
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Reduced viscosity for flagella moving in a solution of long
polymer chains

Yuchen Zhang, Gaojin Li, and Arezoo M. Ardekani
Phys. Rev. Fluids 3, 023101 — Published 16 February 2018

DOI: 10.1103/PhysRevFluids.3.023101

http://dx.doi.org/10.1103/PhysRevFluids.3.023101
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The bacterial flagellum thickness is smaller than the radius of gyration of long polymer chains.
The flow velocity gradient over the length of polymer chains can be non-uniform and continuum
models of polymeric liquids break in this limit. In this work, we use Brownian Dynamics simulations
to study a rotating helical flagellum in a polymer solution and overcome this limitation. As the
polymer size increases, the viscosity experienced by the flagellum asymptotically reduces to the
solvent viscosity. The polymer viscous stress for a solution of long polymer chains decreases with the
inverse of polymer size to the power 1/2. The difference in viscosity experienced by the bacterial cell
body and flagella can predict the non-monotonic swimming speed of bacteria in polymer solutions.

I. INTRODUCTION

The locomotion of microorganisms has been widely studied by experimentalists and theorists over the past fifty
years [1–4]. The natural habitat of microorganisms often shows non-Newtonian behavior due to the presence of
polymer molecules, proteins or other microstructures. Examples of microorganisms swimming in complex fluids
include mammalian spermatozoa racing through cervical mucus in the female reproductive tract [5], the nematode
Caenorhabditis elegans undulating its body to move through soil saturated with water [6], the ulcer-causing pathogen
Helicobacter pylori releasing urease to swim through the gastric mucus [7], and Lyme disease spirochete Borrelia
burgdorferi penetrating the extracellular matrix of the human skin [8].

Early experiments on a wide variety of flagellated bacteria have shown that a slight increase in the polymer
concentration enhances the bacterial motility, whereas a further increase decreases it [9, 10]. Anisotropic elastic
stresses [11–13] and shear thinning viscosity [14, 15] are considered as possible reasons for the speed enhancement.
The elastic effects on various swimmers have been analyzed by using the Oldroyd-B model, which describes a dilute
polymer solution of constant viscosity. The model predicts a velocity decrease for both infinite sheet and filament
deformed by low-amplitude traveling waves [11, 16, 17], and a velocity increase for soft finite-length undulatory sheets
with larger undulations at the tail [18, 19]. For helical flagella, the velocity enhancement due to elasticity is examined
by Liu et al. [12], who measured the swimming speed of a force-free rotating helix in viscous and Boger (i.e., constant-
viscosity elastic) fluids. The numerical simulation of a helical filament of a moderate thickness and pitch angle in
an Oldroyd-B fluid also shows a modest speed enhancement for Deborah number on the order of O(1) [13]. On the
other hand, there is also a branch of studies that attribute the velocity enhancement to the shear-thinning viscosity
of polymer solutions. The fluid near the flagellum is greatly deformed and exhibits a lower viscosity than the ambient
fluids. The ambient fluids thus behave as a confinement, facilitating the swimming of the microorganism [14, 15].

In the case of the bacterial flagellum, a further examination of the dimension of the flagellum will cast doubt on
the continuum concepts such as viscoelasticity and shear-thinning viscosity, because the flagellar thickness (∼ 20 nm)
can be smaller than the radius of gyration of polymer molecules (∼ 60 nm) [20]. In an early experiment conducted by
Berg and Turner [21], structured gel-like solutions containing long unbranched polymers (e.g., methylcellulose) hardly
hindered the motility of tethered E. coli, while in homogeneous solutions containing branched polymers (e.g., Ficoll),
the rotational rate of the cell body was the same as in the Newtonian fluid. They concluded that the micro-structure
of polymers plays a key role in this case and the loose quasi-rigid polymer network is easier to be penetrated by
particles of microscopic size. This argument is supported by the fact that the diffusion constant for small particles, or
microscopic viscosity of a structured solution is lower than the apparent macroscopic viscosity. They also proposed
that the network exerts forces normal to the segment of a moving slender body, enhancing the circumferential slip
of helical flagella and generating more thrust. The idea of the enhancement in normal forces was then formulated
into a mathematical model by Magariyama and Kudo [22]. In addition, Leshansky [23] modeled the propulsion of an
undulating sheet in a sparse array of stationary obstacles that mimic the heterogeneous polymer network depicted by
Berg and Turner. Stokesian dynamics simulations by Balin et al. [24] showed that the polymer molecules can migrate
radially inward while being elongated by the flow.

Later, Martinez et al. [20] re-examined the argument by Berg and Turner and attributed the velocity enhancement
of bacteria to the different viscosity experienced by the cell body and flagella. In their experiments, only the highest-
molecular-weight polymer solutions led to an enhancement in the motility of E. coli, while the solutions containing
lower molecular-weight polymers were described by Newtonian hydrodynamics. Based on the micro-rheology data for
sub-micrometer beads, they concluded that the fast-rotating flagella see a lower viscosity than the cell body due to the
shear thinning effects: the flagellum stretches the polymer coils into quasi-stationary objects, carving out a coil-sized
channel void of polymers with viscosity approaching that of the solvent [20]. Recently, Patteson et al. found that the
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long chain polymer solutions could suppress the tumbling motion of E. coli and enhanced its swimming speed [25].
By visualizing a single polymer, they suggested that the flow induced by E. coli effectively stretched the polymer
molecules, and the elastic stress might be the reason of speed enhancement.

The Oldroyd-B model describes the constitutive equation for dilute polymer solutions, represented by short Hookean
dumbbells in a homogeneous flow, i.e., the velocity gradient for all the dumbbells is constant [26, 27]. The model has
been applied for many macroscopic hydrodynamic problems involving polymeric liquids. The use of Oldroyd-B model
for the locomotion of helical flagella is, however, limited because the size of polymer coils can be comparable to the
length scale over which the flow velocity gradient changes, i.e., the flagellum diameter.

In this article, the polymer molecules are studied in a coarse-grained manner to construct a microscopic picture
of how polymer molecules are elongated near the flagella and how the polymer stress affects the motion of the
flagellum. We used the Brownian Dynamics (BD) method to directly simulate the stochastic equation of dumbbells
and overcome the limitations of continuum constitutive equations. The BD simulations are incorporated with the
Stokes flow formulation of the distributed Lagrange multiplier method [28] to study the non-Newtonian effects on
the locomotion of bacterial flagella. Here, we unravel the role of polymer chain length. For long polymer chains
whose dimension is comparable to the flow length scale, the velocity experienced by each polymer molecule is non-
homogeneous and this non-homogeneity can result in a reduced viscosity experienced by the flagellum.

