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Abstract

A persistent problem in wall bounded large-eddy simulations (LES) with Dirichlet no-slip bound-

ary conditions is that the near-wall streamwise velocity fluctuations are over-predicted, while those

in the wall-normal and spanwise directions are under-predicted. The problem may become particu-

larly pronounced when the near-wall region is under-resolved. The prediction of the fluctuations is

known to improve for wall-modeled LES, where the no-slip boundary condition at the wall is typ-

ically replaced by Neumann and no-transpiration conditions for the wall-parallel and wall-normal

velocities, respectively. However, the turbulence intensity peaks are sensitive to the grid resolu-

tion and the prediction may degrade when the grid is refined. In the present study, a physical

explanation of this phenomena is offered in terms of the behavior of the near-wall streaks. We also

show that further improvements are achieved by introducing a Robin (slip) boundary condition

with transpiration instead of the Neumann condition. By using a slip condition, the inner energy

production peak is damped, and the blocking effect of the wall is relaxed such that the splatting of

eddies at the wall is mitigated. As a consequence, the slip boundary condition provides an accurate

and consistent prediction of the turbulence intensities regardless of the near-wall resolution.
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I. INTRODUCTION

Accurate prediction of turbulence intensities is of great importance in both external

and internal flows. In the former, they are directly related to the noise signature around

airframe components [12, 43]. In particle laden flows, turbulence intensities are important for

prediction of particle trajectories in the vicinity of the walls, and hence, to capture correctly

the turbophoretic effect [3, 8]. Despite its relevance, it has been observed in LES that the

near-wall streamwise velocity fluctuations are over-predicted, while those in the wall-normal

and spanwise directions are under-predicted. The problem is particularly aggravated when

the near-wall region is not well resolved and is usually alleviated by refining the grid [27, 36].

However, the near-wall resolution requirements to accurately compute the boundary layer

are estimated to scale as Re9/5, where Re is the characteristic Reynolds number of the

problem [9]. A more recent study by Choi & Moin [11] using more accurate correlations

for the skin friction coefficients concluded that the cost is ∼ Re13/7, which is still far too

expensive for many practical problems despite the improvement compared to the Re37/14

scaling required for direct numerical simulation (DNS).

Some recent works to improve the prediction of first-order statistics in coarse LES are

based on the Reynolds-averaged Navier-Stokes (RANS) equations, such as the constrained

LES [10] and explicit algebraic models [36], among others. However, these approaches rely

on empirical parameters, which may be not applicable across different flow configurations.

Other works, such as the integral length-scale approximation models [37], have focused

on modifying the LES eddy viscosity model with moderate improvements on first-order

statistics. These approaches reduce substantially the grid resolution requirements, although

the cost is still expected to scale as Re13/7.

Another approach is to fully model the near-wall flow such that only the large-scale

motions in the outer region of the boundary layer are resolved. In this case, the grid point

requirements for wall-modeled LES scale at most linearly with the Reynolds number [11].

Several strategies for modeling the near-wall region have been explored in the past, and

most of them are effectively applied by replacing the no-slip boundary condition in the wall-

parallel directions by a Neumann condition. This is motivated by the observation that with
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the no-slip condition, most subgrid scale models do not provide the correct stress at the wall

when the near-wall layer is not resolved by the grid [18]. When no-slip is replaced by the

Neumann boundary condition, the prediction of the near-wall velocity fluctuations is known

to improve considerably, although this has been observed only for near-wall resolutions coarse

enough to avoid the near-wall region where turbulence intensity peaks [13, 23, 29, 30]. No

physical explanation of the mechanisms involved has been provided yet. In canonical flows,

the first grid point can be chosen to bypass the near wall peaks. However, this requires a

priori knowledge of the local Reynolds number, which is not always available for arbitrary

flow configurations. The problem becomes particularly relevant when dealing with flows

over geometrically complex surfaces, where the resolution to avoid the turbulence intensity

peaks near the wall is unknown.

Examples of the most popular and well-known wall models using the Neumann boundary

condition are the traditional wall-stress models (or approximate boundary conditions), where

the wall stress is computed using either the law of the wall [14, 34, 38], the solution obtained

by solving a simplified version of the boundary layer equations close to the wall, or the

RANS equations [4, 13, 20, 29]. The reader is referred to Cabot & Moin [7], Larsson et al.

[22], Piomelli & Balaras [32], and Bose & Park [6] for a more comprehensive review of wall-

modeled LES. In all of the wall-models presented above, the no-transpiration condition was

still maintained in the wall-normal velocity, and only recently this has been replaced by a

transpiration boundary condition as in Bose & Moin [5].

