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Abstract

The Aplysia, commonly referred to as the ’sea hare’; is a marine mollusc that swims using large-
amplitude flapping of its wide, wing-like parapodia. In this study, flow simulations with a relatively
simple kinematical model are used to gain insights into the vortex dynamics, thrust generation and
energetics of locomotion for this animal. A unique vortex pattern characterized by three distinct
trains of vortex ring-like structures is observed in the wake of this animal. These vortex rings are
associated with a positive momentum flux in the wake that counteracts the drag generated by the
body. Simulations indicate propulsive efficiencies of up to 24% and terminal swimming speeds of
about 0.9 body length per cycle. Swimming speeds are found to increase with both increasing

parapodial flapping amplitude and undulatory wavelength.
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I. INTRODUCTION AND BACKGROUND

All Aplysia are benthic gastropods (Phylum Mollusca) and among the 37 recognized
species, seven (A. brasiliana, A. depilans, A. extraordinaria, A. fasciata, A. morio, A. pul-
monica, and A. tanzanensis) are good swimmers [5] that can cross large distances in one
swim episode and also maintain a fairly straight path against natural currents. A. brasiliana
and A. fasciata are two related species [20] whose swimming has been investigated in some
detail. All species of Aplysia swim by flapping of the wing-like parapodia [13] that is actu-
ated by a wave of muscle contraction from the anterior to the posterior of each parapodium;
the parapodia are folded to cover the mantle area during the upstroke (closing phase) and
fully extended to expose the mantle area during the downstroke (opening phase). The
amplitude of flapping is typically very large with the two parapodia overlapping at the end
of the upstroke.

The simple neural system with large neurons and axons has made the sea hare, or
Aplysia, a valuable laboratory animal for investigations into the nervous systems and brain
function and neuronal control of swimming in these animals [19, 26| 27]. Efforts have also
been made to study the energetics of locomotion of these animals by evaluating the cost
of transport [12]. The propulsive mechanism for the mode of swimming adopted by these
animals is however still unclear. Proposed mechanisms include sculling, jet propulsion, and
hydrodynamic lift [5], [12]. Porten et al. [26] suggested that the leading edge of the parapodia
presents as an ’airfoil” that produces lift on both power and recovery strokes. They suggested
that while the anterior third of the parapodia produces thrust, the rear two-thirds provides
pitch stability during swimming.

In the classification scheme of swimming gaits in marine gastropods put forth by
Farmer [13], the Aplysia employs paired flapping of its parapodia for swimming. How-
ever, in the larger context of swimming animals, we note that the swimming gait of Aplysia
is most similar to the so-called rajiform and mobuliform modes of propulsion adopted by
batoid fish such as electric rays, sawfishes, guitarfishes, skates and stingrays [22]. In these
modes, thrust is generated by passing a synchronized undulatory traveling wave along the
pectoral fins. The feature that distinguishes these two modes is the wavenumber (number
of waves per body length) of the undulatory wave; in the rajiform mode, the wavenumber
is greater than one whereas in the mobuliform mode, the wavenumber is less than half.

Stingrays swim using the rajiform mode with a mean wavenumber of about 1.1 whereas



fish such as cownose rays (Rhinoptera bonasus) are found to have about 0.4 waves on their
fins [22]. As we will show later, the Aplysia has wavelengths that compare to the mobuli-
form mode, but the amplitude of flapping in Aplysia significantly exceeds anything seen in
batoid fishes. It is expected that this exaggerated movement of the parapodia will generate
hydrodynamical features that are different from those observed for batoid fish, and this
movement and associated hydrodynamics will also impact the swimming performance in
ways that has not been elucidated in previous studies of swimming in batoid fish.

The large amplitude movement of the parapodia in Aplysia as compared to batoid fish
is undoubtedly associated with the absence of a skeleton and other bony or cartilaginous
structures in these marine gastropods, which allows significant bending in their appendages
and parapodia. This versatility in movement is also one factor that makes these animals
attractive for consideration as bioinspired or biohybrid soft robots, and recently, attempts
have been made to develop soft-biohybrid robots with both organic actuation and organic
motor-pattern control inspired by the locomotion of the non-swimming species Aplysia cali-
fornica [29,30]. Thus, this novel application in the area of soft robotics generates additional
interest in the swimming performance of soft-bodied animals such as Aplysia.

In the current study, we employ high-fidelity computational fluid dynamics to model free-
swimming in these animals and use the simulation to gain insights into the flow features,
propulsive mechanisms, and energetics of locomotion. Simulations are also conducted to
explore the effects of variations in kinematics, such as parapodial flapping amplitude and
undulatory wavelength. Understanding of the hydrodynamics of these animals may also
help in the development of softbodied bioinspired or biohybrid robots that utilize living

neuron/tissue to swim [29)].

II. METHODS

II.1. Body Geometry and Swimming Kinematics

The body of Aplysia consists of a head, a foot, and a visceral mass. The foot is short
posteriorly and forms a pointed tail; it then expands anteriorly into two large, wing-like
parapodia (see Fig. . Between the two parapodia is the reduced mantle and mantle
cavity, in which the shell is embedded and covers the visceral mass. Fig.[Ia]shows the external

morphology of a free-swimming A. brasiliana, with the body in a streamlined posture [6]
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FIG. 1: @ external features of free-swimming sea hare (A. fasciata) in a streamlined
posture; the planform used in this study adopted from a dissected A. brasiliana with

the dorsal visceral mass removed [26].

and the edges of the foot curled inward such that the normal crawling surface is hidden
along most of its length.

