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The dynamics of the turbulent near-wall region is known to be dominated by coherent structures.
These near-wall coherent structures are observed to burst in a very intermittent fashion, exporting
turbulent kinetic energy to the rest of the flow. In addition, they are closely related to invariant
solutions known as exact coherent states (ECS), some of which display nonlinear critical layer
dynamics (motions that are highly localized around the surface on which the streamwise velocity
matches the wave speed of ECS). The present work aims to investigate temporal coherence in
minimal channel flow relevant to turbulent bursting and critical layer dynamics and its connection
to the instability of ECS. It is seen that the minimal channel turbulence displays frequencies very
close to the those displayed by an ECS family recently identified in the channel flow geometry. The
frequencies of these ECS are determined by critical layer structures and thus might be described as
“critical layer frequencies”. While the bursting frequency is predominant near the wall, the ECS
frequencies (critical layer frequencies) become predominant over the bursting frequency at larger
distances from the wall, and increasingly so as Reynolds number increases. Turbulent bursts are
classified into strong and relatively weak classes with respect to an intermittent approach to a lower
branch ECS. This temporally intermittent approach is closely related to an intermittent low drag
event, called hibernating turbulence, found in minimal and large domains. The relationship between
the strong burst and the instability of the lower branch ECS is further discussed in state space. The
state-space dynamics of strong bursts is very similar to that of the unstable manifolds of the lower
branch ECS. In particular, strong bursting processes are always preceded by hibernation events.
This precursor dynamics to strong turbulence may aid in development of more effective control
schemes by a way of anticipating dynamics such as intermittent hibernating dynamics.
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I. INTRODUCTION

In the near wall region of wall-bounded shear flows, turbulent flows are known to be dominated by coherent struc-
tures comprised of quasistreamwise vortices staggered in the flow direction47. These near-wall coherent structures are
self-sustained, exporting turbulent kinetic energy to the rest of the flow31. The production of turbulent kinetic energy
is observed to occur quasi-periodically over time21,26,29,30,47. This temporally intermittent turbulent phenomenon
called a burst is responsible for virtually all of the production of turbulent kinetic energy in the near-wall region.
Thus, the bursting frequency is an important characteristic of turbulent flows, which is present at all distances from
the wall, and in all canonical wall-bounded turbulent flows27.

The term ‘burst’ was coined by Kline et al.36 to describe the abrupt breakup process of low-speed streaks occurring
on a very short time scale. Since then, substantially more has been learned about the bursting process with the help
of the advances in experimental techniques2,37,66 and numerical simulation capabilities5,39, and many studies suggest
connections between the bursting process and coherent structures in turbulent flow23,47. A comprehensive summary
of progress on the understanding of the bursting process is provided by Jiménez27. In particular, this work presented
a detailed discussion on bursting in the buffer layer, which is related to the present work. More recently, Jiménez26,28

used the Orr mechanism arising in the linearized Navier-Stokes (Orr-Sommerfeld) equation to describe a burst as a
linear process in minimal channel. It is shown that the evolution of a burst in a fully nonlinear turbulent flow in a
minimal channel can be well described by the Orr-like transient amplification of disturbances over times of the order
of 15% of an eddy turnover time. Adrian1 provided evidence that turbulent bursts coincide with coherent structures
such as hairpin vortices. The connection between a turbulent burst and near-wall coherent structures is the focus of
the present work.

The study of near-wall coherent structures has been greatly advanced by the discovery of exact coherent states
(ECS)33,59. These states are nontrivial invariant solutions to the Navier-Stokes equations, some of which take the
form of nonlinear traveling waves (TW)– steady states in a reference frame translating at a constant streamwise speed.
The TW solutions have enabled a priori study of self-sustained near-wall coherent structures that resemble in many
ways that transient structures observed in fully turbulent flows22. In addition to TW solutions, other types of ECSs
are equilibria and periodic or relative periodic orbits15. These invariant solutions to the governing equations have
been found numerically in all canonical wall-bounded geometries for turbulent flows (plane Couette and Poiseuille,
pipe and boundary layer)3,6,11,12,15,16,42,43,48,59–61,65. In general, these solutions have a spatial structure in the form
of low-speed streaks that are wavy in the streamwise direction, straddled by counter-rotating streamwise-aligned
vortices: that is, they have the same basic qualitative structure as near-wall turbulence. The basic self-sustaining
process underlying these structures has been qualitatively described by Waleffe58.

Exact coherent states primarily arise in pairs at a so-called “saddle-node” bifurcation point at a particular Reynolds
number (Re). At such a bifurcation, the pair of solutions emerges at finite amplitude; we refer to each pair of solutions
as a solution family. Away from such bifurcation point, the difference of the amplitude between the solutions grows
as Re increases. In general, the upper-branch (UB) solution of each pair has a large velocity fluctuation at a given
Re, denoted as a high drag state, compared with its corresponding lower-branch (LB) solution.

Exact coherent states have been shown to be closely related to the bursting phenomenon24,29,32,53,54,56. For channel
flow, Itano and Toh24 linked the bursting process to an instability of the traveling wave solution, suggesting that
the bursting process is a shadow of a traveling wave solution and its unstable manifolds. They also used periodic-
like solutions with which the recursive nature of the bursting process is explained qualitatively53. For Couette
flow, the bursting phenomenon was explained in terms of periodic and relative periodic solutions to the Navier-Stokes
equations32,56. Kawahara and Kida32 suggested that heteroclinic connections between two periodic solutions may serve
as the paths of the bursting trajectories because heteroclinic events appear to capture key features of the bursting
process. Because of the clear connection between the bursting phenomenon and the instability of exact coherent
states, the present work focuses on the relationship between the bursting processes and the unstable manifolds of the
TW solutions recently identified by Park and Graham46, which will be presented in Section III D.