In the present study, we investigate the physical mechanisms behind the improved pre-

diction of the near-wall velocity fluctuations in an LES of turbulent channel flow. For this

purpose, we analyze three different boundary conditions, i.e., Dirichlet no-slip, Neumann

with no transpiration (traditional wall-models), and Robin boundary condition (slip bound-

ary condition with transpiration). A physical explanation of the improvements are given

in terms of the streak breakup and the suppression of spurious splat [31] formation when

transpiration is allowed.

The paper is organized as follows. In section II, we introduce the boundary conditions

used and describe the numerical experiments in our analysis. In section III, we study the
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physical mechanisms involved in the prediction of the near-wall velocity fluctuations. Finally,

conclusions are offered in section IV.

II. NUMERICAL SETUP

II.1. Boundary conditions

We describe the three different boundary conditions used in the present work for a channel

flow configuration. The Dirichlet no-slip boundary condition is defined as ūi|w = 0, where

the indices i = 1, 2, 3 denote the three spatial directions represented by x1, x2 and x3, which

are the streamwise, wall-normal and spanwise directions, respectively. The flow velocities

are denoted by ui, (̄·) represents the resolved field in LES, and (·)|w indicates quantities

evaluated at the wall.

The Neumann boundary condition without transpiration is defined as

∂ū1

∂n
= α, ū2 = 0,

∂ū3

∂n
= 0, (1)

where n is the wall-normal direction, and α is a prescribed value described in section II.2.

We define the slip boundary condition with transpiration as

ūi|w = li
∂ūi

∂n

∣

∣

∣

∣

w

+ vi, i = 1, 2, 3, (2)

where repeated indices do not imply summation. We define li to be the slip lengths, and vi

the slip velocities. In general, both the slip lengths and velocities are functions of space and

time. A slip boundary condition similar to Eq. (2) has been used by Bose & Moin [5] in

the context of wall-modeled LES, together with a dynamic procedure for determination of

the local slip length free of any a priori specified coefficients. A sketch of the slip boundary

condition for a flat wall is given in Fig. 1.

It should be noted that the choice of li and vi must comply with the symmetries of the

flow and the impermeability constraint of the wall on average. In particular, for a channel

flow configuration, the slip boundary condition should satisfy

〈ūi〉|w =

〈

li
∂ūi

∂x2

∣

∣

∣

∣

w

〉

+ 〈vi〉 = 0, i = 2, 3, (3)
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FIG. 1: Sketch of the slip boundary condition with transpiration (ū2|w 6= 0) for a flat wall.

where 〈·〉 denotes average in homogeneous directions and time. In the present study, we will

consider li constants, and vi = 0 for i = 1, 2, 3. These constraints are consistent with Eq.

(3), since 〈ūi〉|w = 0 and 〈∂ūi/∂x2〉|w = 0 for i = 2, 3. We have set v1 = 0 without loss

of generality, since its average effect can be absorbed by moving the frame of reference at

constant uniform velocity. Then, a consistent slip boundary condition for the channel can

be written as

ūi|w = li
∂ūi

∂x2

∣

∣

∣

∣

w

, (4)

which is the form used in the remainder of the paper.

II.2. Numerical experiments

We perform a set of plane turbulent channel LES. The simulations are computed with a

staggered second-order finite difference [28] and a fractional-step method [21] with a third-

order Runge-Kutta time-advancing scheme [42]. The dynamic Smagorinsky model is used as

the subgrid scale model [16, 24]. Periodic boundary conditions are imposed in the streamwise

and spanwise directions. The size of the channel is 2πδ × 2δ × πδ in the streamwise, wall-

normal and spanwise directions, respectively, where δ is the channel half-height. It has

been shown that this domain size is large enough to accurately predict one-point turbulence

statistics for friction Reynolds number (Reτ ) up to 4200 [25]. The grid resolutions for this

set of cases are chosen to be comparable to those found in the literature [27].