Because the two thin parapodia dominate the total surface area of the animal and are
responsible for most of the hydrodynamics of the locomotion, in the current study, the entire
body of the Aplysia is modeled as a zero-thickness deformable membrane. The planform of
these animals is adopted from Fig. 7 in Ref. [20] of a dissected Aplysia brasiliana with the
dorsal visceral mass removed. Bebbington and Hughes [1] described the differences in the
shape of the pedal sole/parapodia of three swimming species: A. depilans, A. fasciata, and
A. punctata, while the shape of the parapodia varies slightly among species, we consider the
flat, distended shape of A. brasiliana (see Fig. as a good representation of these animals.

As reported in Ref. [6], when swimming at the surface, the sea hare exhibits a complex
swimming gait that combines a head-bobbing with each parapodial flapping, similar to the
swimming gaits of the Spanish Dancer (Hezabranchus sanguineus). The bobbing movement
is however, usually not observed when swimming below the surface, and this also agrees
with the observation by Porten et al. [20]. Since these animals are difficult to maintain in
laboratory conditions, the kinematics of the body for the current study are obtained from a
field video of an animal recorded swimming close to the seabed [7]. In this video, the animal

is observed to swim by passing synchronous waves along the two parapodia. The animal
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FIG. 2: Comparison of the reconstructed motion of the Aplysia with screenshots of a freely
swimming A. fasciata [7]. (a) fully closed; (b) beginning of opening phase; (c) fully open;

(d) beginning of closing phase. The thick black arrow denotes the direction of swimming.

moves in a fairly straight path, and this video therefore serves as a suitable basis for modeling
linear swimming of these animals. It is worth pointing out that Bebbington and Hughes [I]
noted a slight phase difference between the movements of the two parapodia in A. fasciata,
whereas the measurements of Porten et al. [26] indicated little phase difference in flapping.
The video of Carletti [7] and our model are in-line with the latter study. Therefore, the
time-dependent angular deflection of the parapodia with respect to the axis-of-symmetry is

described by a synchronized traveling wave as

Y. 1)= 2 [1+ tanh((y — o)/ K) dusin(2n(e/A — t/T)),
0<z <L -W/2<y<W/2 (1)

where g is the angular amplitude of the parapodial deflection, x and y are the chordwise
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and spanwise coordinates, respectively (L and W are the length and width of the body), T is
the cycle period. Because the shape of the paired parapodia is bilaterally symmetric, but the
movements are asymmetrical with one parapodium closing over the other during the closing
phase, the flapping amplitudes of the two sides vy, and v, (where the subscripts [ and r
denote the left and right sides, respectively) are prescribed to be slightly different to capture
this feature. The hyperbolic tangent function prescribes the spanwise variations with two
parameters K and yq , both of which have dimensions of length. It should be noted that we
do not directly model the flexibility of the body since that requires knowledge of the tissue
properties and muscle activation, which is currently lacking. Instead, the flexibility /softness
of the body of these animals manifests through the large scale bending of the parapodia,
which we match to actual observations swimming in these animals.

The membrane representing the body is divided into triangular elements where each
element is attached to a virtual joint that can rotate about a hinge parallel to the axis-
of-symmetry. The locomotion of the swimmer defined by Eqn. [1| can then be generated
by smoothly rotating these joints following the Denavi-Hartenberg convention [15], which
ensures that the total length and area of the body is very nearly conserved. Fig. shows
the distended planform meshed with triangular elements. With the kinematics of the body
prescribed about the axis-of-symmetry, simulations are carried out where the acceleration
and movement of the body are computed by direct coupling of the Navier-Stokes equations
(see Eqns. [2/and with the body dynamics equations (see Eqn. .

The above kinematic model introduces five non-dimensional parameters: the flapping
amplitudes of the two parapodia g, ¥, the length-specific wavelength \/L, K/L and
yo/L, where K/L describes the smoothness of the spanwise direction and /L prescribes
the location where the flapping angle is half of the maximum value in the spanwise direction
respectively. These parameters were initially estimated from selected still frames of the
video to achieve a good visual match. The parameters controlling the spanwise variations
are chosen as K /L = 0.1 and yo = W/4 for all Aplysia models investigated in this study. The
other parameters used in our baseline case are ¢y, = 97.5°, 1y, = 165°, and A\/L = 2.0. As
pointed out earlier, the amplitude of undulation in Aplysia is significantly higher than that
observed for batoid fish. For instance, cownose rays (Rhinoptera bonasus) which swim by
using the mobuliform mode exhibit the highest flapping amplitude among the eight species
studied by Rosenberger [22]. However, their angular amplitude still only corresponds to

about 35° per the current kinematic description, while the peak-to-peak angular amplitude of



manta rays has been measured to be about 60° [14]. Thus, the hydrodynamics of swimming
in Aplysia is expected to be quite distinct from batoid fish. Fig. [2|shows four representative
stages of the reconstructed swimming structure in comparison with the screenshots of a freely
swimming A. fasciata from the field video and we note that the reconstruction provides a
reasonable match. Quantitative information on the kinematics of free-swimming Aplysia is

not available for a more quantitative comparison with the current model.