In related work, substantial intermittency between high and low drag states has been found by using direct numerical
simulations (DNS) at low Reynolds numbers in the minimal channel flow geometry. Particularly relevant in this regard
is the study by Xi and Graham68,70. These authors showed that a minimal channel flow cycles intermittently between
“active” intervals, with high drag characteristics such as strong streamwise vortices and three-dimensionality and a
mean velocity profile near the von Kármán profile, and “hibernating” intervals, with very low drag characteristics
such as very small Reynolds shear stress and a mean velocity profile approaching the so-called “Maximum Drag
Reduction” asymptote first identified by Virk17,55 for drag-reducing polymer solutions. Similar observations have
been made by Hamilton, Kim and Waleffe in plane Couette flow21 and Weber, Handler and Sirovich64 in channel flow.
The latter work performed Karhunen-Loéve decomposition of minimal channel results, identifying a small number
of turbulent burst-like events called “entropy events” preceded by a time interval during which flow is dominated
by streamwise-invariant “roll modes”. Park and Graham46 clearly showed that this stochastic cycle is a reflection
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of the organization of the turbulent dynamics around a family of nonlinear traveling wave solutions (the ‘P4’ family
described below and illustrated in Figure 1(b)). Indeed, the hibernating intervals are approaches to P4 lower branch
solutions, while the active intervals are close to P4 upper branch solution. Recently, Kushwaha, Park, and Graham38

showed the relationship between temporal hibernating dynamics in minimal channels and spatiotemporal hibernating
dynamics in extended domains. They partitioned the flow characteristics in extended domains into low-, intermediate-
and high-drag classes. They performed both temporal and spatial analyses on turbulent velocity fields of these three
classes in an extended domain or real turbulence. The differences between these classes were presented by examining
mean velocity, wall shear stress, and flow structures. Interestingly, the temporal and spatial analyses yielded very
similar results for the low- and high-drag classes. The conditional mean profiles during low-drag events occurring
temporally and spatially in extended domains closely resemble those found in temporal hibernating intervals in the
minimal channel as well as P4 lower branch solution. Thus, these results suggest that the temporal hibernating
dynamics in a minimal domain is closely related to the spatiotemporal dynamics of low-drag events in real turbulence
or an extended domain.

One important issue regarding exact coherent states is their connection to critical layer dynamics. Recall from
classical linear stability theory for shear flows that the Orr-Summerfeld equation in the inviscid limit has a singular
point at a location called the critical layer where the streamwise velocity of the base flow is the same as the wave
speed of a velocity perturbation of normal mode form û(y) exp (i(kxx+ kzz)− ct)10. Wang, Gibson and Waleffe62

showed for Couette flow that at least one lower branch ECS solution has a flow structure that consists of streaks,
rolls and a weak streamwise-varying wave that develops a critical layer – i.e. their flow structures are highly localized
around the surface where the local streamwise velocity matches the wave speed of the ECS. Based on a scaling
analysis, they suggested that the wavy fluctuations should be localized in a critical layer of depth O(Re−1/3), showing
that this scaling was followed by their numerical solutions. As the critical layer is approached, the wavy fluctuation
increases so the maximum fluctuation takes place in the critical layer. In fact, it is found that the flow structures at
Re = 50000 and Re = 3000 were virtually identical modulo a Re1/3 rescaling of the direction normal to the critical
layer surface. Hall and coworkers3,20 used a mixture of asymptotics and numerics to show, again for Couette flow,
that velocity fluctuations with wave-vector in the flow direction are amplified in the critical layer and serve as forcing
for the streamwise rolls to generate the nonlinear self-sustaining process that supports exact coherent states. In
their formulation, this process is a self-sustaining version of wave-vortex interaction identified earlier by Hall in the
context of three-dimensional instability of Görtler vortices19. Although the importance of the nonlinear critical layer
mechanism becomes clearer at much higher Reynolds number7,20,57, Hall and Sherwin20 showed that “remarkable”
agreement is obtained between the high Re asymptotics and the numerical results down to Reynolds numbers of
O(103). Other interesting work on nonlinear critical layers and ECSs has been performed by Viswanath in pipe flow57

and Gibson and Brand in channel flow14. More recent work for channel flow46 showed that at least two ECS solution
families including the P4 family mentioned above display nonlinear critical layer dynamics – fluctuations are closely
organized around the critical layer, from which observation these ECS families are called ‘critical layer modes’. Other
ECS solution families are found to display a different structure, in which fluctuations are largest near the channel
center. As such, these are denoted as ‘core modes’. More generally, Deguchi and Hall8 observe that the alignment of
the vortical structures around the critical layer are not necessarily found for upper branch ECSs, especially for large
streamwise wavelengths. It is worth noting that lower-branch TW solutions previously found in Couette flow3,20,62,
pipe flow57 and channel flow14 would be classified as critical layer modes rather than core modes.

Other work that is relevant to the present discussion is that of McKeon and Sharma40, which builds on the idea
that the full dynamics of a turbulent shear flow can be well approximated using a small number of modes that derive
from the singular value decomposition of the resolvent operator corresponding to the Navier-Stokes operator linearized
around a chosen mean velocity profile. As in classical linear stability theory, the modes have the form of traveling
waves û(y) exp (i(kxx+ kzz)− ct) and the critical layer for a given traveling wave is the wall-normal position where
the mean velocity equals c. The convective nonlinear term enters the linear system as a forcing term. Resolvent modes
have been used to represent several significant features of wall-turbulence, including hairpin packet structure, skewness
and amplitude modulation behavior, and a formalization of the attached eddy hypothesis for which several highly
amplified modes are linearly superimposed50. Recently, it has been shown that many ECS can be well represented by
just a few resolvent modes51.