II. NUMERICAL METHOD

II.1. Governing equations

In the simulation, the flagellum is modeled as an infinitely long helix rotating with a constant angular speed in
a polymeric liquid. The polymer molecules are modeled as bead-spring dumbbells consisting of a spring connecting
two beads that represent the ends of the polymer chain. Admittedly, the bead-spring dumbbell is a simplified model
of polymer molecules since it doesn’t include bending and twisting resistances. It can, however, capture the elastic
nature of coiled linear polymer macromolecules [26]: the bead-spring dumbbell is a simplified model for the freely-
jointed bead-rod chain (Kramers chain) that represents the coiled polymer chain. When the end-to-end vector of
the Kramers chain is elongated, there will be a tension between the two ends to maintain the system entropy. This
tension is represented by a spring connecting the beads. The spring is Hookean if the end-to-end vector of the Kramers
chain is less than half of the contour length, otherwise, the spring approaches FENE (finitely extensible nonlinear
elastic)[26]. A more accurate model of polymer molecules requires several dumbbells linked by extensional and angular
(for bending resistance) springs, however, it significantly increases the complexity of the system.

The flow field is calculated from the three-dimensional incompressible Stokes equation with body forces added to
the momentum equation to take into account hydrodynamic forces from the flagellum ff (calculated from distributed
Lagrange multiplier method [15, 29]) and polymer beads fp (calculated from BD simulation [30, 31])

ρ
∂v

∂t
= −∇p+ ηs∇2v + ff + fp, ∇ · v = 0, (1)

where v is the background flow velocity, t is time, p is the hydrodynamic pressure, ρ and ηs are the density and viscosity
of the solvent, respectively. A finite volume method based on a staggered grid is used to solve the background flow field
on Eulerian grids. The flagellum and beads are discretized into Lagrangian points, denoted as xi and rj , respectively.
The flow velocity on the Lagrangian points, denoted as vi for flagella and vj for beads, are interpolated from the
background flow field v.

vi =

∫
δ(X − xi)v(X)dV , vj =

∫
δ(X − rj)v(X)dV, (2)

where X is the Eulerian coordinates, δ(X) is the discretized Dirac delta function, and dV is a differential volume
element. The discretized Dirac delta function δ(X) is defined as [32]

δ(x− xi) = φh(
x− xi

∆x
)φh(

y − yi
∆y

)φh(
z − zi

∆z
)/∆x∆y∆z, (3)

φh(r) =

{
1− |r|, if |x−xi

∆x | < 1

0, otherwise,
(4)
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where (∆x,∆y,∆z) is the grid spacing. After obtaining the flow field, the hydrodynamic force at the Lagrangian
points of flagellum, denoted as Fi, is calculated by satisfying the imposed kinematics of the helix by using a distributed
Lagrange multiplier method [29, 33]. In each iteration Fi is updated as

Fi = F ∗i + Cα
ρVi
∆t

(U + ωp × xi + vs − vi), (5)

U =
1

Mp

∫
Vp

ρ(vi − vs)dV, (6)

ωp =
1

Ip

∫
Vp

ρxi × (vi − vs)dV, (7)

where F ∗i is the force calculated in the previous iteration, Cα is a dimensionless factor whose value affects the
convergence rate but not the solution, Vi is the volume of the Lagrangian grid cell, ∆t is the time step size, vs is the
imposed velocity, Vp, Mp and Ip are the volume, mass and moment of inertia of the flagellum, respectively. Flagellum
density is assumed to be the same as the background fluid density. For constant ρ and Cα, the above mentioned
equations satisfy the force-free and torque-free conditions. For rotating flagella with a constant angular speed, Eq.
(7) is not needed since ωp is equal to the imposed angular speed. In this case, the flagellum is force-free but not
torque-free.

The motion of each bead is governed by the following stochastic equation, where inertia and excluded volume are
neglected

drj = [vj +
F ej
ζ

]dt+

√
2kBT

ζ
dWj , (8)

where ζ = 6πηsrb is the Stokes drag coefficient with rb being the radius of beads, kB is the Boltzmann constant, T is
the absolute temperature, dWj is the three-dimensional Gaussian white noise vector with each component represented
by a Gaussian random number with zero mean and a variance of dt, and F ej is the elastic force of springs, which

follows finitely extensible nonlinear elastic (FENE) law, F ei = HQ/(1 − Q2/Q2
m), where H is the spring stiffness

in the absence of shear, Q = rj+1 − rj is the connector vector of springs with its magnitude denoted as Q, Qm is

the maximum length of each spring. The extensibility parameter of dumbbells is defined as b̃ = HQ2
m/kBT . Unless

otherwise stated, Hookean dumbbells are used corresponding to b̃→∞. At each time step, Eq.(8) is iteratively solved.
dWj changes with time but is constant at each iteration. By using the position of beads in the previous iteration rnj ,

the spring force F ej and the flow velocity vj are obtained and then used to calculate the new position of beads rn+1
j .

Finally, the flow velocity is calculated again by using Eq.(1). Here, the body force from the flagellum ff is
extrapolated from the hydrodynamic force exerted on the Lagrangian grids of flagellum Fi. The body force from
spring dumbbells fp is extrapolated from the elastic force F ej at the position of beads rj .

ff (X) =
∑
i

δ(X − xi)Fi, fp(X) =
∑
j

δ(X − rj)F ej , (9)

In the simulation, ff , fp, and v are correlated, Table I shows a summary of above mentioned steps.

TABLE I. Iterative schemes for the distributed Lagrange multiplier method coupled with implicit BD simulatons.

Compute the flow field using Eq.(1) with initial guess of fp and ff as 0.
Calculate the body forces exerted by the flagellum ff :

Interpolate the flow velocity v on Lagrangian points of the flagellum as vi (Eq.(2))
Calculate the hydrodynamic force Fi at Lagrangian points of flagellum by using Eq.(5)
Extrapolate Fi on the Eulerian grids by using Eq.(9)

Calculate the body forces of beads fb:
Interpolate the flow velocity v at j-th bead rnj as vj (Eq.(2))
Calculate the spring force on the bead as F ej
Evaluate the new position of each bead rn+1

j by using Eq.(8).
Extrapolate spring forces F ej on the Eulerian grids by using Eq.(9)

Recalculate the flow field
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II.2. Problem Setup

Each material point on the helix that is swimming in the positive x-direction follows

x(s, t) = (αs+ Ut)x̂+Rh[cos(ks+ ωt)ŷ + sin(ks+ ωt)ẑ], (10)

where s is the arc length, U is the swimming speed, k is the wave number measured on the arc length of the helix, ω
is the angular speed, α = cos(φ) with φ = 0.27π being the pitch angle, and Rh = sin(φ)/k is the helical radius. Only
one period of the helix is studied in the simulation and periodic boundary conditions are used in the x-direction. At
boundaries in y and z directions, ∂u/∂y and ∂u/∂z are set to zero.

