the 3D elongated (cylinder) void of section 3.1.2. 2D 
counterpart of the cylinder-shaped elongated void of thickness 0.5 μ݉ and length 10 μ݉ 
embedded in the HMX matrix of size 12.5 μ݉ ൈ 4.2 μ݉ is analyzed. The length and the 
thickness of the 2D elongated void is maintained, as with the 3D cylindrical void. The shock 
loading, boundary conditions and grid resolution are also the same as in the analysis of the 3D 
cylindrical void in section 3.1.2.  
 Figure 13 compares the product mass fraction ratio F and average hot spot temperature തܶ  
for the 2D and 3D void. The reacted HMX mass fraction, F is observed to be higher in the 3D 
case than in 2D (Figure 13(a)). The average hot spot temperature follows a similar trend, as can 
be seen in Figure 13(b). To understand the higher sensitivity of a 3D void compared to 2D, 
Figure 14 shows the contour plots of temperature, final gaseous products and ߗ௭ contours for the 
3D and 2D simulations. For the 3D void, the contours are shown at the center Z-plane. The 
contour plots of temperature and the gaseous products show more spreading of the reacted zone 
for the 3D void as compared to the 2D void. The reason for the spreading of the reaction zone is 
because of vortex interactions that arise during the collapse of the 3D void, as noted in section 
3.1.2. In the 2D analysis, the vortex interaction is not pronounced (Figure 14(e) and (f)). The 2D 
approximation of elongated void to 3D cylindrical under-predicts the hot spot size and sensitivity 
as compared to the 3D predictions. 
 
3.3.3 Comparison of 2D elongated and plate void in 3D 

It was shown above that a 3D cylindrical void is more sensitive than the 2D elongated 
void. A 2D elongated void can be an approximation for either a 3D cylindrical void or a plate 
void because both the voids have the same projected geometry in a 2D plane. Therefore, the 
sensitivity of the plate void of section 3.1.3 is compared with its 2D counterpart. The length and 
thickness of the 2D elongated void is the same as the plate void, i.e. 10 μ݉ and 0.21 μ݉. The 
void orientation, loading conditions, boundary conditions and grid resolution is maintained in the 
plate void collapse analysis (section 3.1.3). 
 The final gaseous product mass fraction ratio, F and the average hot spot temperature, തܶ 
are compared for the 2D and the 3D void (Figure 15). Figure 15(a) shows that the reacted mass, 
F for the 3D void is higher compared to the 2D void. The average hot spot temperature, തܶ for 3D 
void is higher compared to the 2D predictions (Figure 15(b)). The differences in the prediction of 
F for the 3D plate void and the 2D elongated void are analyzed further by comparing the contour 



 
 

plots of temperature, final gaseous species and vorticity for the 2D and 3D void (Figure 16). For 
the plate void, contour plots at the Z-center plane are shown. The temperature and reaction 
product contours show that spreading of the reaction zone is greater in the 3D analysis than in 
2D (Figure 16(a) and (b)). Vortical interactions and increased mixing cause the spreading of the 
reaction zone in 3D (Figure 16(e) and (f)). Similar to the case of spherical and cylindrical void, 
the sensitivity of 3D plate void is found to be higher than the 2D counterpart.  

4. Conclusions 
 This paper studies the effects of 3-dimensionality on void collapse and reaction initiation 
in HMX. A Cartesian grid based Eulerian framework is used for the high resolution reactive 
meso-scale simulations of void collapse. A 3-step reaction chemistry model is used to calculate 
the chemical decomposition of solid HMX into gaseous products. The collapse behavior of four 
different 3-dimensional void shapes i.e. sphere, cylinder, plate and ellipsoid is analyzed under 
the shock loading of 9.5 ܽܲܩ strength and pulse duration of 1.5 ݊ݏ.  