In this paper, we present an analysis of turbulent dynamics in a minimal channel, with an emphasis on the
connection to exact coherent states. We will also address one specific question about the existence of characteristic
frequencies associated with critical layer dynamics in turbulent flows. The critical layer frequencies in turbulence will
be identified, with use of nonlinear traveling wave solutions whose fluctuations display critical layer dynamics. The
problem formulation is presented in Section II. Nonlinear traveling wave solutions that display critical layer dynamics
are presented in Section III A, where their instability and bifurcation scenarios are discussed. Section III B illustrates
temporal coherence of turbulent dynamics, composing of bursting and critical layer frequencies in a turbulent flow.
Sections III C and III D describe the connections between hibernating turbulence, turbulent bursts, and the instability
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of traveling wave solutions. Section IV presents conclusions.

II. PROBLEM FORMULATION

We consider an incompressible Newtonian fluid in the plane Poiseuille (channel) geometry, driven with a constant
volumetric flow rate. The x, y and z coordinates are aligned with the streamwise, wall-normal, and spanwise directions,
respectively. Periodic boundary conditions are imposed in the x and z directions with fundamental periods Lx and
Lz, and no-slip conditions are imposed at the walls y = ±h, where h = Ly/2 is the half-channel height. Using the
half-height h of the channel and the laminar centerline velocity Uc as the characteristic length and velocity scales,
respectively, the nondimensionalized Navier-Stokes equations are then given as

∇ · u = 0, (1)

∂u

∂t
+ u · ∇u = −∇p+

1

Rec
∇2u. (2)

Here, we define the laminar equivalent Reynolds number for the given flow rate as Rec = Uch/ν, where ν is the
kinematic viscosity of the fluid. We fix the bulk velocity at the laminar value Ub = 2Uc/3 (or simply 2/3 in our
nondimensionalization). Characteristic inner scales are the friction velocity uτ = (τ̄w/ρ)1/2 and the near-wall length
scale or wall unit δν = ν/uτ , where ρ is the fluid density and τ̄w is the time- and area-averaged wall shear stress. As
usual, quantities nondimensionalized by these inner scales are denoted with a superscript “+”. The friction Reynolds
number is then defined as Reτ = uτh/ν = h/δν .

Simulations are performed using the open source code ChannelFlow written and maintained by Gibson13. In this
study, we focus on the domain Lx×Ly×Lz = π×2×π/2, the same box size as the P4 solution family46. A numerical
grid system is generated on Nx×Ny×Nz (in x, y, and z) meshes, where a Fourier-Chebyshev-Fourier spectral spatial
discretization is applied to all variables. A typical resolution used is (Nx, Ny, Nz) = (48, 81, 48).

The exact coherent states studied here have two important symmetries: they are reflection symmetric across the
centerplane of the channel y = 0 and across a plane of constant z. There are of course other ECS that do not obey
these symmetries (e.g. refs.14,44,45,60,61) – we focus on these states because of their previously demonstrated connection
to the turbulent dynamics46, which we further discuss below. All simulations of turbulent trajectories reported here
are performed without imposing any symmetries on the flow field.

III. RESULTS AND DISCUSSION

Prior to proceeding to the results, the definitions for the two temporally intermittent phenomena of interest here,
hibernation and turbulent burst, are necessary. The criterion for a particular event is that the spatially-averaged
quantity must pass through a threshold value and stay on the same side of the threshold for a specified minimum time
duration. We define a hibernation event63,68,69 as occurring when the area-averaged wall shear stress drops below
90% of the mean wall shear stress and stays there for a certain duration tUc/h > 65. At Rec = 1800 (Reτ = 85),
the duration threshold tUc/h > 65 corresponds to t+ = 260.9, where t+ = tu2τ/ν is time scaled in inner units. Note
that this duration threshold also corresponds to t∗ > 3, where t∗ = tuτ/h is time scaled with eddy turnover time.
This threshold value of t∗ > 3 was previously used to detect hibernation events in experimental and computational
studies38,67. We define a bursting event as occurring when the volume-averaged energy dissipation rate (D) increases
by 1.5 times its standard deviation (σD) for a duration tUc/h > 15. Note that the typical time duration of a bursting
process is O(10h/Uc)

53. The choice of the cutoff duration for hibernating and bursting events were tested. Selecting
tUc/h > 55 (t+ > 220.8) or tUc/h > 75 (t+ > 301) for a hibernation event38,67 and tUc/h > 12.5 or 17.5 for a bursting
event gives almost identical results.

A. Traveling wave solutions: instability and turbulent attactors

Park and Graham46 found that the dynamics of minimal channel turbulence are organized at least in part around
the P4 solution family, so these ECS solutions are the focus of the present study. It is, however, worth mentioning that
there may exist other ECSs with different flow symmetries in the same computational domain at the same Reynolds
numbers, which may also play a role in organizing the turbulent attractor. Figure 1(a) presents a bifurcation diagram
for P4 solutions on a Prandtl-von Kármán plot. This form is often used to represent drag reduction characteristics
in wall-bounded turbulent flows. The bulk velocities U+

b are plotted as a function of the friction Reynolds number
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Figure 1. (Colour online) (a) Bifurcation diagram for P4 traveling wave solutions along with curves for Newtonian turbulence
and laminar flow46, where the bulk velocities U+