I1.2. Computational Method

We briefly summarize here the approach employed to simulate the coupled flow-body
system that has been described in more detail in Ref. [31] and extensively validated against
other studies [10], 21]. The equations governing the flow are the 3-D unsteady Navier-Stoke
equations formulated in a non-inertial frame that translates with respect to a body-fixed

point:
3ui
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where i, 7 = 1,2, 3, u; is the absolute fluid velocity in the inertial reference frame, V; is the

(3)

translational velocity of the reference point on the body, p is the pressure, and p and v are
the fluid density and kinematic viscosity, respectively. Simulation in the frame attached to
the center-of-mass of the animal’s body keeps the model in the central region of the com-
putational domain through the entire simulation. This reduces the resolution requirements
for the simulations and also makes the approach to the terminal swimming state agnostic to
the size of the computational domain. Once the flow field is resolved at each time step, the
forces acting on the body can be readily computed by integrating the pressure and viscous

stress over the surface as follows:

F:_é;ﬂm+ﬂw (4)

where OB denotes the surface of the body, 7 the shear stress acting on the surface, and n
the unit normal vector pointing out of the fluid control volume.
In this work, the body motion relative to the non-inertial frame is prescribed by the

kinematic model discussed before. Given the observation that the animal swims along a



nearly linear path with one degree of freedom, the body is constrained to swim only along
the forward direction (surge), and all sideways (sway) and vertical (heave) movements as
well as any flow-induced rolling, yawing and pitching motion of the body are neglected.

In reality, the flapping motion of these animals likely generates lateral and vertical forces
as well as hydrodynamic torques, and the animal makes continuous compensatory adjust-
ments to its movements in order to swim straight without drifting upwards and sideways or
rolling, pitching or yawing. These adjustments are difficult to include in the computational
model, and here we assume that these collateral forces/torques are small compared to the
forces in the surge direction and neglect these other degrees-of-freedom altogether. Later in
the paper, we evaluate this assumption using our computations. With the hydrodynamic
force computed as above, the forward velocity of the body is estimated by solving Newton’s
second law for the animal

av

—=F
PuS di (5)

where p; is the area density of the body which is derived from the measurements of A.
brasiliana [12], S is the planar area of the animal. Thus, the above fluid-structure interaction
problem is solved in a coupled but sequential manner. For an animal with a parapodial area
of 50cm?, the area density is about 20kg/ m? and this is the value used in the current study.

This leads to a non-dimensional density ratio (py/Lp) equal to 0.2.

I1.3. Simulation Setup

As discussed in [31], the hydrodynamics and swimming performance of the animal can
be fully determined by the geometric and kinematic parameters, as well as the density
ratio, and the Stokes number ¥ = 2w fLA,, /v, where f is the flapping frequency, L is the
body length, A,, is the flapping amplitude. The Stokes number can also be interpreted as
Reynolds number based on flapping velocity of the parapodia. Statistical analysis [12] of 25
fully grown specimens, with live body mass ranging from 34 to 506g and the corresponding
parapodial area (single parapodium) from about 20 to 200cm?, indicates Stokes numbers
from O(10%) to O(10%) for the swimming of these animals. In the current study, we choose
a nominal value of ¥ =3,450, which is high enough to be representative of these animals,
but low enough to allow adequate resolution of the flow features and vortices. For context,

this Stokes number could represent an Aplysia of parapodial area (single parapodium only)
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of 25¢m?.

The computational domain used in this study is of size 10L x 8L x 7L and the head of
the Aplysia is placed at (3L,4L,3.5L). The configuration is chosen such that the domain is
large enough so that the outer boundary can be considered nearly undisturbed, and far-field
(Neumann) boundary conditions are applied for both pressure and velocity on all the outer
boundaries. A systematic grid refinement study (described in the Appendix) was carried
out for an animal swimming in a uniform inflow, and a grid with 7.5 million grid points
(301 x 193 x 129) and a time step of 0.0027 (corresponding to a mean Courant-Friedrichs-

Lewy (CFL) number of about 0.5) was chosen for the final simulations.

III. RESULTS

Simulation results of free-swimming Aplysia are presented in this section. For all simu-
lations, animals are initially released in a stationary fluid and as the flapping ensues, the
animals accelerates and eventually reach a quasi-steady terminal swimming state. In all
cases, it takes about eight cycles to reach this quasi-steady state and simulations are con-

tinued for about five additional cycles to accumulate statistics.

II1.1. Metrics for Assessing Swimming Performance and Flow Characteristics

The 3-D wake structure generated by the self-propelled swimmers are identified by the
Q-criterion [10], the quantity @ is defined as @ = 3(||2||> — ||S||?), where © and S are
the anti-symmetric and symmetric parts of the velocity gradient tensor Vi, respectively. A
vortex is defined as a region where the rotational motion dominates the rate-of-strain and
@) > 0. Vortices are visualized by plotting isosurfaces of () values.