Unless otherwise stated, the reported variables in simulations of flagella are scaled as follows: the length is scaled by
1/k, velocity by ω/k, and time by 1/ω. The simulation domain is 2π cos(φ)×20×20, and is resolved using two different
mesh patterns. Uniform fine mesh is used inside a 2π cos(φ)× 5.0× 5.0 rectangular block in the middle of the domain
with grid spacing ∆x = ∆y = ∆z = π cos(φ)/64. The simulation results are independent of the size of this block.
Outside this block, grid spacing in y and z directions are elongated and the domain is resolved using 128×26×26 grids.
The helix is resolved using 200 circles that are perpendicular to the helical center line and each circle is discretized by
6 grid points. The radius of the circle is rf = 0.001. A total of 4 million dumbbells are initialized within a cylinder
around the helix. The radius of the cylinder is 2.4 and the dumbbells are initially uniformly distributed in space. The
length vector of Hookean dumbbells Q initially follows the Gaussian distribution with variance of kBT/H for each

component. For FENE dumbbells, the initial length is set to be constant, Q =
√

3kBT/H.

II.3. Polymer solution rheology and dimensionless parameters

The apparent viscosity and relaxation time of the polymer solution can be determined based on the parameters of
dumbbells. The relaxation time of polymer molecules (in quiescent fluids) is defined by the relaxation time of Hookean
dumbbells λH = ζ/4H. The apparent polymer viscosity is ηp = npkBTλH , where np is the average number density
of dumbbells. The mean-squared radius of gyration can be calculated from Kramers chain model 〈R2

g〉 = 〈Q2〉0/6
[26]. Polymer solutions with the shear-thinning viscosity is represented by FENE dumbbells with a finite extensibility

parameter b̃. A smaller b̃ corresponds to stronger shear-thinning effects.
The important dimensionless numbers in BD simulations of a rotating helix are: Deborah number De = λHω,

Gradient number Gd =
√
〈Q2〉0k, and viscosity ratio between the polymer and the solvent γ = ηp/ηs. The Deborah

number is the ratio of the relaxation time of dumbbells over the characteristic time scale of the background flow.
The Gradient number is the ratio of the mean-squared dumbbell length

√
〈Q2〉0 =

√
ckBT/H over the characteristic

length of the flow L = 1/k [34], where 〈...〉 denotes the ensemble average, subscript “0” means that the average is
evaluated in a quiescent fluid, and c = 3 is the number of dimensions. The Péclet number is defined as Pe = ωL2/Dtr,
where Dtr = kBT/2ζ is the translational diffusivity of dumbbells. The Péclet number can be evaluated based on De
and Gd as Pe = 8cDe/Gd2.

The polymer stress is calculated by using the Kramers-Kirkwood form of the stress tensor and is then normalized
by ηpω = npkBTλHω

τp =
τ̃p

npkBTλHω
, τ̃p = 〈QF ej 〉 − npkBTδ. (11)

For Hookean dumbbells, the above equation simplifies to τp=τ̃p/ηpω=(3〈QQ〉/〈Q2〉0 − δ)/De and tr(τp) represents
the dimensionless polymer distension, where δ is the identity tensor. The position of dumbbells is defined at their
mid point. To reduce the noise in the results, we exploited the helical symmetry and converted all the dumbbell onto
the same plane perpendicular to the axis of the helix. The plane is divided into small bins of size l = 0.02 and the
components of QF ej are summed for all the dumbbells inside each bin. The number density of dumbbells for each
bin is also calculated and normalized by the average number density of dumbbells np.

II.4. Comparison to an Oldroyd-B fluid

The locomotion of the flagellum in an Oldroyd-B fluid is quantified to compare the results against the BD simulation
results in the limit of small dumbbell length (small Gd). Here, the elastic and viscous stresses splitting (EVSS) method
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FIG. 1. The schematic of the Brownian Dynamic simulation for (a) short (Gd=0.0055) and (b) long (Gd=0.55) polymer
chains in the flow induced by the flagellum. The kinetics of dumbbells leads to the Oldroyd-B model if the velocity gradient
experienced by polymer chains is assumed to be constant, which is not the case for bacterial flagella in solutions of long polymer
chains and the Brownian Dynamic simulation is required. In Fig. (a), polymer dimension is very small compared to the flow
length scale, the velocity gradient over the length of dumbbell is almost uniform, and the BD model recovers the Oldroyd-B
equation. However, when polymer dimension is comparable to the flow length scale in Fig. (b), the non-homogeneous effects
become important, causing the BD simulation to deviate from the Oldroyd-B model. Here, the pitch angle is φ = 0.27π. The
filament radius is very small rf = 10−3, and γ = ηp/ηs = 0.

[35] is applied. The main difference between the Oldroyd-B and BD simulations is the calculation of fp in Eq. (1).
In an Oldroyd-B fluid,

fp = ∇ · τ̃p, τ̃p + λH
∇
τ̃p = ηpD, (12)

where D = ∇v+∇vT is the rate of strain tensor, and the notation
∇
τ̃p represents the upper-convected derivative of τ̃p.

The Oldroyd-B constitutive equation is solved explicitly, requiring a smaller time step compared to BD simulations.
The results of Oldroyd-B and BD simulations are independent of time step. The normalized time step size is 0.02 and
0.0025 for BD and Oldroyd-B simulations, respectively. The mesh independence test has been performed, and the
maximum error for the swimming speed in a Newtonian fluid is 1.2% for mesh size ∆x = ∆y = ∆z = π cos(φ)/64.

The Oldroyd-B model describes the kinetics of Hookean dumbbells when (a) the hydrodynamic interactions be-
tween beads and boundaries (i.e., flagellum in our simulations), and between beads themselves are negligible, (b) the
dumbbell length (i.e., Gd) is very small, and (c) dumbbells are exposed to a homogeneous flow (i.e., velocity gradient
is constant). For very small polymer viscosity γ, condition (a) is satisfied. Hydrodynamic interactions between the
beads and flagellum and between beads themselves are included in our BD simulations. The flagellum is very thin
so that the hydrodynamic interaction between beads and the flagellum is negligible. The motion of the flagellum
is mainly influenced by the polymer stress in its vicinity. When the swimming speed of the flagellum reaches the
steady state, the dumbbells near the flagellum are greatly stretched and the hydrodynamic interaction between beads
is negligible [36]. Therefore, for a wide range of polymer viscosity ratio, condition (a) is satisfied.