b are plotted as a function of the friction Reynolds number. The number of
unstable eigenvalues is indicated on each branch. Dots on each branch correspond to P4 TW solutions shown in (b). (b) State-
space visualization at Rec = 1800, projected onto disturbance kinetic energy (KE), energy dissipation rate (D) and normalized
instantaneous wall shear stress (τw/τ̄w)46. The grey line indicates a turbulent trajectory. A joint probability function of KE
and D for the trajectory is shown at the bottom of the figure. The labelled symbols (/) are P4 solutions at Rec = 1800. Based
on the L2 distance between the trajectories and P4 traveling waves46, the closest visits to P4-LB, P4-LB2, and P4-UB are at
points (i), (ii), and (iii), respectively. All quantities are calculated only for the bottom half of the channel. (c)–(f) Vortical
structures illustrated by the swirling strength λci. (c) P4-LB, (d) P4-UB, (e) instant (i), and (f) instant (iii). For (c) and
(d), the tubes are isosurfaces at 2/3 of the maximum swirling strength. The maximum swirling strengths are (c) 0.30 and (d)
0.79. The isosurfaces are colored based on the local value of the streamwise velocity, ranging from low (blue) to high (red).
The transparent blue isosurfaces indicate critical layer surfaces where the local streamwise velocity matches the wave speed of
the solution. For the flow structures in (e) and (f), we use the same vortex strength and critical isosurfaces as in (c) and (d),
respectively.

along with curves for Newtonian turbulence and laminar flow. In this representation, a lower branch (LB) solution
is above a upper branch (UB) solution, because the former has higher bulk velocity for the same wall shear stress
than the latter. All P4 solutions exhibit reflection symmetry with respect to the midplane in the spanwise direction,
z = Lz/2, and wall normal direction, y = 0. A brief summary of the bifurcation behavior of the P4 solution family
is as follows. Starting from the P4-UB solution at the upper range of convergence Reτ ≈ 100 whose branch has a
mean velocity close to that of Newtonian turbulence and a varicose streak structure, the solution remains close to the
Newtonian turbulence curve until it reaches a turning point at Reτ = 67.32 with decreasing Re. Beyond this turning
point, the solution branch, which we now denote LB, becomes nearly parallel to the laminar solution as Reynolds
number increases, but turns around again at Reτ = 88.7, forming another lower-branch solution called LB2. As
Reynolds number decreases, the streak structure changes from varicose to sinucose and the branch reaches another
saddle-node bifurcation point at Reτ = 55.63, beyond which we call the solution UB2. This solution branch ends at
Rec = 855, where it collides in a pitchfork bifurcation with a higher-symmetry solution branch52, which satisfies an
xz-shift symmetry condition [

u v w
]

(x, y, z) =
[
u v w

]
(x+ Lx/2, y, z + Lz/2).

The bifurcation scenario for the P4 solution family is investigated with use of the linear stability analysis. The
leading eigenvalues of the solutions are computed in their symmetric subspace with Arnoldi iteration56. It is found
that far away from the UB-LB bifurcation points, the P4-LB and P4-LB2 solutions have two and three real unstable
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eigenvalues, respectively. Note that in the full state space, the P4-LB and P4-LB2 additionally possess one real and
four complex conjugate unstable eigenvalues. The turning point scenario from the P4-LB to the P4-UB is as follows.
Near the bifurcation point on the P4-LB branch, two real unstable eigenvalues collide at a location away from the
imaginary axis and become complex conjugates. At the saddle-node bifurcation, a real eigenvalue becomes positive.
Thus, the P4-UB solution has one real and two complex conjugate unstable eigenvalues. In the case of the turning
point from P4-LB2 to P4-UB2, the scenario is slightly different. As the P4-LB2 closely approaches the bifurcation
point Reτ = 55.63, the two unstable eigenvalues approach each other, while the most unstable eigenvalue is still
away from the two unstable ones. Near the bifurcation point, the two real unstable eigenvalues collide and become
complex. At the bifurcation point, a real eigenvalue (i.e. the bifurcating eigenvalue) crosses the imaginary axis,
adding a unstable eigenvalue to the P4-UB2. The P4-UB2 solution then has two real and one complex conjugate
pair of unstable eigenvalues. This is not a Takens-Bogdanov bifurcating scenario18, which is associated with two
eigenvalues that may change from real to complex near a saddle-node bifurcation involving one of them. It is worth
mentioning, however, that some TW solutions in pipe flow41, channel flow46 and plane Couette flow9 exhibit this type
of bifurcation.

To address connections between the P4 solution family and turbulent trajectories in a minimal domain, Park and
Graham46 presented the state-space dynamics, projecting turbulent trajectories along with the P4 solutions onto a
three dimensional subspace, as illustrated in Figure 1(b). The DNS and P4 solutions are shown at Rec = 1800.
The three-dimensional space is constructed by disturbance kinetic energy (KE), energy dissipation rate (D), and
area-averaged instantaneous wall shear stress normalized by its mean value (τw/τ̄w). In addition, the joint probability
density function (PDF) of KE and D is shown at the bottom of the figure. All quantities are only calculated for the
bottom half of the domain. It is worth mentioning that, as opposed to the computation of TW solutions, the turbulence
simulations are performed without imposing any symmetries on the flow. The dynamical trajectory spends most of
its time orbiting in the vicinity of the P4-UB solution. The trajectory occasionally escapes from the neighborhood of
the P4-UB, approaching the P4 LB solutions. To quantify the closest visit to the P4 solutions, the L2 norm of the
difference between a DNS velocity field and a P4 is calculated46. Points (i)–(iii) indicate the closest visits to P4-LB,
P4-LB2 and P4-UB, respectively. The returning trajectories after close visits to P4-LB solutions are closely related
to the bursting process32,53, which will be further discussed in Section III D.