The forward swimming speed V' is non-dimensionalized as V* = VT'/L and this can be
viewed as the number of body-length travelled per cycle [31]. The force coefficient in the
surge direction is computed as

Frsurge
C, = 1775 (6)
where S is the planar area of the body, and F**"9¢ is the force component along the surge
direction, V7 is the mean terminal swimming speed, with the terminal condition defined to

be when the variations of the cycle-averaged swimming velocity is within 3%.



The Froude propulsive efficiency is estimated for the quasi-steady state, when the cycle-
averaged thrust is exactly balanced by the cycle-averaged drag force, and it’s computed

as

_ Wuseful
77f Wtotal
1 /T N (F]:urge<t) + |stu7~ge(t)|)
= — U | dt 7
T]Dtotal 0 [; 2 F ( ) ( )

where Pioa = fOT Z]kvzl ﬁk(t) . ﬁk(t)dt is the total expended power, N is the total number of
triangular elements on the surface, k is the element index, Uy is the element velocity, U i
is the forward velocity of each element, Fj, = (Fm9¢ 0, Fleave) is the force exerted by
each triangular element on the surrounding fluid, and 7T is the cycle period. The above
definition of Froude efficiency applies to all modes of swimming and makes use of the ability
in computational fluid dynamic simulations, to separate thrust and drag generating elements
of the body in space and time. This same methodology has been used before to estimate the
Froude efficiency of undulatory propulsion in humans [28] and cetaceans [28], carangiform
swimming in fish [2] and swimming in other marine gastropods [31]. Following Schultz and
Webb [23] we also compute a power (or equivalently, an effective swimming drag) coefficient

for the terminal state as

= Ptotal _ Deffective (8)
sPVES  5pVES
where Cp is the power (or equivalently, the effective drag ) coefficient and Dt jective = Cp/Vr

is the effective drag force of the swimming body.

I11.2. 'Wake Topology

In this section, we focus on the vortex wake of a self-propelled Aplysia. We describe
here the wake topology for the baseline case with A\/L = 2.0 only because the key features
do not vary much with the kinematic parameters studied here. Fig. |3| shows the vortex
structures for the terminal swimming condition. In this plot, we identify three sets of vortex
rings (curved arrows) in the wake, with a pair of vortex rings (Rs and R,) oriented in the
spanwise direction and connected by two horizontal vortices (straight solid arrows), and

a third set of vortex rings (R,) orientated along the streamwise direction. The dash-dot
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FIG. 3: Vortex topology for the baseline case A\/L = 2.0: @ perspective view; @ dorsal
view; side view. The visualized vortex structures corresponding to the isosurface of
@ = 2.0 are colored by vorticity in the spanwise direction. The thick arrow denotes the

direction of swimming and the other arrows depict the direction of rotation of these

vortices.

arrows denote the orientation of these vortex rings. A close examination of the vortex
formation process indicates that while the vortex rings R, and R, are generated by the
downstroke of the caudal tip of the parapodia, the dorsal vortex ring R, is generated by
the upstroke of the parapodia at the caudal end. With respect to this dorsal vortex wake,
the upstroke actually generates two vortex loops at the parapodia tips that have the same
azimuthal rotation; these two vortex loops are ejected into the wake at the beginning of the
downstroke and rapidly approach each other as they convect downstream in the near wake
and nearly coalesce into an identifiable vortex ring.

A comparison of this wake with those of flapping foils (Fig. 8 in Dong et al. [I1]) and other
swimmers (Fig. 8 and 10 in [I§]; Fig. 13 in [I4]) provides a useful context for interpreting
the current results. The paired vortex rings on the port and starboard side of the animal (R,

and R;, respectively) produced by parapodial undulation resemble the oblique vortex rings
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wake for the baseline case A/L = 2.0 at the terminal condition: [(a)] top-view slice

intersecting the paired vortex rings (R, and Ry); slice intersecting the top set of vortex

rings (Ry), the colored contours are the streamwise momentum flux (u|ul); [(c)| Perspective
view of isosurfaces of (u|u|) superposed on vortex structures; ventral view of [(c)} [(e]]

spanwise vorticity on the symmetry plane, red dashed lines indicate the sliced location of
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shedding by a finite-aspect ratio flapping foil [I1], as well as the linked vortex rings of freely
swimming eels (anguilliform), mackerel (subcarangiform), and manta rays (rajiform), all of
which present two, and only two sets of vortex rings [3|, 14, 18]. Despite these similarities,
the paired vortex rings of Aplysia, are shed simultaneously in a non-staggered pattern at the
parapodia tips while the vortex rings from these other foils/swimmers are shed alternately
from the two ends and arrange in a staggered fashion.