The BD simulation mainly differs from the Oldroyd-B model in that the flow velocity of polymer molecules is
non-homogeneous. The kinetics of Hookean dumbbells leads to the Oldroyd-B model only if the velocity gradient is
assumed to be constant, while in our BD simulations, the velocity gradient experienced by a dumbbell depends on its
position and length. Due to this nonhomogeneous effect, the BD results can only recover the Oldroyd-B results for
small Deborah numbers. The following constitutive equations take into account of the position dependence of velocity
gradient and can describe the kinetics of short Hookean dumbbells in a non-homogeneous flow in the limit of small
Gd (i.e., large Pe)[27]

Pe
Dn

Dt
= ∇2n− 2De2∇∇ : (τp · ∇v) + 2De∇∇ : (n∇v) + De∇∇ : τp, (13)

τp + De
∇
τp −

De

Pe
∇2τp + 2

De2

Pe
∇∇ : (τp · ∇v)δ − 2

De

Pe
∇∇ : (n∇v)δ − De

Pe
(∇∇ : τp)δ = −nD, (14)

where n is the number density of dumbbells. At infinitely large Pe, Eq. (13) leads to Dn/Dt = 0, the polymer
concentration remains uniform at the quasi-steady state, and the stress equation Eq. (14) recovers the Oldroyd-B
constitutive equation. By comparing Eq. (14) with the Oldroyd-B constitutive equation (Eq. (12)), we see that terms
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FIG. 2. (a) Shear rate dependence of the normalized viscosity of FENE dumbbells (BD simulation results by Rudisill and
Cummings [36] and the present study) and FENE-P dumbbells (analytical solutions of Bird et al. [37]). (b) Strain rate
dependence of the normalized first normal stress coefficient of FENE dumbbells by Rudisill and Cummings [36] and this work.

The extensibility parameter of FENE dumbbells is b̃ = 100. The results do not include hydrodynamic interactions and excluded
volume for polymer molecules.

due to non-homogeneity of velocity gradient are on the order of De2/Pe ∼ Gd2De. Thus, only for small values of Gd
and De, the results of BD simulations are in agreement with those of the Oldroyd-B fluid.

By setting Dn/Dt = 0 in Eq. (13), we can get the steady-state concentration of polymer molecules in a non-
homogeneous flow, which is not uniform and only dependents on De. For an Oldroyd-B fluid, this steady state
distribution cannot be reached in practice because it requires an infinitely long time. The time scale of polymer
migration is proportional to the Péclet number. For very small Gd (or large Pe), the migration of polymer molecules
is so slow that their concentration is almost uniform at the finish time of our simulations. In our BD simulations,
the polymer molecules are stretched in a relatively short time, and the swimming speed of the flagellum rapidly
changes. After reaching the quasi-steady state where the polymer molecules are fully stretched, the swimming speed
can still slightly change due to the polymer migration, which takes a very long time. The results are evaluated at the
quasi-steady state, where polymer molecules are fully stretched.

III. VALIDATION OF THE NUMERICAL METHOD

III.1. Case A: FENE dumbbells in a simple shear flow

To validate our BD simulations, the intrinsic viscosity and the first normal stress coefficient of FENE dumbbells in
a simple shear flow are compared against BD simulation results of Rudisill and Cummings [36] in Fig. 2. Here, the
polymer viscosity ηp is very small, so that the background flow field is not affected by the elastic stresses of dumbbells
and recovers the Newtonian solution v = γ̇yx̂, where γ̇ is the shear rate. Meanwhile, the dilute assumption is satisfied
so that the hydrodynamic interaction between the beads and boundaries and between beads themselves are negligible.
The Weissenberg number is Wi= λH γ̇. The viscosity and first normal stress coefficient are calculated and scaled as
[36]

[η] =
ηp

npkBTλH
, ηp = np〈QxF ey 〉/γ̇, (15)

[Ψ1] =
Ψ1

2npkBTλ2
H

, Ψ1 = np[〈QxF ex〉 − 〈QyF ey 〉]/γ̇2. (16)

The intrinsic viscosity and first normal stress coefficient of our BD simulation results are in good agreement with
that of Rudisill and Cummings [36]. In Fig. 2(a), the analytical solution of FENE-P dumbbells is also included. The
elastic force of FENE-P dumbbells is F ei = HQ/(1− 〈Q2〉/Q2

m).

III.2. Case B: A two-dimensional undulating swimming sheet

Before we study the helical flagellum, we validate BD results for a two-dimensional undulating sheet against the
results in an Oldroyd-B fluid for a very small Gradient number. The parameters are scaled in the same way as the
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FIG. 3. (a) The quasi-steady state swimming speed of an undulating sheet at different Deborah numbers using the Oldroyd-B
constitutive equation and BD simulations. The results are normalized by the swimming speed in the Newtonian fluid. Here,
the dumbbell length is very small (Gd=0.089). The BD result matches the Oldroyd-B result for small De, and deviate from it
at large De due to the flow inhomogeneity effect, which is on an order of Gd2De. (b) The corresponding temporal evolution
of swimming speed for the study in Fig. (a). The BD results quantatively match Oldroyd-B results. (c) Comparison of the
normalized polymer distention tr(τp) at De=1.0 for (i) the Oldroyd-B fluid and (ii) the BD simulations, and at De=5.0 for (iii)
the Oldroyd-B fluid and (iv) the BD simulations.

simulation of the helical flagellum, and the wave number k is equal to 2π over one wavelength of the sheet. Only
one period of oscillation is included in the computational domain. Periodic boundary conditions are applied in the
x-direction. The sheet has a very small thickness ts = 0.02π with an amplitude of oscillation As = 0.4π. The
simulation domain is 1× 10, where 256× 666 grid points are used to resolve an 1× 2.6 domain around the sheet, and
256 × 234 to resolve the outer coarser domain. The simulation parameters are number of dumbbells N = 5 × 105,
Re = ρω/ηsk

2 = 4.8× 10−5, γ = ηp/ηs = 1, Gd = 0.089.
Fig. 3(a) illustrates that the swimming speed at the quasi-steady state computed from BD simulations is in

agreement with Oldroyd-B results for small Deborah numbers. Due to small values of Gd, the polymer concentration
here is almost uniform. Although there are noises due to the stochastic nature of BD simulations, the temporal
evolution of swimming speed also follows the same trend as the one in the Oldroyd-B fluid (Fig. 3(b)). At higher De,
BD results deviate from those of Oldrold-B fluids due to the inhomogeneity of velocity gradient, which is on the order
of Gd2De [27]. In Fig. 3(c), the trace of polymer stress tr(τp), which corresponds to the polymer distension and the
elastic energy stored in Hookean dumbbells, is in good agreement with the Oldroyd-B results. As Deborah number
increases, the elastic stress increases and becomes more concentrated near the sheet.

