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Nectar-drinking bats and honeybees have tongues covered with hair-like structures, enhancing
their ability to take up viscous nectar by dipping. Using a combination of model experiments and
theory, we explore the physical mechanisms that govern viscous entrainment in a hairy texture.
Hairy surfaces are fabricated using laser cut molds and casting samples with PDMS elastomer. We
model the liquid trapped within the texture using a Darcy-Brinkmann like approach and derive the
drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the
fluid, the density of the hairs, and the withdrawal speed. Both experiments and theory reveal an
optimal hair density to maximize fluid uptake.

I. INTRODUCTION

There has been a significant effort to rationalize drink-
ing strategies in nature through the lens of fluid mechan-
ics. Animals take advantage of the physical mechanisms
available at different scales. For example, capillary forces
play a key role role in nectar uptake by hummingbirds,
who use elastocapillarity to fold their tongues into tubes
to draw up nectar [1, 2]. Phalaropes use contact angle
hysteresis to bring drops of water from the tips of their
beaks to their mouths through a scissoring motion [1].
Cats set the frequency of their lapping motion through
a competition between gravity and inertia [3]. Viscous
dipping is a method utilized by many nectar drinking
animals, whereby fluid is viscously entrained on the sur-
face of a tongue [1, 4, 5]. This mechanism is reminiscent
of Landau-Levich-Derjaguin (LLD) dip coating, and has
been analyzed through this framework [4, 6, 7]. Viscous
coatings on tongues are also relevant in the context of
prey capture, such as by chameleons [11].
Many viscous dipping animals have hair-like structures

on their tongues [5, 8–10]; however, the effect of this tex-
ture has not been considered in viscous dipping models
[1, 4]. In this study, we are motivated by nectar drinking
bats, such as Glossophaga soricina, who feed via viscous
dipping with tongues covered in hair-like papillae [5]. A
schematic illustrating the drinking mechanism is shown
in Fig. 1. These papillae contain blood vessels which
become engorged with blood during tongue retraction,
causing the papillae to stand erect, increasing nectar up-
take [5]. Honeybees use a tension mechanism to erect
hairs on its tongue-like glossa during nectar feeding [8, 9].
Inspired by this observation, we explore the impact of
hairy textures on viscous entrainment.

Previous work has investigated the effect of micro-
scale texture on dip coating [12]. The authors model en-
trainment by modifying the LLD theory for a two-layer
film consisting of a layer of liquid trapped within the tex-
ture and a free film on top of the texture [12]. Here, we
instead investigate textures at a“meso-scale”, namely a
millimetric scale that is an intermediary between micro
and what is typically thought of as large scale. We be-
gin by conducting model experiments with hairy textured

FIG. 1. lllustration of a bat drinking nectar. Inset shows the
hair-like texture of the papillae that cover the tongue.

surfaces withdrawn from fluid baths.

II. EXPERIMENTAL SETUP

Hairy surfaces (shown in Fig. 2A) are cast from PDMS
elastomer (with Young’s modulus E = 2MPa) using laser
cut acrylic molds. The hairs are shaped like truncated
cones with an average diameter of e = 0.3 mm and a
length of l = 2.7 mm. The hairs are arranged in a hexag-
onal pattern with a edge-to-edge spacing r ranging from
r = 0.2 mm to r = 4.2 mm (shown in Fig. 2B). The hairy
surfaces are W = 40 mm wide and L = 60 mm long.