Flow structures of P4-LB and P4-UB are shown in Figures 1(c)–(d). Only the bottom half-channel is shown due
to the mirror symmetry with respect to the channel center. The structures are illustrated by isosurfaces of swirling
strength λci, the imaginary part of the complex conjugate eigenvalues of the velocity gradient tensor71. Values are
given in the caption. We also depict the critical layer surface, where the local streamwise velocity matches the wave
speed. The P4-LB and P4-UB solutions exhibit vortex cores closely located around the critical layer.To facilitate
comparison, the same vortex strength and critical layer isosurfaces as in Figures 1(c) P4-LB and (d) P4-UB are used
for flow structures for instants (i) and (iii), as visualized in Figures 1(e) and (f), respectively. Strong similarity is
observed in the vortical and critical layer structures between the P4 solutions and DNS snapshots. Interestingly, in
the turbulent flow the vortical motions are also observed to be localized around the critical layer displayed by the P4
solutions.

Before continuing, it should again be mentioned that other ECS families besides P4, perhaps with different sym-
metries, may play a role in the turbulent dynamics in the computational domain we consider. The P4 family studied
has mirror symmetries about the midplanes in the x and z directions, while turbulence simulations are not subject
to any symmetries on the flow.

B. Temporal coherence of turbulent dynamics: bursting and critical layer frequencies

We now turn our attention to the temporal coherence of turbulent dynamics. The aim is to identify characteristic
frequencies related to bursting and critical layer dynamics in a minimal channel flow. To this end, Fourier analysis
is applied to time series of turbulence quantities. Figure 2(a) shows a time series of the energy dissipation rate (D)
at Rec = 1800 (Reτ = 85) in a minimal channel along with the mean (black dashed line) and the mean + 1.5 times
its standard deviation (red dotted line). Temporally intermittent behavior of the energy dissipation rate is clearly
discernible. This intermittent dynamics is closely related to temporal coherence of the turbulent flow – a bursting
event. The characteristic intermittent cycle or burst period can be identified more readily by the power spectral
density of the time series. Figure 2(b) shows the power spectrum of the energy dissipation rate of a sufficiently long
simulation run (more than 2× 104h/Uc), where it is normalized to have the maximum of 1. The dominant frequency
ωd in the spectrum corresponds to the characteristic burst period, i.e. Td = 2π/ωd. Figure 2(c) shows the length of
the burst period Td (blue circles) calculated by the dominant frequencies in the power spectra at different Reynolds
numbers. The burst interval Tb, which is the mean time between individual bursts, can be also calculated by the
aforementioned definition for a bursting event and is presented in red squares in Figure 2(c). Both bursting time scales
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Figure 2. (Colour online) (a) Time series of the energy dissipation rate (D) at Rec = 1800 (Reτ = 85) in a minimal channel
flow. The black dashed and red dotted lines are the mean and the mean + 1.5 times its standard deviation, respectively. (b)
Power spectral density of a long data set of D (more than 2 × 104h/Uc). (c) Reynolds number dependence of characteristic
burst periods computed from the power spectrum (blue circles) and by the definition of a turbulent burst (red squares). The
red line on (b) is ωb = 2π/Tb, where Tb is the mean burst interval (red square) in (c).

(a) (b)

Figure 3. Wave speed for the P4 traveling wave solutions as a function of the Reynolds number in (a) outer units (i.e. scaled
with Uc and plotted against Rec) and (b) inner units (i.e. scaled with uτ and plotted against Reτ ). The laminar bulk velocity,
Ub, is plotted with a dashed line.

(blue and red symbols) are close each other and show the same trend with respect to Reynolds number. In particular,
with viscous inner scales, the bursting intervals in Figure 2(c) are O(103), which is consistent with those of Jiménez
et al.29 for minimal Poiseuille flows. In Figure 2(b), the bursting frequency calculated by our selected criteria for a
turbulent burst (red squares), i.e. ωb = 2π/Tb, is shown – it is very close to the dominant frequency of the time series.
Note that the bursting in the minimal channel has also been shown to represent the bursting in real turbulence by
examining the temporal statistics compiled in minimal sub-boxes in an extended domain29. However, the relationship
between the temporal dynamics of the bursting in a minimal channel and the spatiotemporal dynamics of the bursting
in real turbulence will be included in future work.

The bursting frequencies in Figure 2 have been calculated using a spatially-averaged quantity in the minimal
channel. As shown in Figure 2(b), the power spectrum of spatially-averaged quantity nicely captures characteristic
frequencies in a low frequency regime of ω < 10−1. However, area averaging serves as a low-pass filter and for the
nonlinear traveling wave solutions, all area-averaged quantities are constant. Therefore we now consider time series of
instantaneous velocities sampled at a point in a channel. As a prelude to this discussion, we recall that the ECS family
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Figure 4. (Colour online) Power spectral density of a pointwise-sampled velocity at Rec = 1800 (Reτ = 85) in the channel
domain. (a)-(c) Power spectra of the streamwise velocity at y+ = 5, 49, 65 and (d)-(f) Power spectra of the wall-normal
velocity at y+ = 5, 49, 65, along with the critical layer frequencies and bursting frequency. The relevant critical layer frequency
(ωc = 2πcx/Lx) is calculated using the wave speed (cx) of P4 traveling wave solutions, and the bursting frequency (ωb = 2π/Tb)
is calculated using the burst interval Tb (red square) in Figure 2(c).