At the wall, three different boundary conditions as described in section II.1 are applied:

the no-slip boundary condition, the Neumann boundary condition without transpiration,
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Case Reτ N1,2,3 ∆+
2 ∆2/δ

〈u
′
2

1
(xmax

2
)〉1/2

〈u
′2

1DNS(x
max

2
)〉1/2

Symbols

NS550s32 550 32 1.41 2.6 × 10−3 1.75 × (blue)

NS550s64 550 64 0.64 1.2 × 10−3 1.24 ▽ (green)

NS2000s64 2000 64 2.35 1.2 × 10−3 1.90 © (red)

NS550u32 550 32 34.2 6.25× 10−2 1.07 � (green)

NE550u32 550 32 34.2 6.25× 10−2 1.15 △ (magenta)

SL550u32 550 32 34.2 6.25× 10−2 1.00 + (red)

TABLE I: Tabulated list of cases. The case name is given in the first column, where the

first two upper-case letters indicate the boundary condition used: no-slip (NS), Neumann

(NE), and slip (SL). The middle number is Reτ for Reτ = 550, 2000. The lower-case letter

is used to denote the stretching of the grid: stretched (s) and uniform (u). The last number

indicates N1,2,3, the number of grid points which are the same in all three directions. ∆2 is

the wall-normal grid size at the wall. The relative intensity of the peaks for u′
1 at xmax

2 for

LES with respect to DNS is given in the sixth column. The value of xmax
2 is the maximum

of xmax,LES
2 and xmax,DNS

2 , where x
max,LES/DNS
2 are the location of maximum value of u′

1 for

LES and DNS, respectively. The symbols for each case are used in the subsequent plots.

and the slip boundary condition with transpiration. The channel was driven by imposing a

constant mean pressure gradient and all cases were run for at least 100δ/uτ after transients,

where uτ is the friction velocity. For the Neumann condition, α in Eq. (1) was adjusted to

match the target Reτ at each time step. The same was done for the slip case by modifying

the slip lengths (see [1] for details). We have adopted the simplification of imposing the

correct mean component of the wall stress, which has been shown by Lee et al. [23] to be

sufficient for prediction of low-order turbulence statistics in channel flow for the Neumann

boundary condition. We have also performed a similar test for the slip boundary condition

as a function of time, and the resulting statistics are similar to the ones obtained using a

constant mean wall stress.

The details of the simulations are given in Table I. The table is divided in two blocks.
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The first block is used to assess whether the problem under investigation scales in inner or

outer units. The second block serves to evaluate the effect of different boundary conditions.

The results are compared with DNS data at the corresponding Reynolds number from Del

Álamo et al. [15], Hoyas & Jiménez [17].

III. RESULTS AND DISCUSSION

III.1. Scaling of the problem

An example of the over- and under-estimation of the turbulence intensities is shown in

Figs. 2 (a) and (b). The relative intensity of the peaks for u′
1 with respect to DNS is given

in Table I, where (·)′ denotes the root-mean-square (RMS) of the fluctuations.

The first question is to assess whether the grid requirements to address this problem scales

in outer or inner units for no-slip LES. As demonstrated in Fig. 2 (a), the resolution used in

case NS550s32 (Reτ = 550) results in large peaks for the streamwise RMS velocity fluctu-

ations, whereas doubling the number of grid points in each direction (NS550s64) improves

the prediction noticeably (Fig. 2 c). The result worsens again by increasing the Reynolds

number from Reτ = 550 to 2000 while maintaining the finer grid resolution (NS2000s64, Fig.

2 d). This suggests that, for the no-slip boundary condition, the problem is independent

of the outer-layer eddies, and the required near-wall grid to avoid under/over-predictions

scales in wall units.

III.2. Effect of the streak breakup

The cause of the problem is analyzed in Figs. 3 and 4, which show instantaneous snapshots

and the auto-correlations of u′
1 at x+

2 ≈ 15 for a selection of the cases from Table I. The

results reveal that when the peaks are not well-predicted (case NS550s32), as in Figs. 3

(a) and 4 (a), the associated flow is dominated by streamwise streaks several times longer

than those of the DNS. This is consistent with observations in Baggett [2], Rasam et al.

[36], Weatheritt et al. [41]. On the other hand, the lengths of the streaks developed in
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FIG. 2: RMS velocity fluctuations for NS550s32 in the (a) streamwise, (b) spanwise (top)

and wall-normal (bottom) directions. Streamwise RMS velocity fluctuations for (c)

NS550s64 and (d) NS2000s64. Symbols as in Table I. Dashed lines are DNS data at the

corresponding Reynolds number.

the flow when increasing the resolution (case NS550s64, Fig. 4 b) or introducing the slip

boundary condition (case SL550u32, Figs. 3 b and 4 c) are comparable to those from DNS.

Although not shown, the Neumann boundary condition (NE550u32) yields similar results

to those observed for the slip case. Note that the improvement achieved with the Neumann
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or slip boundary condition does not increase the computational cost of the simulation since

grid refinement was not required, in contrast to the improvements attained using the no-slip

boundary condition in Fig. 2 (c).