The hairy surfaces are plunged into silicone oil at a
sufficiently low speed (Vplunge = 0.5 m/s) so as to avoid
air entrainment [13]. After the sample is fully submerged,
it is withdrawn from a bath of silicone oil at speed V un-
til the sample has fully exited the bath; then, the sample
is held stationary.
Fig. 2C shows a time series of images from an experi-

ment in which a hairy sample with hair spacing r = 2.2
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FIG. 2. A) Hairy surfaces made from laser cut molds and
cast using PDMS elastomer. Photo credit Felice Frankel. B)
Schematic illustrating arrangement and spacing of hairs in a
triangular lattice. C) Time series of images from an experi-
ment with hairs of r = 2.2 mm being pulled out of ν = 1000
cSt silicone oil at a speed of V = 40 mm/s. The red solid line
is drawn at the base of the hairs and the red dashed line is
drawn over the profile of the liquid. The red arrows indicate
frames in which the sample is emerging from the liquid. The
blue triangles point to the position of the drainage front.

mm is withdrawn from a bath of silicone oil with viscos-
ity ν = 1000 cSt at a speed V = 40 mm/s. The red solid
line is drawn at the base of the hairs and the red dashed
line is drawn over the profile of the liquid. Liquid fills the
hairs to their tips as it exits the bath (t ≤ 1.5 s). Over
time, the liquid drains. The profile of the fluid within the
hairy texture has two regions: The bottom region where
the spaces between hairs are completely filled and the
thickness is uniform, which is separated by a drainage
front from the top region where the film is thinning. The
position of the drainage front is indicated with blue tri-
angles in Fig. 2C.
Fig. 3A shows snapshots of hairy surfaces of various

hair densities at the moment that they fully exit the bath

for withdrawal speed V = 40 mm/s. For high hair den-
sities, such as r = 0.2 or r = 0.7 mm, the hairy surfaces
emerge with the hairs fully filled to their tips with fluid
and an additional thin film topping the hairs. For in-
termediate densities, such as r = 2.2 mm, the hairs are
filled to the tips of the hairs as they emerge from the
bath, but the liquid drains to a visible extent from the
top hairs before the sample fully exits. For low densities,
such as r = 4.2 mm, the liquid coating does not reach
the level of the tips of the hairs.
We measure the mass of the fluid taken up in hairy

textures of various edge-to-edge hair spacing r at the
moment they fully exit a silicone oil bath with various
viscosities ν at various withdrawal speeds V . The mass
is measured using a materials testing machine with a load
cell and a motorized linear stage. The sample is hairy on
one side, and untextured on the opposite side; measure-
ments with identical conditions are taken with untex-
tured samples and are used to correct the measurements
on the hairy samples so as to measure only the mass of the
fluid taken up on the hairy side of the sample. For each
data point, the experiment is repeated five times and the
reported data is an average with the error bar reporting
the standard deviation. The experimental measurements
of mass taken up versus the edge-to-edge spacing of the
hairs r is plotted in Fig. 3B. The different colored curves
correspond to different withdrawal velocities and the dif-
ferent symbol shapes correspond to different viscosities.
The amount of fluid taken up increases with the with-
drawal velocity and viscosity. The curves corresponding
to experiments with three different viscosities are sepa-
rated into three distinct regions (shaded in different levels
of grey in the Fig. 3B). Note that there is an optimal hair
spacing to maximize fluid uptake which we relate to the
spacing of the hairs and the drainage of the fluid between
the hairs in the following sections.

III. THE MODEL

The drainage of the fluid diminishes the amount of
fluid that is taken up. To account for the drainage, we
use a Darcy-Brinkmann model for a porous medium near
a solid boundary. In this model, the columns of hair are
treated as channels with the hairs acting as walls (see
Fig. 4); this leads to dissipation along the width of the ef-
fective channel due to the presence of these walls. Taking
advantage of the geometry of the problem we define the
flow profile along a groove of rectangular cross-section:

u = ū(x, z)
6y

h2
eff

(heff − y) (1)

where heff is the effective channel width and ū = (u, v) is
the flow velocity in the x, z-plane. Later we show that heff

for the hairy surfaces is the edge-to-edge hair spacing r.
This expression is valid for 0 < y < heff and constitutes
a building block of the flow. The flow in the sample is
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FIG. 3. A) Images of hairy samples of different hair spacing
r for withdrawal speed V = 40 mm/s at the moment the
samples fully exit the bath. B) Weight of liquid coating the
hairy side of the plate vs. the center-to-center spacing of the
hairs r for various withdrawal speeds V and viscosities ν.