A more interesting feature that distinguishes the current observed wake pattern from
those previously reported, especially as compared to batoid fish, is the formation of the
third distinct train of vortex rings (R4) that is arranged along the dorsal end of the wake.
There is little similarity between the vortex topology of these Aplysia and that of rajiform or
mobuliform swimmers such as rays, skates [§] and mantas [14]. In Ref. [I4], flow simulations
of a manta ray at Reynolds numbers comparable to the current case were conducted and
the simulation (Fig. 19 of the paper) showed the formation of two pairs of vortex loops
for one full stroke. These vortex loops were observed to arrange in a wake that expands in
the dorso-ventral direction, but not in the lateral direction. The Aplysia on the other hand,
forms a pair of laterally arranged vortices at the end of the downstroke and a single, dorsally
arranged vortex loop due to the coordinated upstroke of the parapodia. This wake is seen
to expand both in the lateral direction as well as the dorso-ventral direction. Finally, the
wake also contains a vortex street comprised of pairs of counter-rotating vortices identified
in Fig. as Vi that are aligned along the spanwise direction and connect the laterally
arranged vortex rings in the near wake.

The correlation between the vortex structures and the thrust production is elucidated
in Fig. [dl We pick two slices intersecting the centers of the laterally paired vortex rings
and the dorsal vortex rings, respectively. Fig. 4al and show 2-D slices selected from the
dorsal view. In these plots, the vortex structures are illustrated in greyscale, and velocity
vectors are superposed onto the contours of (u|u|), which is indicative of the streamwise
momentum flux induced by the vortices. It can be seen that the dorsal vortex rings induce
strong downstream (positive in the current convection) oriented momentum flux, which
signifies thrust generation. Combining this with the observation that a pulsatile jet in the
streamwise direction would create a set of vortex rings similar to those seen along the wake
centerline here, we reach the conclusion that the notion of jet propulsion as a contributory
mechanism for swimming in these animals [5], 2] has some merits. We also note that the

two horizontal (spanwise) vortices behind the body center that connect the paired vortex
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rings, contribute an upstream (negative) oriented momentum flux and this can be viewed as
the "hull’ drag caused by the body. Thus, all three sets of vortex rings are thrust producing,
whereas the horizontally oriented vortices are drag inducing.

We further examine this correlation by superimposing the isosurfaces of (u|u|) onto the
isosurfaces of the vortex structures as presented in Fig. [dc| (perspective view) and (ventral
view). The three streaks of positive streamwise momentum flux are found to be precisely
located along the centers of the three sets of vortex rings, confirming that the vortex rings
are indeed the sources of thrust. The negative momentum flux associated with the "hull’
drag of the animal, however, is located between the two horizontal vortices as observed
from the ventral view in Fig. [dd] By plotting the spanwise vorticity on the symmetry plane
(Fig. [4€), these horizontal (spanwise) vortices are found to resemble a Karman vortex street
that is associated with drag generation. Thus, the self-propelled Aplysia produces a wake
that shows a clear spatial separation in thrust and drag.

Fig. [d makes it clear that the vortex rings are generated by parapodial flapping, whereas
the drag-based spanwise vortices (identified as V}) are shed behind the non-deforming portion
of the body. This implies that the two parapodia act as the 'propellers” while the rest part of
the body acts as the "hull’. Fig.[5|shows the cycle-averaged streamwise force per unit area on
the body. It can be readily seen from this figure that the anterior portion of the parapodia
generates most of the thrust whereas the rest of the body generates drag on average. This
confirms the hypothesis [26] that the leading edge of parapodia generates most of the thrust.
We note that the asymmetry in the streamwise force distribution on the parapodia, as well
as in the isosurfaces of momentum flux and vortex structures, results from the asymmetry

in the flapping motion.

I11.3. Effects of Kinematic Parameters on Swimming Performance

As mentioned earlier, the amplitude of the parapodia undulation is found to vary sig-
nificantly for these animals, with energetic swimmers showing overlapped (and therefore
high amplitude) flapping, and tired animals not able to overlap the two parapodia during
the flapping [12]. Furthermore, our observation of the kinematics suggests an undulation
wavelength of A\/L <1 and the baseline kinematic model of A/L = 0.5 shows fair agreement
with the video. A quantitative analysis of the effect of parapodial wavelength on swimming

performance, which might be interesting from the viewpoint of bioinspired robotics, is not
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FIG. 5: Cycle-averaged streamwise force coefficient per unit area on the body for the

baseline case \/L = 2.0, higher curvature in the right parapodium leads to higher thrust.

TABLE I: Kinematic parameters employed in modeling the swimming of Aplysia and the

corresponding swimming performance.

Case Yo, Yo,r AL Vi ny Cp
Baseline 97.5° 165° 2.0 0.81 23.8 0.96
C1 97.5° 165° 3.3 0.89 20.6 1.00
C2 97.5° 165° 1.5 0.65 22.7 1.28
C3 90° 90° 2.0 0.75 22.6 1.04
C4 90° 90° 1.0 0.45 19.2 2.14
C5 75° 75° 2.0 0.65 21.3 1.10
C6 75° 75° 1.0 0.42 22.7 1.94

available. We have therefore conducted simulations to explore the effects of both the undu-
latory amplitude and wavelength on the swimming performance and results from this study

are presented in this section.