under consideration here has dynamics and structure that are closely associated with a critical layer where the wave
speed equals the local streamwise velocity46. To infer the frequency associated with any wave, the wave speed c and
the wavelength λ are related to the frequency ω by ω = 2πc/λ. For the ECS considered here in the minimal channel,
the wavelength λ = Lx and the wave speed is cx, so the frequency of a specific ECS is given by ωc = 2πcx/Lx. We
will variously denote this as the “ECS frequency” or “critical layer frequency”, using the latter when the connection
to critical layer structure and dynamics is to be emphasized. Finally, because the three-dimensional instability of the
streaks induced by the streamwise vortices is a key aspect of the self-sustaining process underlying ECS and near-wall
turbulence, the ECS frequency might also be described as a “streak instability frequency”. It is worth noting that
the dominant streamwise wavelength of the streak instability and the streamwise vortices is λ+x ' 200− 300 in large
domain simulations25,49, which is close to the streamwise wavelength of the P4 family. Figures 3(a) and (b) show the
wave speed of the P4 solution family as a function of the Reynolds number in outer and inner units. The laminar bulk
velocity, Ub, is also plotted with a dashed line. The wave speeds of the P4 solutions vary and the solutions have a
larger wave speed than the laminar bulk velocity in outer units, and vice versa in inner units. In Figure 3(b), P4-UB
solutions display c+x ∼ 14 − 15 in the range considered here, which is slightly larger than the result c+x ∼ 10 − 12
reported for the propagation speed of near wall structures34.

Figure 4 shows the power spectral densities of pointwise-sampled velocities in DNS along with the frequencies
displayed by the P4 solutions and the bursting frequency calculated from burst intervals in Figure 2(c). The DNS
and P4 solutions are at Rec = 1800 (Reτ = 85). The frequencies of P4-LB, LB2, and UB are all plotted but they
are very close each other. The bursting frequency is from the mean burst interval (red squares in Figure 2(c)), i.e.
ωb = 2π/Tb. Figures 4(a)–(c) show the power spectra of the streamwise velocities at y+ = 5, 49, 65, respectively. At
all these positions, there are dominant frequencies in the range of 0.01 < ω < 0.05 in which the bursting frequency
is located. Near the wall, as shown in Figure 4(a), the turbulence barely displays signals near the ECS frequencies.
As we move away from the wall, small peaks start to appear near the ECS frequencies. The dominant frequencies
depicted in the power spectra are closely related to the bursting frequencies reported in experimental and numerical
turbulence studies4,35. Frequencies close to the ECS frequencties are, however, more evident for the wall-normal
velocities. Figures 4(d)–(f) show the power spectra of the wall-normal velocities at y+ = 5, 49, 65, respectively. In
Figure 4(d), near the wall there is still a dominant frequency in the range of 0.01 < ω < 0.03 in which the bursting
frequency is located. But the turbulence also displays a small peak near the ECS frequencies. Furthermore, peaks
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Figure 5. (Colour online) Reynolds number dependence of the power spectra of wall-normal velocities at y = 0.23 (note
that y = 0 corresponds to the channel center). (a)-(c) Power spectra at Reτ = 101 (y+ = 77), at Reτ = 113 (y+ = 87),
and at Reτ = 133 (y+ = 102), respectively. (d)-(f) Zoom-in power spectra for the frequency regime of 1.2 < ω < 1.7 at
Reτ = 101 (y+ = 77), at Reτ = 113 (y+ = 87), and at Reτ = 133 (y+ = 102), respectively. An additional line for the frequency
ωm corresponding to the laminar bulk velocity Ub is shown.

close to the ECS frequencies become more significant in the spectrum as we move away from the wall – the dominant
peak location is switched from the low frequency regime (ω < 10−1) to a higher frequency regime (ω > 10−1). In
other words, the critical layer frequency becomes predominant over the bursting frequency. In both the y+ = 49
and 65 cases, the peak frequency in the regime ω > 10−1 is very close to the ECS frequencies. Indeed, it becomes
more prominent as further moved away from the wall. It should be noted that a point-wise sampled streamwise and
wall-normal velocities well capture the bursting frequency calculated from the volume-averaged energy dissipation
rate, without reference to traveling wave solutions. The central point is that the turbulence exhibits frequencies very
close to the critical layer frequencies found in the P4 solution family and they are the most prominent near the channel
center.

Now the dependence of the Reynolds number on the power spectrum is investigated. Figures 5(a)–(c) show the
power spectra of the wall-normal velocities sampled at a point near the channel center (y = 0.23) at Reτ = 101, 113
and 133, respectively. As Reynolds number increases, frequencies near the ECS frequencies become more prominent
and are still well-captured by P4 solutions. Furthermore, the second harmonics of these frequencies (i.e. frequencies
near 2ωc) appear to become more noticeable with increasing Reynolds number.

Finally, of course there is a frequency ωm = 2πUb/Lx, where Ub is the laminar bulk velocity. This will be close to the
ECS/critical layer frequencies for the simple reasons that the wave speeds for the ECS are close to (but slightly higher
than) Ub and the wavelengths of the ECS are all Lx. Figures 5(d)–(f) show zoomed-in plots from Figures 5(a)–(c) for
the range of 1.2 < ω < 1.7 with an additional line indicating ωm. There appear to be signals around the frequency
for the bulk mean velocity, but the dominant frequencies are still closer to the critical layer frequencies of the P4
solutions. Moreover, the prominence of the critical layer frequency over the frequency for the bulk mean velocity
becomes more noticeable as the Reynolds number increases, where dominant peak frequencies are located very close
to the critical layer frequencies of P4-LB, LB2, and UB solutions.