The 3D void collapse simulations provide several insights concerning the collapse 
behavior of the voids and their sensitivity. First, for all four voids, the collapse generates high 
intensity baroclinic vortices. The shapes of the vortical structures change with the shapes of the 
voids. For the spherical void, vortex rings are formed. For the cylinder and plate-shaped voids, 
the collapse starts with the formation of a horse-shoe vortex followed by instabilities that create 
smaller scale vortical structures that interact with each other. Ellipsoidal voids have a region of 
higher curvature to the incident shock, and the void collapse results in a series of interconnected 
horse-shoe vortices. The location and shape of these vortex structures are important because 
chemical reactions and heat release are localized in the core of these structures. Therefore, 
depending on the shape of the voids and the structures generated after collapse, micro-mixing 
and concentrations of reaction zones significantly differ depending on the shapes of the 3D 
voids.  

The second insight is that void shape significantly affects the void collapse behavior and 
its sensitivity. For constant loading and void volume, the plate void has higher sensitivity, 
followed by cylindrical and then spherical voids. In fact, a modest variation in the void shape 
from cylinder to ellipsoid undermines the sensitivity of the ellipsoid void under the same loading 
condition. Voids with higher surface area amounts to more HMX burning and increased 
sensitivity.  

Finally, 3D void collapse analysis contributes to higher sensitivity than its 2D 
counterparts. The reacted HMX mass and hot spot intensity is significantly higher than in the 2D 
predictions for all the three voids. The higher sensitivity of voids in 3D is due to the difference in 
the collapse behavior of voids in 2D and 3D.  

The 3D reactive void collapse simulations advance the current understanding of 
mechanisms of void collapse and its relation to void sensitivity for different void shapes. The 
sensitivity of voids in 3D is significantly higher for a wide range of void shapes that are 
commonly present in the microstructures of porous energetic materials. Therefore, 2D 
assumption should be applied with caution to establish criticality conditions for reaction 
initiation in energetic materials. Further extensions of the work will analyze the void orientation 
effects on the sensitivity of non-spherical voids in 3D and quantify the effects of the hot spot 



 
 

shape on reaction growth rates in HMX. As the 3D simulations are computationally expensive, 
devising a scaling factor to predict the reaction propagation rates of 3D voids from their 2D 
counterparts will be considered in the future work. 
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Z (µm) 

Figure 1: Numerical set for the 3D reactive void collapse simulations of the four different shape voids i.e. 
sphere, cylinder, plate and ellipsoid. Shock loading in the form of a rectangular pulse of pressure,  ௦ܲ ൌ9.5 ܽܲܩ and pulse duration of ݐ௦ ൌ 1.5  is applied from the west face of the domain boundary (along ݏ݊
the positive X-axis).  

(a) Spherical void of diameter 1.55 μ݉ in HMX 
matrix of dimensions 4.5 μ݉ ൈ 3 μ݉ ൈ 3 μ݉. 
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(b)  Cylindrical void of diameter 0.5 μ݉ and 
length 10 μ݉ oriented at an angle of 15° with 
respect to the positive X-axis in a HMX matrix 
of dimensions 1.2 μ݉ ൈ 4 μ݉ ൈ 1.3 μ݉. 
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(c) Plate void of dimensions 10 μ݉ ൈ 0.9064 μ݉ ൈ 0.2165 μ݉ oriented at an angle of 15° with 
respect to the positive X-axis in a HMX matrix of dimensions 10.8 μ݉ ൈ 3.2 μ݉ ൈ 1.3 μ݉ 
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(d) Ellipsoid void with major and minor axes 10 μm and 0.2165 μm oriented at an angle of 15° 
with respect to the positive X-axis in a HMX matrix of dimensions 10.8 μm ൈ 3.2 μm ൈ 1.3 μm. 
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Figure 2: Contour plots of Z-component of vorticity, ௭ܹ obtained from the void collapse 
of spherical void of diameter 1.55 μ݉ under shock load of 9.5 pressure and 1.5 ܽܲܩ  ݏ݊
pulse duration. The vorticity strength is shown using the iso-surface plot of ߣଶ colored 
with the contour of ௭ܹ. A 2D projection at the Z-centerline plane is also shown. 