Table[summarizes the kinematic parameters for the various cases investigated here along
with the metrics for swimming performance obtained from the simulations. To provide some
context, the baseline case with the highest flapping amplitudes y; = 97.5° and v, = 165°,

as well as cases C1 and C2, as discussed in the kinematic modeling section, correspond to the

15



(a) (b) (c)

FIG. 6: Representative kinematic models at the closing phase with wavelength /L = 2.0:
Baseline case, ¢; = 97.5° and 1, = 165°; @ C3, Yo, = Yo, = 90°; C5,

Yo = Yo, = 75°. Arrow denotes the swimming direction.
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FIG. 7: Comparison of the time history of @ swimming speed and @ surge force

coefficients for the kinematic parameters investigated in the current study.

scenario where the left parapodium closes over the right, and thus, mimics active swimmers;
cases C3 and C4 with the intermediate flapping amplitudes 1o; = 1y, = 90° correspond to
the scenario where the two parapodia barely touch each other at the top of the upstroke; in
cases CH and C6 with the lowest flapping amplitudes ¢y; = 1y, = 75°, the parapodia are
far apart and these could model ’tired’ swimmers [12]. Fig. |§| shows the three representative
postures during the closing phase.

Fig. [7] shows the temporal variations in swimming velocities and force coefficients in the

streamwise direction. The animal is initially released in still fluid; as swimming movements
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generate hydrodynamic thrust, the animal accelerates and the drag force also increases.
The velocity continues to increase until the cycle-averaged streamwise force becomes zero.
The non-dimensional mean terminal velocities and Froude efficiencies are listed in Table [Il
Comparison reveals that the mean terminal swimming speed increases with both flapping
amplitudes and wavelength. The swimming speeds in the current simulations range from
0.42 to 0.89 body length per cycle, whereas the propulsive efficiencies are about 20% and do
not vary much among all cases studied in this work. Therefore, the baseline case that models
the kinematics observed from the video is found to have the highest efficiency and a relatively
high swimming speed (about 8% less than the highest speed). In contrast, cases C4 and C6
representing ’tired’ animals have the lowest swimming speed and relatively lower propulsive
efficiency as well. Experimental measurements [12] show that the velocity of freshly rested
animals is 0.096 4= 0.014m - s~ (initial speed), and it drops to 0.067 4= 0.014m - s~ (final
speed) after four hours of continuous swimming. For an animal of 10 cm length, as the scale
studied in this work, these speeds are equivalent to about 0.1 and 0.7BL - s71, respectively.
Thus, our simulation results are quite comparable to the experimental results.

Swimming speeds vary significantly among vertebrate and invertebrate swimming ani-
mals. As reported by Tytell and Lauder [25], the speeds of eels range from 0.5 to 2BL - s71.
Thus, the swimming speeds of Aplysia fall in a range comparable to eels, which employ the
so-called anguilliform mode of propulsion. The highest speed of Aplysia does not match that
of the manta ray, a rajiform swimmer, which can swim at 1.5BL - s~! [14]. For stingrays,

! which are

Bottom et al. [4] reported swimming speeds between 1.5BL - s~ and 2.5BL - s~
significantly faster than the Aplysia. Aplysia also cannot match the speeds of fish, such as
salmon, parrotfish and triggerfish, which easily exceed 3.0BL - s~! [9, [17]. Interestingly, the
Aplysia is also found to underperform in terms of speed of swimming compared to a closely
related species of marine gastropods, the Spanish Dancer (Hezabranchus sanguineus). This
other nudibranch swims with a complex gait that combines dorso-ventral body undulation
with a bilaterally synchronous, large amplitude progressive wave that passes down its man-
tle, and recent simulations [31] have provided estimates for terminal speed of 1.33 BL/cycle
for these animals.

Comparison of swimming efficiencies are more difficult due to the ambiguity of defin-
ing efficiency for an animal swimming at a terminal speed [23]. For instance, the Froude

efficiency of eels calculated based on the wake power estimation [24, 25], is around 50%.

For manta rays, the efficiency evaluated by employing Tytell and Lauder’s expression is
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about 48% [14]. On the other hand, Bottom et al. [4] estimated the Froude efficiency (as
defined in [25]) of stingrays with fast swimming velocity of 2.5BL-s~! to be 34.1% and slow
swimming velocity of 1.5BL - s7! to be 22.9%. An easier comparison of Aplysia’s swimming
efficiency is to animals for which the swimming efficiency has been calculated using the same
expression as in the current paper. Loebbecke et al. [28] estimated the swimming efficiency
of a cetacean using the same numerical method and same definition of efficiency to be 56%
method. For a Spanish Dancer, a species closely related to Aplysia, the efficiency for an
animal of comparable scale was also estimated to be 57% [31]. Thus, Aplysia seems to
lag both in terms of swimming speed and efficiency compared to other swimming animals.
However, it would seem that the reduction in swimming performance comes with the benefit
of decreased kinematic complexity, especially when compared to the Spanish Dancer, and
this might have implications for design of swimming softbodied robots that inspired these
marine gastropods. In closing, it should be pointed out that the swimming speed and swim-
ming efficiency of elite, Olympic level swimmers performing the underwater dolphin kick
is found to be 0.47BL - s~ and 29% respectively [28]. Thus, the Aplysia, with its simple
neuromuscular control system, still manages to outperform the best human swimmers.
Finally, we examine our assumption that the surge force dominates the swimming dy-
namics of these models. As per Table [I} the effective drag coefficient of these swimming
animals is O(1). In comparison, the computed mean lateral and vertical force coefficients
(non-dimensionalized similar to D fective) for these models are approximately 2 x 10~* and
6 x 1073, respectively. Furthermore, the hydrodynamic torques, divided by the characteristic
body length, also range from 2 x 107% to 6 x 1073. Thus, it is reasonable here to neglect

these collateral degrees-of-freedom.