seen as a collection of such units stacked along the y-
direction. In each block, the flow in the y−direction is a
parabola and the 3D Stokes equation may be reduced to
the Brinkmann equation:

ν(∇̄2
ū− k2ū)−

1

ρ
∇̄p+ g = 0 (2)

where k =
√
12/heff, µ is the fluid’s kinematic viscosity, ρ

its density, g the acceleration of gravity and a bar denotes
an operator that is constrained to the xz−plane. When
the hair spacing is much smaller than the other length
scales of the problem we anticipate the prevalence of k2

in viscous effects. Eq. (2) may now be used to define a
drainage speed using the lubrication approximation [14],
i.e. v ≪ u and characterstic variations in the z-direction
are much smaller than characteristic variations in the x-
direction. Projecting Eq. (2) along the z−direction we
find that the pressure is everywhere prescribed by the
Laplace law: p(x, t) = pa + γκ, where pa is the atmo-
spheric pressure and γ the fluid interfacial tension and
κ the interface curvature. As a first approximation we

assume that the interface curvature remains negligible so
that p ≃ pa and Eq. (2) yields:

ν

(

∂2u

∂z2
− 12

h2
eff

u

)

= −g. (3)

subject to no-slip boundary condition at the bottom and
vanishing stresses at the free surface. The solution of this
equation is

u(z) = Vdrain

(

1− cosh

(

2
√
3(l − z)

heff

)

sech

(

2
√
3l

heff

))

(4)
with

Vdrain =
gh2

eff

12ν
. (5)

In the limit of l ≫ heff we find that the flow profile is
nearly uniform with speed Vdrain, aside from a boundary
layer near the base of the hair and whose size scales like
heff. This result could have been anticipated owing to the
structure of Eq. (3), where the term in h2

eff, dominates
the other source of viscous dissipation so that this ODE
is effectively an algebraic equation. We therefore predict
that the drainage speed is independent of the height H
of the fluid provided the fluid height does not exceed the
length of the hairs. This finding is in stark contrast to
the classical drainage solution, in which the front speed
depends on the fluid height squared [14].

a) b)

FIG. 4. A) Schematic of the hairy sample with a coordi-
nate system corresponding to the Hele-Shaw style experiment.
B) Schematic demonstrating Hele-Shaw style experimental
setup. The cell is filled horizontally with a film of a target
initial height. The cell is then placed in a vertical position so
that the film drains.

To measure the shape of the drainage front as pre-
dicted from our model, we consider a model experiment
that mimics the flow between two adjacent rows of hairs
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(shown in Fig. 4A), which we treat as flow through a
channel. The simplified model system is reminiscent of a
Hele-Shaw cell and has two glass plates sandwiched to-
gether with shims of thickness h. A schematic of this
setup is shown in Fig. 4B. The cell is filled horizontally
so that the film has a uniform initial height H . Then
the cell is rotated 90 degrees to a vertical position and
the drainage is observed. A timeseries of images from
a representative experiment with oil viscosity ν = 1000
cSt and a gap size of h = 1 mm is shown in Fig. 5A. The
drainage front is sigmoidal in shape and translates down
the cell as it moves.
Additionally, we investigate the effect of changing the

initial height of the film H , which corresponds to the
length of the hairs. Overlapped snapshots of the shape
of the films draining from experiments with four different
initial film heights taken at the same time are shown in
Fig. 5B. We find that the speed of the drainage front is
unaffected by the initial film height.