(a) ݐ ൌ ݐ (b) ݏ݊ 0.12 ൌ  ݏ݊ 0.61

(c) ݐ ൌ ݐ (d) ݏ݊ 0.73 ൌ  ݏ݊ 0.89

(e) ݐ ൌ Z-Component of Vorticity, W ݏ݊ 1.4
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Figure 3:  Contour plots of temperature and mass fraction of final gaseous species, ସܻ at 
different stages of void collapse of a spherical void of diameter 1.55 μ݉ under shock load of 9.5 ܽܲܩ pressure and 1.5 ݊ݏ pulse duration. On the XY-plane (centerline Z-axis), the contour 
plot of temperature is shown. The iso-surface of ߣଶ colored with the mass fraction of final 
gaseous species, ସܻ is also shown. 
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 Figure 4:  Contour plots of temperature and mass fraction of final gaseous species, ସܻ at 
different stages of void collapse of a cylindrical void of diameter 0.5 μ݉ and length 10 μ݉ 
under shock load of 9.5 ܽܲܩ pressure and 1.2 ݊ݏ pulse duration. On the XY-plane (centerline Z-
axis), the contour plot of temperature is shown. The iso-surface of ߣଶ colored with the mass 
fraction of final gaseous species, ସܻ is also shown. 
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Figure 5:  Contour plots of temperature and mass fraction of final gaseous species, ସܻ at 
different stages of void collapse of a plate shaped void under shock load of 9.5 ܽܲܩ pressure 
and 1.5 ݊ݏ pulse duration. On the XY-plane (centerline Z-axis), the contour plot of temperature 
is shown. The iso-surface of ߣଶ colored with the mass fraction of final gaseous species, ସܻ is 
also shown. 
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Figure 6:  Contour plots of temperature and mass fraction of final gaseous species, ସܻ at 
different stages of void collapse of an ellipsoid of major and minor axes 10 μ݉ and 0.2165 μ݉ void under shock load of 9.5 ܽܲܩ pressure and 1.2 ݊ݏ pulse duration. On 
the XY-plane (centerline Z-axis), the contour plot of temperature is shown. The iso-
surface of ߣଶ colored with the mass fraction of final gaseous species, ସܻ is also shown. 
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Figure 7:  Void collapse profile of spherical, cylindrical, plate and ellipsoid void under 
shock load of 9.5 ܽܲܩ pressure and 1.5  ଶ profile following the voidߣ  .pulse duration ݏ݊
collapse colored with the mass fraction of final gaseous species, ସܻ is also shown. 
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(a) Variation of mass reacted with time (b) Variation of hot spot temperature (K) with 
time  

Figure 9: Comparison between the reacted mass and hot spot temperature (K) variation with 
time for a 3D cylindrical and ellipsoid void under the shock load of 9.5  pressure and ܽܲܩ
1 5 ݏ݊ pulse duration

(a) Variation of reacted HMX mass fraction 
with time  

(b) Variation of hot spot temperature (K) with 
time  

Figure 8: Comparison between the reacted HMX mass fraction and hot spot temperature (K) 
variation with time for the spherical, 3D cylindrical and plate void of same void volume and 
under the shock load of 9.5 ܽܲܩ pressure and 1.5 ݏ݊ pulse duration.



 
 

 

 

 

Figure 10:  Iso-surface of mass fraction of final gaseous species, ସܻ at value of 0.8 colored 
with the temperature (K) for spherical, cylindrical, plate and ellipsoid void after the 
collapse of the voids. 