IV. CONCLUSIONS

Simulations have been conducted to explore the wake characteristics and swimming per-
formance of the Aplysia. The unique wake generated by self-propelled Aplysia consists of
two sets of vortex-rings that extend obliquely away from a centerline in a horizontal plane
and another set of vortex rings that extends away in the dorsal direction in the wake. Anal-
ysis of the wake shows that the thrust and drag signature of the wake structures is distinct,
with the three sets of vortex ring generating thrust and a Karman vortex wake generated

by the flow over the body of the animals that is associated with drag. Analysis of the
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FIG. 8: Temporal profile of surge force coefficients for four grid sizes of an animal

swimming in a uniform inflow with the same prescribed kinematics of the case C5.

swimming performance indicates that the baseline case, with kinematics chosen to match
the field video, is able to obtain the highest propulsive efficiency and a relatively high swim-
ming speed. The overall swimming performance in terms of swimming speed and efficiency,
however, seems to lag behind other swimming animals, including the Spanish dancer, which
is a closely related species. Given that these animals are soft bodied invertebrates that have
a simple neuromuscular system, and live successfully in an environment subject to large
changes in both temperature and salinity, they could serve as inspiration for the design of
simple, robust and versatile, bioinspired/bio-hybrid soft swimming robots [30]. We note
that, as the muscle forces of these animals are unknown, prescribed kinematics were used
for all simulations performed in this study, and the flexibility and softness of the body were

not considered.

Appendix: Grid Refinement Study

Grids in this refinement study had a high-resolution region of size 2.5L x 1L x 0.6 L with
uniform grid spacing of 0.03L, 0.015L, 0.012L, and 0.01L within a computational domain
of size 10L x 8L x 7L, with corresponding total grid points of 0.8, 3.0, 7.5, and 9.0 million,
respectively. The force coefficients were examined to assess grid dependency and as shown
in Fig. [§ the temporal profile of the nominal grid 0.012L shows good agreement with the
finest grid spacing of 0.01L . Table [l summarizes the key hydrodynamic quantities for this
grid refinement study and it’s found the difference of both the mean surge force coefficients

C, and their r.m.s values (Cy),ms between the nominal and fine grids is within 1%.
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TABLE II: Mean surge force coefficients and r.m.s values for various grid sizes

0.012L
Az 0.03L 0.015L 0.01L
(nominal)
Cs 0.013 0.002 -0.002 -0.004
(Cs)rms 0.072 0.069 0.069 0.069

ACKNOWLEDGMENTS

The authors are very grateful to Simone Carletti, Matteo Charlie Ichino, and George

Skeparnias for giving us permission to use their videos of swimming Aplysia, and Kuan Xing
for making the sketch in Fig.[lal Thanks also go to Drs. Jung Hee Seo and Kourosh Shoele
for valuable discussions. Support from NSF Grant PLR-1246317 is acknowledged. The flow
solver developed here benefited from support from NSEF CBET-1511200 and 11S-1344772,
and the JHU Provost Discovery Award.

1]

[7]

A. Bebbington and G. Hughes. Locomotion in Aplysia (gastropoda, opisthobranchia). J.
Mollus Stud., 40(5):399-405, 1973.

M. Bergmann, A. Iollo, and R. Mittal. Effect of caudal fin flexibility on the propulsive efficiency
of a fish-like swimmer. Bioinspir. Biomim., 9(4):046001, 2014.

I. Borazjani and F. Sotiropoulos. Numerical investigation of the hydrodynamics of carangiform
swimming in the transitional and inertial flow regimes. Journal of Ezxperimental Biology,
211(10):1541-1558, 2008.

R. Bottom II, I. Borazjani, E. Blevins, and G. Lauder. Hydrodynamics of swimming in
stingrays: numerical simulations and the role of the leading-edge vortex. J. Fluid. Mech.,
788:407-443, 2016.

T. H. Carefoot. Aplysia: its biology and ecology. Oceanogr. Mar. Biol., 25:167, 1987.

T. H. Carefoot and S. C. Pennings. Influence of proximal stimuli on swimming in the sea hare
Aplysia brasiliana. J. Ezp. Mar. Biol. Ecol., 288(2):223-237, 2003.

S. Carletti. Aplysia fasciata, 2011. URL: https://www.youtube.com/watch?v=K2FQZ7dqgeY.

20


https://www.youtube.com/watch?v=K2FQZ7dqgeY

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. P. Clark and A. J. Smits. Thrust production and wake structure of a batoid-inspired
oscillating fin. J. Fluid. Mech., 562:415—-429, 2006.

S. Cotterell and C. Wardle. Endurance swimming of diploid and triploid atlantic salmon. J.
Fish Biol., 65(s1):55-68, 2004.