We compare the Hele-Shaw system to the hairy sam-
ples by using experimental measurements of the fluid
drainage speeds for both experiments so that we can re-
late the gap size between the plates to the effective spac-
ing of the hairs. The fluid drainage speed is measured
using a kymograph (a spatiotemporal diagram) with ver-
tical slices from video frames that are one pixel wide pass-
ing through the center of the liquid film (an example is
shown in Fig. 5C). The slices from each frame are placed
on top of one another in a single image with time in-
creasing from top to bottom. A line can be traced in
the kymograph over the moving drainage front, show-
ing that the front speed is constant (an example with a
red line drawn over the moving drainage front is shown
in Fig. 5C). The slope of the line is used to obtain the
speed. For the experiments on hairy surfaces, the sam-
ples are withdrawn from the bath at a speed of V = 40
mm/s (the upper limit that the apparatus allows) and the
drainage front is tracked starting from the moment that
the sample fully exits the bath and is held stationary.
The fastest possible withdrawal speed is chosen to maxi-
mize the fluid taken up to be able to observe the drainage
for the longest possible time. However, the withdrawal
speed does not have an effect on the drainage front speed.
Fig. 5D shows the drainage speed multiplied by the vis-
cosity for Hele-Shaw and hairy sample experiments ver-
sus heff, where heff is the space between plates h for the
Hele-Shaw experiments and is r,the edge-to-edge spacing
between hairs, for the hairy sample experiments. The
curves from these two types of experiments collapse on
one another, showing that the Hele-Shaw experiments
are a good model for the hairs and that the drainage
flow between the hairs spaced at a distance h apart is
equivalent to the drainage flow in a hairy sample where
hairs are spaced at an equivalent distance h = r. The
line in Fig. 5D corresponds to the theory and has a slope
of 2 and a prefactor of g/12. Note that the very last few
points of the plot (large heff) deviate from our theory.
For those experiments, the spacing between hairs is large

enough such that Darcy-Brinkmann assumptions begin
to break down.

IV. DISCUSSION

The amount of fluid taken up by the hairy surface at
the moment it exits the bath is defined as the amount
initially taken up, minus the volume that drained during
the retraction time. Based on our experimental observa-
tions, we assume that the initial film coating the surface
is approximately as thick as the hairs are long (valid for
ν = 100 cSt for dense hairs r ≤ 2.2 mm and for ν = 1000
cSt for densities 1.7 mm ≤ r ≤ 3.2 mm). The expres-
sion for the mass of the fluid at the time t = L/V , as
the hairy surface fully exits the bath is modeled as the
amount of fluid trapped in between the hairs minus the
volume that has flown as the surface is pulled out of the
bath. Assuming the fluid fills the hair up to their tip we
note that, in the absence of drainage, the uptake of fluid
is

Mfull = ρWLl

(

1−
πe2

2
√
3(e + r)2

)

. (6)

The second term in the parenthesis accounts for the vol-
ume occupied by the hairs arranged in an hexagonal lat-
tice. The flow profile in eq.(4) is nearly uniform with am-
plitude Vdrain, so that the mass Mdrain lost by drainage
is

Mdrain = ρWl

∫ L/V

0

Vdraindt = ρWlVdrain

L

V
(7)

and we conclude that:

M = Mfull

(

1− gr2

12νV

)

. (8)

We define rlimit =
√

12νV/g as the spacing for which
the drainage matches the retraction speed (see eq. (5)).
As r approaches rlimit, the mass M approaches zero. In
Fig. 6A, we plot the measured mass from experimental
data for hairs pulled from ν = 100 cSt silicone oil at
various speeds. The solid lines are the mass M from
Eq. (8) vs. r for various V . In both data and theory, M
is found to have a maximum, and the theoretical value
for r that maximizes the mass intake is consistent with
our experiments. This optimum combines two compet-
ing effects – denser hairs lead to slower drainage, but
the volume available for liquid to be trapped diminishes
as the hair spacing approaches zero, (i.e. the limit of a
solid wall). Additionally, we plot dashed horizontal lines
corresponding to what is predicted by Landau-Levich-
Derjaguin (LLD) dip coating of untextured plates pulled
out at different speeds. According to LLD theory, the
thickness h on an un-textured surface pulled from a bath