The interpretation from the previous results is that, in the case of no-slip, the near-wall

dynamics are altered in such a way that the streaks are unable to follow their natural cycle

of meandering and breakup [19, 39], which manifests itself in the flow by a strong u′
1 and

reduced u′
2 and u′

3. Other investigations on drag reduction have reported a similar behavior

in the turbulence intensities by controlling the near-wall streaks [40] or by adding a stochastic

forcing term to break up the large-scale structures [26, 33].

The previous interpretation is further supported by the improved intensities (Fig. 5) and

shorter streamwise streaks (Fig. 4 d) in case NS550u32, where the first interior grid point is

such that the streaks below x+
2 ≈ 15 are bypassed while maintaining the no-slip boundary

condition. A more systematic analysis of the effect of the first grid point is shown in Fig. 6

(a), where the grid is stretched in order to modify ∆x2 at the wall. For coarse resolutions with

∆x+
2 > 15, the over-prediction of u′

1 is mitigated for all boundary conditions. By stretching

the grid such that ∆x2 is finer at the wall, only the slip boundary condition provides good

predictions of the streamwise turbulence intensities regardless of the grid resolution, whereas

the results from the no-slip and Neumann boundary conditions degrade for ∆x+
2 < 15. As an

example, the streamwise RMS velocities for the most stretched grid are shown in Fig. 6 (b).

Note that despite the good prediction of the no-slip case for resolutions with ∆x+
2 > 15, this

is not a practical solution as the no-slip condition cannot be used in context of wall-modeled

LES. Another important remark is that in most wall-modeled LES, the Neumann boundary

condition has been used on canonical flows such as channel or boundary layer flows, where

the near-wall grid resolution is usually chosen to satisfy ∆x+
2 > 15. Our analysis is relevant

for those flow configurations where the local Reynolds number is not known a priori and,

hence, the first grid point may lie in the region ∆x+
2 < 15. Finally, the results in Fig. 6

(a) highlight the fact that providing the perfect wall model (correct mean wall stress) is not

enough for good prediction of the turbulence intensities at all resolutions, and the intensities

also depend on the form of the boundary condition.
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(a) (b)

FIG. 3: Instantaneous snapshots of the streamwise velocity component at x+
2 ≈ 15 for (a)

NS550s32 and (b) SL550u32.

According to the previous results, both Neumann and slip boundary conditions improve

the prediction of the turbulence intensities by avoiding the formation of long streaks; how-

ever, the mechanisms involved are different for each case. To analyze in more detail these

mechanisms, the production (P), pressure strain (Π), and turbulent diffusion (T ) compo-

nents of the streamwise turbulence intensity budget are plotted in Figs. 7 (a), (b), and (c).

The choice of these quantities is motivated by the fact that the energy source for u′2
1 is given

by the production term, while the transfer of energy to the u′2
2 and u′2

3 components is pro-

vided through the streamwise pressure-strain correlation [35]. The turbulent diffusion term

is also included since it is used to explain the improvements with the Neumann boundary

condition at coarse near-wall grid resolutions.

In all cases, the magnitude of the pressure strain is underestimated, and moderate im-

provements appear by refining the grid or using either the Neumann or slip boundary con-

dition. Regarding the production, the no-slip cases are characterized by a strong near-wall

peak. On the contrary, this peak is absent for cases with slip, where most of the production

is concentrated far from the wall. Similar results are observed for all slip cases shown in

Fig. 6 (a). In the case of the Neumann boundary condition, the strong near-wall maxima
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FIG. 4: Auto-correlations of the streamwise velocity component at x+
2 ≈ 15 for (a)

NS550s32, (b) NS550s64, (c) SL550u32, and (d) NS550u32. The upper half of the

auto-correlation is for LES and the lower half for DNS. Contour lines are for positive

correlations of 5% and 35% of the maximum (black) and negative correlations of 2% and 7

% of the maximum (red).

in the production term is still present but is compensated by the turbulent diffusion term,

which transports the excess energy away from the wall. This is only the case when the near

wall resolution bypasses the near wall peaks. For Neumann cases with ∆x+
2 < 15 in Fig. 6
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FIG. 5: RMS (a) streamwise, (b) spanwise (top) and wall-normal (bottom) velocity

fluctuations for cases NS550u32, NE550u32, and SL550u32. Symbols as in Table I. Dashed

line is DNS.
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FIG. 6: (a) Relative intensity of the peaks at xmax
2 for u′

1 with respect to DNS as a

function of ∆x2 at the wall, where xmax
2 is as defined in Table I. (b) Streamwise RMS

velocities for the most stretched mesh with ∆x+
2 = 1.41. Symbols are no-slip, × (blue);

Neumann, △ (magenta); and slip, + (red).
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(a), the magnitude of the turbulent diffusion term is reduced near the wall, while the strong

peak in the production term persists (not shown).