IV. RESULTS

IV.1. Rotating flagellum in polymeric solutions

The swimming speed and torque of a force-free flagellum that rotates with a constant angular speed and is immersed
in short polymer solutions (very small Gd) are shown in Fig. 4(b). Similarly to the conclusion drawn for the 2D
undulating sheet, the BD results agree with the Oldroyd-B fluid at low Deborah numbers and deviate from it for
larger De due to flow inhomogeneity effects, which is on the order of Gd2De [27]. Here, both BD and Oldroyd-B
simulations show a decreasing velocity and increasing torque for an increasing fluid elasticity. The temporal evolution
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FIG. 4. (a) Schematic of the helical flagellum. (b) The swimming speed U/U0 and torque N/N0 normalized by the results
in the solvent computed from BD and Oldroyd-B simulations for very short polymer chains. (b) The time evolution for the
swimming velocity. The quasi-steady state results in Fig.(b) are evaluated as the average normalized velocity after the time
marked by red dashed lines. (d) The trace of polymer stresses at De=0.5 for (i) Oldroyd-B results and (ii) BD results are also
in good agreement. The cross section of the helix denoted by the black dot (sin(φ), 0) is rotating around (0, 0) along the dashed
circle. Here, the pitch angle is φ = 0.27π. The filament radius is very small rf = 10−3, γ = ηp/ηs = 0.05, Gd = 0.0055.

of swimming speed from BD simulations is also compared with the Oldroyd-B results in Fig. 4(c). Because the
Reynolds number in the simulation is very small, the swimming speed increases from zero to the Newtonian speed
in a very short period of time, which is not discernible in the figure. As the polymer molecules are stretched, the
swimming velocity decreases. The swimming speed of BD simulations deviates from the Oldroyd-B results at the
beginning of the simulation, but then reaches the same quasi-steady state. The deviation is due to the fact that
when dumbbells are very short, the hydrodynamic interaction between beads are important, which is present in the
BD simulation but not in the Oldroyd-B fluid. The initial dumbbell length is very small here due to the very small
Gradient number used in this case. As the polymer molecules are stretched by the rotating helix, the hydrodynamic
interaction between beads decreases and the swimming speed of the helix reaches the same quasi-steady state as the
Oldroyd-B fluid. However, when De exceeds 1.5, the quasi-steady state swimming speed of BD simulations deviates
from the Oldroyd-B results due to the non-homogeneity in the velocity gradient. The deviation occurs at a lower
Deborah number than an undulating sheet, because the velocity gradient of the helix changes more rapidly. In Fig.
4(d), the mean-squared distension field computed from the BD simulation is in good agreement with Oldroyd-B
results. The simulation parameters are Re = ρω/ηsk

2 = 9.42× 10−3, γ = ηp/ηs = 0.05, Gd = 0.0055.

By using the BD simulations, we are able to explore the role of rheological properties of polymers whose dimension
is comparable to the flow length scale. Fig. 5(a) shows the polymer length (Gd) dependence of the swimming speed
and torque for the helical flagellum. The hydrodynamics of the flagellum is independent of Gd for small polymer sizes,
but when the polymer size exceeds a threshold value, the free-swimming velocity U of the flagellum approaches that in
the Newtonian fluid, and the torque acting on the flagellum asymptotically decreases to that in the pure solvent. For
the bacterium E. coli, its flagellum typically has one pitch of 2π/k ≈ 2.5 µm, pitch angle of φ ≈ 0.22π and filament
diameter of 20 nm [38]. The velocity enhancement is experimentally observed for flagella rotating with an angular
speed of ω ≈ 700 rad/s in a polymer solution with radius of gyration Rg = 56 nm and relaxation time λ ∼ 1 ms
[20]. The dimensionless numbers for this polymer solution are De ≈ 0.7 and Gd ≈ 0.34. The black dot in Fig. 5(a)
indicates the normalized torque at this Gd, which is lower than 1+γ, implying that the local viscosity experienced by
the flagellum is lower than the apparent viscosity of the polymer solution. This agrees with the experimental findings
by Martinez et al. [20] that the viscosity experienced by the flagellum is close to the solvent viscosity rather than the
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FIG. 5. (a) The role of polymer size, i.e., Gradient number, on the normalized swimming speed and torque of the helix at
De=1.0. The black dotted line illustrates the torque for the flagellum of E. coli. The viscosity experienced by the flagellum
is closer to the solvent viscosity (1.0) than the apparent viscosity (1 + γ). (b) The normalized torque difference between the
polymer solution and the solvent, corresponding to the microscopic viscosity contributed by polymer molecules, is proportional
to the polymer viscosity ratio γ. The viscosity contributed by polymer molecules are closer to 0 than the apparent polymer
viscosity γ, which is illustrated by the dashed line. Here, Gd=0.55 (c) The Gradient number dependence of the torque difference
between the polymer solution and the solvent, or the microscopic viscosity contributed by the polymer molecules. At large Gd,
this viscosity decreases as Gd−1/2. (d) the Gradient number dependence of the swimming speed for different De. At large Gd,
the polymer elastic stress is negligible and the swimming speed approaches that in Newtonian fluids. Here, φ = 0.27π,γ = 0.05,
and rf = 10−3.

apparent viscosity. Here, we showed a relatively small reduction of microscopic viscosity because the polymer viscosity
ratio γ is small. As is shown in Fig 5(b), the viscosity contributed by the polymer molecules, which is measured as
the torque difference between the polymer solution and the solvent (N/N0 − 1), is proportional to the viscosity ratio
γ. For polymer solutions of higher concentration, there will be a large viscosity reduction from the apparent polymer
viscosity.

Fig. 5(c) shows the normalized torque difference between the solution and the solvent, or the viscosity contributed
by the polymer molecules for different De and Gd. This viscosity is constant for small Gradient numbers and then
decreases with Gd beyond a threshold. The critical Gd, at which the polymer viscosity start vanishing, decreases
with Deborah number. At large Gd, the polymer viscosity, or the polymer viscous stress, decreases as Gd−1/2. The
corresponding swimming speed is shown in Fig. 5(d). At large Gd, Deborah number and polymer elastic effects are
not important, and the swimming speed of the flagellum approaches that in the pure solvent.