R. Cucitore, M. Quadrio, and A. Baron. On the effectiveness and limitations of local criteria
for the identification of a vortex. Eur. J. Mech. B-Fluid., 18(2):261-282, 1999.

H. Dong, R. Mittal, and F. Najjar. Wake topology and hydrodynamic performance of low-
aspect-ratio flapping foils. J. Fluid. Mech., 566:309-343, 2006.

D. A. Donovan, S. C. Pennings, and T. H. Carefoot. Swimming in the sea hare Aplysia
brasiliana: Cost of transport, parapodial morphometry, and swimming behavior. J. Ezp.
Mar. Biol. Ecol., 328(1):76-86, 2006.

W. Farmer. Swimming gastropods (opisthobranchia and prosobranchia). Veliger, 13(1):73-89,
1970.

F. E. Fish, C. M. Schreiber, K. W. Moored, G. Liu, H. Dong, and H. Bart-Smith. Hydrody-
namic performance of aquatic flapping: efficiency of underwater flight in the manta. Aerospace,
3(3):20, 2016.

R. Jazar. Theory of applied robotic: kinematics, dynamics, and control, chapter Forward
Kinematics. Springer Science & Business Media, 2010.

D. Kim and H. Choi. Immersed boundary method for flow around an arbitrarily moving body.
J. Comput. Phys., 212(2):662-680, 2006.

K. E. Korsmeyer, J. F. Steffensen, and J. Herskin. Energetics of median and paired fin
swimming, body and caudal fin swimming, and gait transition in parrotfish (Scarus schlegeli)
and triggerfish (Rhinecanthus aculeatus). J. Ezp. Biol., 205(9):1253-1263, 2002.

G. V. Lauder and E. D. Tytell. Hydrodynamics of undulatory propulsion. Fish Physiol.,
23:425-468, 2005.

D. R. McPherson and J. E. Blankenship. Neural control of swimming in aplysia brasiliana. ii.
organization of pedal motoneurons and parapodial motor fields. J. Neurophysiol., 66(4):1352—
1365, 1991.

M. Medina, T. M. Collins, and P. J. Walsh. mtdna ribosomal gene phylogeny of sea hares
in the genus Aplysia (gastropoda, opisthobranchia, anaspidea): implications for comparative

neurobiology. Syst. Biol., 50(5):676-688, 2001.

21



[21]

[22]

23]

[24]

28]

[29]

[30]

[31]

N. Mordant and J.-F. Pinton. Velocity measurement of a settling sphere. Fur. Phys. J. B,
18(2):343-352, 2000.

L. J. Rosenberger. Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J.
Ezp. Biol., 204(2):379-394, 2001.

W. W. Schultz and P. W. Webb. Power requirements of swimming: Do new methods resolve
old questions? Integr. Comp. Biol., 42(5):1018-1025, 2002.

E. D. Tytell. The hydrodynamics of eel swimming ii. effect of swimming speed. J. Ezp. Biol.,
207(19):3265-3279, 2004.

E. D. Tytell and G. V. Lauder. The hydrodynamics of eel swimming. J. Ezp. Biol.,
207(11):1825-1841, 2004.

K. von der Porten, D. W. Parsons, B. S. Rothman, and H. Pinsker. Swimming in Aplysia
brasiliana: analysis of behavior and neuronal pathways. Behav. Neural. Biol., 36(1):1-23,
1982.

K. von der Porten, G. Redmann, B. Rothman, and H. Pinsker. Neuroethological studies of
freely swimming Aplysia brasiliana. J. Ezp. Biol., 84(1):245-257, 1980.

A. von Loebbecke, R. Mittal, F. Fish, and R. Mark. Propulsive efficiency of the underwater
dolphin kick in humans. J. Biomech. Eng., 131(5):054504, 20009.

V. A. Webster, K. J. Chapin, E. L. Hawley, J. M. Patel, O. Akkus, H. J. Chiel, and R. D.
Quinn. Aplysia californica as a novel source of material for biohybrid robots and organic
machines. In Conference on Biomimetic and Biohybrid Systems, pages 365-374. Springer,
2016.

V. A. Webster, F. R. Young, J. M. Patel, G. N. Scariano, O. Akkus, U. A. Gurkan, H. J.
Chiel, and R. D. Quinn. 3d-printed biohybrid robots powered by neuromuscular tissue circuits
from Aplysia californica. In Conference on Biomimetic and Biohybrid Systems, pages 475—-486.
Springer, 2017.

Z. Zhou and R. Mittal. Swimming without a spine: Computational modeling and analysis
of the swimming hydrodynamics of the Spanish Dancer. Bioinspir. Biomim., 2017. |doi:

10.1088/1748-3190/2a9392.

22


http://dx.doi.org/10.1088/1748-3190/aa9392
http://dx.doi.org/10.1088/1748-3190/aa9392

	The Swimming Performance and Unique Wake Topology of the Sea Hare (Aplysia)
	Abstract
	Introduction and Background
	Methods
	Body Geometry and Swimming Kinematics
	Computational Method
	Simulation Setup

	Results
	Metrics for Assessing Swimming Performance and Flow Characteristics
	Wake Topology
	Effects of Kinematic Parameters on Swimming Performance

	Conclusions
	Grid Refinement Study
	Acknowledgments
	References