(a) Hot spot shape for spherical void 
at  ݐ ൌ  ݏ݊ 1.4

(b) Hot spot shape for cylindrical 
void ݐ ൌ   ݏ݊ 1.4

(c) Hot spot shape for plate void at  ݐ ൌ  ݏ݊ 2.26
(d) Hot spot shape for plate void at  ݐ ൌ  ݏ݊ 2.2

Iso-surface of mass fraction of final gaseous species, ସܻ colored 
with temperature (K)  



 
 

 

 

(a) Variation of reacted HMX mass fraction 
with time  

(b) Variation of hot spot temperature (K) with 
time  

Figure 11: Comparison between the reacted HMX mass fraction and hot spot temperature (K) 
variation with time for spherical void and 2D cylindrical void of same diameter (i.e. 1.55 μ݉) under the shock load of 9.5 ܽܲܩ pressure and 1.5 ݏ݊ pulse duration. 



 
 

 

 

Figure 12: Comparison between the collapse behavior of spherical void and 2D cylindrical void of 
same diameter (i.e. 1.55 μ݉) under the shock load of 9.5  .pulse duration ݏ݊ pressure and 1.5 ܽܲܩ
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(c) Mass fraction of final gaseous species, ସܻ 
contour on centerline Z-plane at ݐ ൌ 1.3  ݏ݊
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(d) Mass fraction of final gaseous species, ସܻ contour 
from 2D cylindrical void collapse at ݐ ൌ 1.8  ݏ݊
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centerline Z-plane at ݐ ൌ  from 3D ݏ݊ 1.3

spherical void collapse 
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(f) Z-component of vorticity, ௭ܹ contour from 2D 
cylindrical void collapse at ݐ ൌ  ݏ݊ 1.8
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(a) Variation of reacted HMX mass fraction 
with time  

(b) Variation of hot spot temperature (K) with 
time  

Figure 13: Comparison between the reacted HMX mass fraction and hot spot temperature (K) 
variation with time for 3D cylindrical void and 2D elongated void of same cross-sectional 
area under the shock load of 9.5 ܽܲܩ pressure and 1.5 ݏ݊ pulse duration.



 
 

 

Figure 14: Comparison between the collapse behavior of a 3D cylindrical void and 2D elongated 
void of same cross-sectional area under the shock load of 9.5  pulse ݏ݊ pressure and 1.5 ܽܲܩ
duration. 

(a) Temperature (K) contour on centerline Z-
plane at ݐ ൌ  from 3D cylindrical void ݏ݊ 2.4
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(b) Temperature (K) contour from 2D cylindrical 
void collapse at ݐ ൌ  ݏ݊ 2.8
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from 3D cylindrical void collapse analysis 
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(a) Variation of reacted HMX mass fraction 
with time  

(b) Variation of hot spot temperature (K) with 
time  

Figure 15: Comparison between the reacted HMX mass fraction and hot spot temperature (K) 
variation with time for 3D plate void and 2D elongated void of same cross-sectional area 
under the shock load of 9.5 ܽܲܩ pressure and 1.5 ݏ݊ pulse duration.



 
 

 

 

 

 

 

 

 

 

 

(a) Temperature (K) contour on centerline Z-
plane at ݐ ൌ  from 3D plate void ݏ݊ 2.26

collapse analysis 

(b) Temperature (K) contour from 2D elongated 
void collapse at ݐ ൌ  ݏ݊ 2.44

(c) Mass fraction of final gaseous species, ସܻ 
contour on centerline Z-plane at ݐ ൌ 2.26  ݏ݊

from 3D plate void collapse analysis 

(d) Mass fraction of final gaseous species, ସܻ contour 
from 2D elongated void collapse at ݐ ൌ 2.44  ݏ݊

(e) Z-component of vorticity, ௭ܹ contour on 
centerline Z-plane at ݐ ൌ  from 3D ݏ݊ 2.26

plate void collapse analysis 

(f) Z-component of vorticity, ௭ܹ contour from 2D 
elongated void collapse at ݐ ൌ  ݏ݊ 2.44

Figure 16: Comparison between the collapse behavior of a 3D plate void and 2D elongated void of 
same cross-sectional area under the shock load of 9.5 pressure and 1.5 ܽܲܩ  .pulse duration ݏ݊
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