The spring in the dumbbell models the tension caused by the entropy change when the polymer chain is stretched.
The spring stiffness reduces for longer polymer chains, and the corresponding dumbbell is stretched by Brownian
motion to a larger mean-squared length in quiescent fluids. When polymer dimension is very small compared to the
flow length scale, the velocity gradient over the length of dumbbells is uniform and the kinetics of the dumbbells
recovers the Oldroyd-B constitutive equation, indicating that the polymer stress is only dependent on the Deborah
number but independent of Gd. On the other hand, if the polymer dimension is comparable to the flow length scale,
the velocity gradient over the dumbbell is not uniform. The velocity difference for the two ends of the dumbbell
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FIG. 6. (a) The normalized polymer distension tr(τp) at De=1.0, (b) the first normal stress difference τp,θθ − τp,rr at De=0.2
and (c) the polymer number density at De=1 for Gradient numbers (i) 0.0055, (ii) 0.055, and (iii) 0.55. The results are the
spatial averaged values along the center line of the helix. Here, φ = 0.27π,γ = 0.05, and rf = 10−3.

cannot exceed the velocity of the flagellum segment. Thus, longer polymer chains tend to experience a smaller
averaged velocity gradient over their lengths, exerting less polymer stresses. The reduction of the polymer stress
begins when dumbbell length Q is larger than the length scale over which the flow velocity gradient changes. When
Deborah number increases, polymer chains are stretched to a larger length compared to that in quiescent fluids, i.e.,
Q2/〈Q2〉0 is larger. Therefore, the critical Gd, which is related with 〈Q2〉0, decreases with Deborah number. Another
possible reason for the reduction of polymer stress is the reduced polymer stretching time. A larger Gradient number
indicates a smaller Pe, thus the polymer molecules have a larger length scale of Brownian motion compared to the
length scale of the flow. Driven by the stronger Brownian motion, the segments of polymer molecules are more likely
to escape from the vicinity of flagellum and the flagellum can only stretch the polymer molecules for a smaller period
of time.

The contour plots of polymer stress and the number density are shown in Fig. 6. Here, we used the normalized
polymer distension (Fig. 6(a)) to evaluate the polymer elastic stress and the normal stress difference at small De (Fig.
6(b)) to evaluate the polymer viscous stress, because the polymer viscous stress ηp(∇v +∇vT ), whose trace is zero,
does not contribute to the polymer distension tr(τp), but contributes to the normal stress difference (τp,θθ − τp,rr).
From the contour plots, both polymer viscous and elastic stresses decrease with Gd in a non-homogeneous regime. A
mild polymer migration is observed in Fig. 6(c), but it hardly affects the torque and swimming speed of the rotating
helix. The polymer migration increases with Gd first and then decreases. Eq. (13) describes variation of number
density for very short Hookean dumbbells and suggests that in the limit of small Gd, the rate of change of number
density is proportional to Pe−1, i.e., Gd2. But when Gd further increases, this constitutive equation is no longer
applicable. The polymer stress decreases and the stress-induced polymer migration becomes negligible.
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FIG. 7. (a) The temporal evolution of (i) swimming velocity and (ii) torque of the helix at different Gradient numbers for
Hookean and FENE dumbbells at De = 1.0. The dashed orange line in (ii) is the torque in an Oldroyd-B fluid. (b) The trace of
polymer stresses tr(τp) for FENE dumbbells at De=1.0 for (i)Gd2 = 3 × 10−5 and (ii)Gd2 = 3 × 10−1. Here, the extensibility

parameter for FENE dumbbells is b̃ = 40. Other paramters are φ = 0.27π,γ = 0.05, and rf = 10−3.

IV.2. FENE dumbbells

Hookean dumbbells represent the polymer chains whose end-to-end distance is small compared to their contour
length. When the polymer chain is greatly stretched by the ambient flow and its end-to-end distance is comparable
to its contour length, the tension in the dumbbell resembles the FENE spring. The kinetics of FENE dumbbells
could be approximated by FENE-P constitutive equation [39], which describes the dilute polymer solution with a
shear-thinning viscosity.

The temporal evolution of swimming speed U/U0 and torque N/N0 for FENE dumbbells at different Gradient
numbers are compared with those of Hookean dumbbells in Fig. 7. The quasi-steady state results are included in Fig.
5(a). At low Gd, the FENE dumbbells increase the swimming speed and reduce the torque acting on the flagellum,
exhibiting a shear-thinning viscosity. However, when Gd is large, the difference between the FENE and Hookean
dumbbells is relatively small, and both of them approach the results in the pure solvent. The mean-squared polymer
distension field is shown in Fig. 7(b). At low Gd, FENE dumbbells (Fig. 7(b)(i)) exert smaller elastic stresses than
Hookean dumbbells (Fig. 5(a)(i)), but when Gd is large, FENE dumbbells also exert negligible stresses to the fluid
(Fig. 7(b)(ii)). For fluid dynamics problems with length scale much larger than the polymer dimension, the finite
extensibility of polymer chains is considered as a reason for shear-thinning viscosity. But when the flow length scale is
small and Gradient number is very large, the flow non-homogeneity effects become dominant. The polymer molecules
are not stretched to their maximum length and the averaged polymer stress is very small.

IV.3. Effects of end-to-end distance of the polymer chains on bacterial cell body

The hydrodynamics of a bacterial cell body in the polymer solution is also studied. The cell body is modeled as
a spheroid with a major semi-axis b = 1 in the x-direction and minor semi-axis a = 0.35 in y and z directions. In
this section , the length of major semi-axis b is used as the characteristic length. Polymer molecules are modeled
as Hookean dumbbells and viscosity ratio is set to γ = 0.05. Two separate simulations are conducted to compute
the drag D/D0 and torque N/N0 on the cell body. In the first simulation, the torque on a spheroid that rotates
around its major semi-axis with a constant angular speed is calculated. Here, we define the Deborah number as the
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FIG. 8. (a) The temporal evolution of the normalized (i) torque N/N0 and (ii) drag D/D0 of the spheroidal cell body at different
Gradient numbers. The ratio of minor to major semi-axis of the spheroid is a/b = 0.35. (b) The Gradient number denpendence
of torque N/N0 and drag D/D0. The black dot illustrates the torque for the cell body of E. coli. The dimensionless numbers
are De = 0.5, Wi=0.57 and γ = 0.05. (c) Polymer concentration dependence of the swimming speed of E. coli for different
nw, where nw is the total number of wavelengths for all the flagella, and Λ = (ηs + ηp)/ηs is the viscosity ratio between the
polymer solution and the solvent. The orange squares are the experimental data by Martinez et al. [20] for E. coli. The optimal
viscosity of the polymer solution Λc is proportional to nw.