at speed V is h ≃ 0.94ℓcCa
2/3, where ℓc =

√

σ/ρg is the
capillary length and Ca = µV/σ is the capillary number,
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where σ is the air-liquid surface tension [6, 7]. The LLD
theory agrees well for large values of r; the coating of
surfaces with sparse hairs is as if the fluid is coating an
un-textured surface.
To unify our observations, we plot the experimental

data in a dimensionless form in Fig. 6B. The mass M
is made dimensionless with M∗ = M/ρVspace, where
Vspace is the volume of the space between hairs. To
non-dimensionalize the spacing radius r, we define a
characteristic lengthscale R2

char = 12νV/g and define
r∗ = r/Rchar. Plotted in this non-dimensional form,
the theory curves corresponding to the various with-
drawal speeds V and the experimental data collapse onto
a single curve. The dashed lines corresponding to non-
dimensionalized LLD theory agree with the r∗ > 1 data.
With these results in hand we turn back to our initial
motivation, bat drinking strategies.
Using the parameters from the physiology of Glos-

sophaga soricina bat tongues, and the measured speed
of their drinking from Harper et al. [5], we apply our
theory to place bat drinking in the context of our model
system. The bats have conical hairs with a base diameter
e ≈ 0.15 mm that are spaced at a edge-to-edge distance
r ≈ 0.125 mm. The sucrose solution in the bat exper-
iments has a 17% mass/mass concentration, which has
a viscosity of ν ≈ 2 cSt [15]. The ratio of the drainage
speed to the withdrawal speed for bats is Vdrain/V = 17.4,
which lies within the range of speed ratios for our exper-
iments, 0.1 & Vdrain/V & 1000. In Fig. 7A, we plot the
uptake efficiency, M̄ = M/ρWLl, of liquid taken up by
the tongue vs. r/e. The value of r/e that corresponds
to bat tongue physiological measurements is plotted as a
vertical line. In the theory curve, the maximum occurs
at rmax = 0.13 mm. For bats, r ≈ 0.125 mm and lies
within the region of the curve that is 95% of the maxi-
mum value (shaded in orange in Fig. 7A). In this regime,

the average thickness of the fluid layer entrained in the
hairs is roughly 1 mm, ten times larger than what is at-
tainable for an untextured surface [6, 7], suggesting that
there is a significant benefit to having hairs for taking up
nectar.
Note, however, the limitations of our model, which as-

sumes that the hairs lie on a planar substrate. In reality,
the hairy surface is wrapped around a round bat tongue.
Nevertheless our results indicate that the physical mech-
anism we have described is robust. Using data for three
different animals– honeybees (Apis mellifera ligustica)
[16], honey possums (Tarsipes rostratus) [10], and nec-
tar drinking bats (Glossophaga soricina)– we calculate
the theoretical spacing rmax maximizing the uptake in
Eq. (8). In Fig. 7B we compare the theoretical values
for rmax and the actual spacing r for these three dif-
ferent animals. The measured edge-to-edge spacing r is
represented by black dots, with horizontal error bars cor-
responding to uncertainties in measuring the spacing of
the hairs. The spacing rmax that maximizes the mass
of the fluid taken up is calculated using parameters for
three different animals and Eq. (8). The color horizontal
bars represent the range of r within 95% of the maxi-
mum value of M . We note that for very small textures,
such as the hairs on bee tongues, surface tension plays
a dominant role, which would make wicking an impor-
tant mechanism to consider at this scale [17]. Addition-
ally, we anticipate that other fluid-structure mechanisms
come into play for expelling the trapped fluid at the end
of the drinking cycle.
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FIG. 5. A) Experimental images showing the time series of
the drainage front for ν = 1000 cSt and a gap size of h = 1
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tally measured profiles of drainage fronts for varying initial
gap heights from H = 5 mm to H = 25 mm. C) Kymograph
with one pixel slices from each frame of a video of a liquid
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the slope is used to measure the front speed. D) Drainage
speed vs. heff, the effective channel width.
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