The above results are consistent with the streak lengths observed in Fig. 4 and it could be

hypothesized that the excess of P + T intensifies the streaks (stronger u′
1) while the lack of

pressure strain reduces the distribution of the energy to the other two velocity components

(weaker u′
2 and u′

3). This is further supported by the results in Fig. 7 (d), which shows

that the ratio 〈P + T 〉/〈Π〉 approaches the DNS value for those cases where the under- and

over-shoots of the RMS velocity fluctuations are less pronounced.

III.3. Wall blocking effect

An additional cause of the problem may be attributed to the formation of splats due to

the blocking effect of the wall. Splats are local regions of stagnation point flow resulting from

fluid impinging on a wall and have been investigated in Perot & Moin [31]. Here we study the

effect of the splats on the turbulence intensities by comparing cases NE550u32 (Neumann

boundary condition with no transpiration) and SL550u32 (slip boundary condition with

transpiration). The resulting RMS velocity fluctuations are plotted in Fig. 5. Note that ū′
2

is not zero at the wall for the slip case due to transpiration. Although not shown, for coarser

grid resolutions, the required slip lengths to match the target Reτ are larger, which leads

to a larger variability in the transpiration velocities as well. As the grid is refined, the slip

length (and hence ū′
2) approaches zero. The results in Fig. 5 show that the blocking effect

of the wall intensifies the splats, increasing the wall-parallel turbulence intensities (u′
1 and

u′
3) near the wall. Compared to the traditional Neumann condition, better predictions of

the streamwise velocity fluctuations are obtained when transpiration is allowed due to the

local nonzero ū2 which reduces the formation of splats.

IV. CONCLUSIONS

In this study, we have investigated the classic over- and under-prediction of the RMS

velocity fluctuations close to the wall, which has been a persistent problem for LES with
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FIG. 7: (a) Average production 〈P〉, (b) pressure strain 〈Π〉, and (c) turbulent diffusion

〈T 〉 for the streamwise turbulence intensity budget, and (d) 〈P + T 〉/〈Π〉 for NS550s32,

NS550s64, NE550u32, and SL550u32. Symbols as in Table I. Dashed line is DNS.

poor near-wall resolution. We have performed a set of LES of turbulent channel flow in

order to provide a physical explanation in terms of streak breakup and splat formation near

the wall.

We have shown that in LES with no-slip boundary condition at the wall, the problem

of over/under-prediction of turbulence intensities is independent of the the outer layer dy-
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namics. The required near-wall resolution scales in wall units, making the no-slip boundary

condition impractical at high Reynolds numbers. Wall-modeled LES is the most feasible

approach compared to wall-resolved LES or DNS, as the required grid resolution scales at

most linearly with Reynolds number. In wall-modeled LES, the no-slip boundary condi-

tion is typically replaced by a Neumann condition without transpiration, which is known

to alleviate the problem when the near wall resolution is such that the near wall peaks are

not resolved. We have shown that further improvements can be obtained by using a slip

boundary condition with transpiration. Furthermore, contrary to the Neumann boundary

condition, the prediction of the turbulence intensities is independent of the near-wall res-

olution. This is advantageous in flows over complex geometries, where the local Reynolds

number of the flow is not known and the grid resolution cannot be judiciously chosen a priori.

The consistent prediction of the slip boundary condition also provides a more monotonic

convergence towards the DNS solution with grid refinement.

Our investigation reveals that the reason for the inaccurate predictions of the turbulence

intensities can be traced back to the inability of the streaks to follow the natural dynamic

cycle of meandering and breakup, which results in stronger streamwise fluctuations and

weaker cross-flow intensities. The Neumann boundary condition (for coarse near-wall grid

resolutions) and the slip condition (for all grid resolutions investigated) avoid the energy

pile-up in u′
1 by reducing the production of streamwise turbulence intensity which, in turn,

compensates for the underestimated redistribution of energy to u′
2 and u′

3. As a consequence,

the ratio 〈P + T 〉/〈Π〉 becomes closer to the DNS value for those cases with improved

predictions. Further improvements are obtained by using the slip with transpiration and

can be attributed to the suppression of splats by relaxing the blocking effect of the wall.

This work was supported by NASA under the Transformative Aeronautics Concepts

Program (grant no. UNIX15AU93A).
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