polymer relaxation time over the characteristic time of rotational motion De= λHΩ, which is 0.5. The domain size is
4× 10× 10 and is resolved using 64× 90× 90 grid points with two mesh patterns. Inside a middle block of 4× 5× 5,
grids are uniform with a spacing of ∆x = ∆y = ∆z = 1/16. Outside this block the grid spacing is elongated in y
and z directions. A periodic boundary condition is applied in the x-direction, and in y and z directions, the velocity

gradient is set to zero. The Newtonian torque N0 over ηsΩ, corresponding to d̂0, calculated from the simulation is
16.90a2b. The error compared to the theoretical results given by the Purcell’s model in the next section is 0.9%.

The drag is then evaluated for a spheroid moving with a constant speed along the x-direction. The domain size
is 12 × 5 × 5 and is resolved using 120 × 120 × 120 grid points with two mesh patterns. Inside a middle block of
5.14 × 1.8 × 1.8, the grid spacing is ∆x = 0.0514, and ∆y = ∆z = 0.018. The grid outside this block is coarse
and resolved using the remaining grid points. The velocity gradient is set to zero on boundaries in the x-direction.
No slip boundary conditions are applied on y and z directions. The Weissenberg number is defined as the polymer
relaxation time over the characteristic time of translational motion Wi=λHU/a = 0.57. The time is scaled by U/a.
The Newtonian drag D0 over ηsU , corresponding to â0, is 10.37b. The error from the theoretical results is 2.5%.

In the BD simulations of the spheroid, a bounce-back boundary condition is employed to avoid the penetration of
beads into the spheroid. A collision displacement drc,i = 2nbndd is added to Eq. (8), where d is the distance the beads
penetrate into the body in the previous iteration and nbnd is the local normal vector to the surface of the spheroid,
pointing towards the fluid domain.

Fig. 8(a) shows the transient results of the drag and torque acting on the cell body for different Gradient numbers,

which is defined as Gd=
√
〈Q2〉0/a. The quasi-steady state results are shown in Fig. 8(b). Here, the torque and drag

acting on a spheroidal cell body also decrease with the Gradient number as Gd exceeds a threshold. The critical Gd
is larger than that for the flagellum because the length scale over which the flow velocity gradient changes near the
flagella is smaller than that near the cell body. For the cell body of E. coli (diameter ∼ 1µm [40]), the Gradient
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number is approximately 0.27. The torque at this Gd is illustrated by the black dotted line in the figure, and the
reduction of microscopic viscosity here is relatively small.

IV.4. Applying the resistive force theory and its implication to the bacterial swimming speed

The BD simulation results suggest that the locomotion of the bacterial flagellum resembles that in the solvent.
The polymer stresses are effective at the cell body but the Deborah number here is relatively small. Therefore, we
approximate the fluid at both the flagellum and the cell body as a Newtonian fluid but of different viscosity: viscosity
experienced by the cell body is ηs + ηp and the viscosity experienced by the flagellum is the solvent viscosity ηs.
These assumptions allow us to use the Purcell’s model [41–43] to calculate the swimming velocity of a bacterium
that consists of a helical flagellum and a cell body. The motion of the bacterium is described by three kinematic
parameters: the translational speed of the bacterium U , the angular speed of the flagellum ω and the angular speed of
the cell body Ω, whose direction is opposite to ω. The local drag of a segment of the flagellum is f = −ξtvtt̂− ξnvnn̂,
where ξ is the resistive coefficient and is proportional to the local viscosity. The ratio between the resistive coefficient
and the viscosity is defined as k = ξ/η. Here, v is the local velocity of the filament, subscripts t and n denote the
tangential and normal directions to the filament. The ratio between the two drag coefficients is k∗ = ξn/ξt = kn/kt.
The drag force and torque (F,N) acting on the flagellum are(

F
T

)
= ηf

(
â −b̂
−b̂ d̂

)(
U
ω

)
, (17)

where

â = ktnwλ sinφ tanφ(k∗ + cot2 φ), (18)

b̂ = ktnwλ
( λ

2π

)
sinφ tanφ(k∗ − 1), (19)

d̂ = ktnwλ
( λ

2π

)2
sinφ tanφ(k∗ + tan2 φ), (20)

kn =
8π

2 ln(c′λ/rf ) + 1
, (21)

kt =
4π

2 ln(c′λ/rf )− 1
. (22)

Here, ηf is the viscosity near the flagellum, nw is the number of flagellar wavelengths, λ = 2π cosφ/k is the pitch, rf
is the radius of the flagellum filaments and c′ = 2 is the Lighthill constant [44]. For a very thin flagellum, k∗ ≈ 2. The
bacterium E. coli has a pitch angle of φ ≈ 0.23π, pitch of λ ≈ 2.5 cos(φ) µm, and radius of filament is rf = 0.01 µm.

The coefficients are â = 3.8nw µm, b̂ = 0.26nw µm2, d̂ = 0.28nw µm3. The solvent viscosity is the water viscosity
ηs = 1 pN·µm−2·ms.

The viscosity experienced by the cell body is larger than that of the flagellum. Their ratio is defined as Λ = ηc/ηf ,
where ηc and ηf are the viscosity experienced by the cell body and the flagellum. For a bacterium, the force and
torque on the flagellum are balanced by the force and torque on the cell body(

F
T

)
= ηc

(
−â0U

d̂0Ω

)
, (23)

where

â0 =
4πb

ln(2b/a)− 0.5
, (24)

d̂0 =
16π

3
a2b. (25)

For E. coli, the cell body has a major semi-axis a = 1 µm and minor semi-axis b = 0.5 µm. The corresponding

coefficients are â0 = 14.2 µm and d̂0 = 4.2 µm3. The torque acting on the flagellum is provided by the motor between
the flagellum and the cell body, whose angular speed is ωm = ω + Ω. Experiments have repeatedly shown that the
torque of the motor displays two regimes: the torque is constant when ωm is smaller than a critical frequency ωm,c
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and then decreases linearly with the motor frequency ωm when ωm exceeds ωm,c [45]. In a dilute polymer solution,
the motor rotates fast and the torque should decreases linearly with ωm,c