C. Hibernation and bursting process

In this section, we investigate the relationship between a hibernation-induced intermittency and turbulent bursts.
Figure 6 shows a time series of the area-averaged shear rate measured at the top wall. During intervals denoted by
blue lines, the wall shear rate satisfies our criteria for a hibernation event. Having defined a burst event as a large
enhancement of the energy dissipation rate, the wall shear stress substantially increases during bursting intervals
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Figure 6. (Colour online) Time series of the area-averaged wall shear stress normalized by its time average value (black dashed
line) as a function of time t. Shown are hibernating turbulence (blue intervals), bursting events after hibernation (green
intervals), and other bursting events not associated with hibernation (red intervals)

(red and green intervals). Especially, for bursting events occurring after hibernating intervals (green intervals), the
wall shear stress appears to rise more substantially, compared with the other bursting events not associated with
hibernation (red intervals), suggesting that there are very strong flow motions near the end of hibernating intervals.
We quantify this observation below.

To closely examine what happens around the end of hibernation events, we perform conditional sampling of the wall
shear stress for hibernation events. In Figure 7, conditionally-sampled instantaneous wall shear stress events during
intervals of hibernating turbulence (grey lines) are shown at Rec = 1800 (Reτ = 85). These are shifted so that the
ending time of the hibernation is placed at t = 0 at which the wall shear stress is 10% below the mean (black dashed
line). Also shown is the ensemble average wall shear stress of the hibernation events (thick red line). The vertical
dotted line corresponds to t = −65, which is the time duration for hibernation. On average, there is a considerable
increase of the wall shear stress about 30% after the end of hibernation – there is a very strong turbulent activity,
which is eventually related to the bursting process. For comparison, a typical increase of the wall shear stress during
bursting intervals is around 15% in our simulation. This observation leads us to classify bursting events with respect
to hibernation events. In the nomenclature of the present work, if there is a turbulent burst after a hibernation event,
it will be called a “strong” burst, while the remainder will be denoted relatively “weak”. From this classification
of bursts, it is reasonable to expect that the strongest bursts follow hibernation (which as we will see below, is the
conclusion that we ultimately draw).

Figure 8(a) shows the probability density function of the increase of the energy dissipation rate (∆D) during burst
intervals in a minimal channel simulation at Reτ = 85, where the PDF is normalized so that its area integral is 1.
The increase of the energy dissipation rate can be considered as the magnitude of bursting events. As hibernation and
bursting events are identified by our selected criteria, strong and weak bursts can be easily classified. In Figure 8(a),
the PDF of the increase of the energy dissipation rate (∆D) during strong and weak bursting intervals is shown. The
ensemble-averaged magnitudes of strong and weak bursts are ∆D = 0.82 and ∆D = 0.43, respectively. Figure 8(b)
shows the average magnitude of turbulent bursts normalized by a standard deviation of the energy dissipation rate in
the range of 75 < Reτ < 115. As Reynolds number increases, the average magnitude of all bursts (both strong and
weak bursts) appears to remain constant, while the average magnitudes of strong and weak bursts increase. However,
the ratio between the average magnitudes of strong and weak bursts increases with increasing Reynolds number,
suggesting that there are stronger bursts after hibernation at higher Reynold number.

It should be emphasized that although a hibernating interval does not necessarily lead to a turbulent burst, every
‘strong’ bursting process is always preceded by hibernating turbulence in the limited range of Reynolds number
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Figure 7. (Colour online) Conditionally-sampled instantaneous wall shear stress events (grey lines) during intervals of hiber-
nating turbulence at Rec = 1800 (Reτ = 85). The ensemble-averaged profile and the unconditional mean wall shear stress are
shown by the red line and black dashed line, respectively. The time origin of each event is shifted so that its end corresponds to
t = 0 (vertical blue line). The vertical blue dotted line denotes t = −65, which is the minimum time duration of a hibernation
event based on our criteria.

studied here. Thus, hibernation can be a precursor to a very strong turbulent activity (i.e. strong burst), providing
potentially significant information for flow control strategies.

D. Bursts and unstable manifolds of traveling waves

We turn now to the nonlinear dynamics of the bursting phenomenon. As illustrated by Park and Graham46, the
hibernating intervals are approaches to P4-LB traveling wave solutions. Thus, it is reasonable that the trajectories of
strong bursts may be very similar to those of points on the unstable manifolds of P4-LB solutions. Shown in Figure
9(a) is the same plot as Figure 1(b) along with trajectories of strong and weak burst classes. The length of trajectories
of strong bursts is typically longer than that of weak bursts. The strong bursting trajectories (green lines) start their
paths very close to P4 lower branch solutions and strongly overshoot the core region of the attractor – the P4-UB
solution is near this core region. This overshooting behavior of the strong burst leads to a large drag increase.

Trajectories on the unstable manifolds of P4 lower branch solutions are illustrated in Figure 9(b). As presented
in Section III A, P4-LB and P4-LB2 have two and three real unstable eigenvalues, respectively. A trajectory on the
unstable manifold can be computed by integration of an initial condition perturbed along an unstable direction of
a P4-LB solution. Figure 9(c) shows two and three trajectories on the unstable manifolds of P4-LB and P4-LB2,
respectively. The strong bursting trajectories (green lines) in Figure 9(a) look remarkably similar to those on the
unstable manifolds of P4-LB solutions in Figure 9(b).

These are not the first observations that a turbulent burst can be thought of as the escape process from an exact
coherent state along its unstable manifolds24,32,53. Nevertheless, our observations provide specific details regarding
the relationship between bursts and the unstable manifolds of several known ECS. Furthermore, along the unstable
manifold of the most unstable eigenvalue of the P4-LB (blue line) is clearly seen a nearly heteroclinic connection
between P4-LB and P4-UB solutions (at least as seen in this state space projection).