T = A−B(ω + Ω), (26)

where A and B are constants. In the calculation, A = 4 pN·µm and B = 4.5 pN·µm·ms for a motor of E. Coli. at
16.2◦C. [46]. Combining Eq. (23) and Eq.(17), we get

U

Ω
=

b̂d̂0Λ

â0d̂Λ + (âd̂− b̂2)
, (27)

ω

Ω
=

(â+ â0Λ)d̂0Λ

â0d̂Λ + (âd̂− b̂2)
. (28)

Combing Eq. (26) with Eq. (27) and (28), we get

U =
b̂A

(â0d̂Λ + (âd̂− b̂2))(ηf + B
d̂0Λ

) +Bâ0Λ +Bâ
. (29)

Eq. (27) indicates that U/Ω increases with Λ. The result has been used by Martinez et al. to successfully predict the
experimental results of E. coli in high-molecular-weight PVP solutions [20]. Assuming that the viscosity experienced
by the flagella is the solvent viscosity ηs and does not change with the polymer concentration, we find from Eq. (29)
that the swimming speed increases with Λ first and then decreases after Λ reaches Λc, where Λc is the viscosity ratio
at which the swimming speed reaches its maximum. The expression of Λc is

Λc =
ηc
ηf

=

√
(âd̂− b̂2)B

â0d̂0(B + d̂ηs)
. (30)

The condition for the velocity enhancement is Λc > 1. Λc is proportional to the number of flagellar wavelengths
nw and slightly increases with the filament radius rf and the motor torque constant B. In Fig. 8(c), the bacterial
swimming speed for different nw is compared with the experimental results by Martinez et al. [20]. Bacteria generally
have 3-5 flagella and each of them consists of 2-4 wavelengths [38]. Bacterial flagella during swimming can bundle or
unbundle depending on the direction of motor rotation [47]. When flagella are not bundled, we can assume that the
drag and torque of each flagella can be added up together. nw becomes the total number of wavelengths on all the
flagella and its range is from 6 to 20. For large nw (longer flagella and larger number of flagella), the polymer solution
enhances the bacterial motility by reducing the rotation of the bacterial cell body. For a flagella bundle, Magariyama
et al. [48] measured the ratio between the swimming speed of cell U and the flagellar angular speed ω. Their
experimental results suggest that the flagellar bundles are more efficient in propelling the cell than a single flagellum
and cannot be modeled as a single flagellum with a larger filament radius. They showed that the experimental results
of a flagella bundle are closer to the theoretical results if the flagella in the bundle are considered to propel the cell
individually. Thus, large nw may be applicable to flagellar bundles as well. An alternative approach to calculate
the swimming speed of a flagellar bundle is to use the experimental value of cell rotation speed, as performed by
Martinez et al. [20]. The velocity profile obtained by this method is also shown in Fig. 8(c) as the black line. In
this calculation, the flagellar bundle is approximated by a single flagellum with number of wavelengths nw = 3.5
and rf = 0.02µm. Fig. 8(c) also shows the swimming speed for V. Cholerae, which has only one flagellum with the
number of wavelengths nw = 3. The flagellum has a pitch of λ = 2 µm and pitch angle φ = 0.286π, the head has
a major semi-axis a = 1.1 µm and minor semi-axis b = 0.3 µm [49]. The effects of pili are neglected. The current
model predicts that the motility of V. Cholerae is reduced in a polymeric solution. When the polymer concentration
is very high Λ→∞, the swimming velocity is proportional to Λ−1, which is consistent with the experimental results
that the swimming speed of bacteria is inversely proportional to the viscosity of the polymer solution [10, 50].

V. DISCUSSION

Our theory agrees with the hypothesis proposed by Martinez et al. [20] that the viscosity near the flagellum is
close to the solvent viscosity and much smaller than that of the cell body, but the viscosity reduction in their theory
is attributed to the shear thinning effects. One of the most popular molecular explanation for the shear-thinning
viscosity of dilute polymer solution is the finite extensibility of polymer chains. In this case, short polymer chains are
more likely to be stretched to their maximum length, exhibiting a stronger shear-thinning viscosity. This is, however,
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contradictory to the experimental results that the velocity enhancement occurs only for long polymer chains. From
our BD results of FENE dumbbells, we also show that at high Gradient numbers, the FENE dumbbells are not
stretched to the maximum length and the viscosity is reduced due to the nonuniform flow field rather than the finite
extensibility of FENE dumbbells. In addition, the viscosity reduction caused by the non-homogeneous effects is related
to the spacial change of shear rate but not the shear rate. For example, in a simple shear flow, the non-homogeneous
effects are absent but the shear rate can be very large.

In the experiments by Patteson et al.[25] and the simulations by Balin et al.[24], the polymer molecules are observed
to be effectively stretched by the bacterial flagellum. Polymer stretching can be quantified by the dimensionless
distension (〈Q2〉 − 〈Q2〉0)/〈Q2〉0, which is an indicator of elastic effects since it is directly related to the trace of
polymer stress and the elastic energy stored in polymer molecules. The dumbbells representing long polymer chains
in our simulations are also stretched by the bacterial flagellum, but their dimensionless distension is small due to large
equilibrium length.

A chain model is a better representation of polymer molecules than the dumbbell model used in the present study.
A bead-spring chain has multiple normal modes that stem from the vibration of the chain segments. The normal
modes can be described as dumbbells with different relaxation times and equilibrium lengths [26]. The bend and twist
of polymer coils can also be incorporated into the chain models by including an angular spring between bonds. For
higher concentration polymer solutions, the interaction between polymer molecules becomes important and affects
the propulsion of microorganisms.

Our BD simulations extend the study of biolocomotion in the presence of the polymer molecules to include the
effects of nanoscopic non-homogeneity across the polymer molecule, i.e., the flow shear rate over the length of polymer
chains is dependent on the polymer position and length. The results reveal that when the length scale over which the
flow velocity gradient changes is comparable to the radius of gyration of polymer molecules, the Brownian motion of
the polymer molecules becomes dominant and both the polymer viscous and elastic stresses decrease. The viscosity
experienced by the flagellum asymptotically drops to the solvent viscosity. The theory successfully explains why the
velocity enhancement only occurs for long or unbranched polymer solutions, and why the swimming speed of bacteria
has a non-monotonic relationship with the polymer concentration. Additionally, since the Gradient number increases
with the temperature, our theory suggests that an increase in temperature can reduce the nanoscopic viscosity near
the flagellum, potentially changing the swimming speed of bacteria.
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