The time evolution of the flow structure along the most unstable direction of P4-LB shown in Figure 9(c). The
snapshots correspond to the dots in Figure 9(b); the top snapshot is one close to P4-LB. Except for the last snapshot,
which is very close to P4-UB, we use the same vortex strength and critical layer isosurfaces as for P4-LB in Figure
1(c). Near the P4-LB solution, the flow structure still looks similar to that of P4-LB solution, where vortical motions
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Figure 8. (Colour online) Classification of turbulent bursts with respect to hibernation: strong and weak bursts. (a) Probability
density function for the bursting magnitudes ∆D (defined as the increase of the energy dissipation rate) of two burst classes
and (b) Reynolds number dependence of the ensemble-averaged bursting magnitudes normalized by the standard deviation of
the energy dissipation rate.

are clearly organized around the critical layer. As the trajectory proceeds, the vortices appears to grow and thicken,
while they seem to maintain the shape around the critical layer. As further moved away from the P4-LB, new vortices
are generated, covering the whole channel domain. Nevertheless, vortices appear to be located around the critical
layer. At the peak of the trajectory, i.e. the highest wall shear stress, some vortices break down into smaller ones.
It should be noted that the structural evolution for the strong bursting trajectories is very similar to that in Figure
9(c).

Using the temporal evolution of flow structure in Figure 9(c), we attempt to describe the structural evolution in
the context of the original description for a bursting process by Kline et al.36: streak breakdown. In the top snapshot,
Figure 9(c), which is close to P4-LB, the isosurface is nearly streamwise invariant, showing a low-speed streak (the
upward fold of the critical layer surface). As time marches, the isosurface, i.e. streak, becomes wavy and highly
three-dimensional, developing inflectional instabilities. At approximately the same time, vortices begin to grow, and
then the flow rapidly ends up being a chaotic motion, increasing drag sharply. In a nutshell, the temporal evolution
along the unstable manifold of the P4 LB solution provides a very clear manifestation of streak breakdown during a
bursting process.

Finally, revisiting the issue of a heteroclinic connection between P4-LB and P4-UB solutions, the last snapshot in
Figure 9(c) is illustrated by the same vortex strength and critical layer isosurfaces as the P4-UB solution in Figure
1(c). The flow structure looks very similar to that of the P4-UB solution, where vortices are localized around the
critical layer. The vortex legs are inclined by approximatively 38 degrees with respect to the wall – the P4-UB shows
about 40 degree inclined vortex legs. The maximum swirling strength of 0.72 is comparable to that of the P4-UB
(0.79). The critical layer shape is also very similar to that of the P4-UB, showing similar streamwise variation as well
as wall-normal position.

IV. CONCLUSION

We have investigated temporal coherence related to burst and critical layer dynamics in minimal turbulent channel
flow and its connection to nontrivial invariant solutions to the Navier-Stokes equations called exact coherent states
(ECS). We focus a family of ECS in a form of nonlinear traveling waves (TW) identified by Park and Graham46,
called ‘P4’ TW solutions, focusing on the linear instability and bifurcating scenarios near turning points. This solution
family displays nonlinear critical layer dynamics; fluctuations are highly localized around the critical layer (the surface
on which the local streamwise velocity coincides with the wave speed of the TW solution). A central observation of the
present paper is that minimal channel turbulence displays distinct frequencies very close to the frequencies displayed
by the P4-TW solution family, which in turn originate in the critical layer dynamics sustaining these solutions. The
bursting frequency is predominant near the wall, while the critical layer (ECS) frequencies becomes predominant over
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Figure 9. (Colour online) (a, b) State-space visualization of DNS trajectories and P4 solutions at Rec = 1800 (Reτ = 85)
projected onto three dimensions. The grey line indicates the turbulent trajectory. (a) The green and red lines represent
trajectories of strong and weak bursts, respectively. (b) Trajectories of the unstable manifolds of the P4-LB solution are shown
with blue and magenta lines, while those of the P4-LB2 solution are shown with light and dark green, and pink lines. The solid
circles correspond to the snapshots on the right. (c) Time evolution of flow structures along the most unstable manifold of the
P4-LB indicated by dots in (b). Time marches downward. The tubes are isosurfaces at the swirling strength of 0.2, colored by
the streamwise velocity u, 0 (blue) ≤ u ≤ 1 (red). The transparent blue isosurfaces indicate critical layer surfaces where the
local streamwise velocity matches the wave speed of the P4-LB solution.

the bursting frequency further from the wall. The latter are also more prominent at higher Reynolds number.

Another temporally intermittent phenomenon related to a low-drag events in minimal channel flow, denoted hi-
bernating turbulence, and its relationship with a turbulent bursts are presented. Many of these low-drag events are
followed by very strong turbulent activity: they are precursors to strong bursting events. In this regard, turbulent
bursts are classified into ‘strong’ and relatively ‘weak’ classes with respect to hibernation. Defining the bursting
magnitude as the increase of the energy dissipation rate during a bursting interval, the strong burst appears more
than twice as strong as the weak burst in the range of 75 < Reτ < 115.

Finally we address the similarity between bursting trajectories and trajectories on the unstable manifolds of P4-LB
solutions in state space. The latter comprises the instability of the P4-LB solutions and its nonlinear evolution. It is
shown that the ‘strong’ bursts display very similar trajectories to those of the P4-LB solutions, providing more direct
evidence as to a connection of the bursting phenomenon to the instability of ECS32,53. Additionally, we identify a
nearly-heteroclinic connection between P4-LB and P4-UB solutions in state space.
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[29] J. Jiménez, G. Kawahara, M. P. Simens, M. Nagata, and M. Shiba. Characterization of near-wall turbulence in terms of

equilibrium and bursting solutions. Phys. Fluids, 17(1):–, 2005.
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