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3Sorbonne Universités, Université Pierre et Marie Curie and Centre National de la Recherche Scientifique,
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(Dated: 15 décembre 2017)

Sea spray is the main source of aerosols above the ocean. One of the pathways for sea spray pro-
duction is through bubble bursting which eject myriads of droplets. We present a detailed description
of the velocity of jets formed by bubble bursting, obtained through extensive comparison between
experimental results and numerical simulations for a wide range of physical parameters. We discuss
the importance of the shape of the cavity on the jet velocity and the regime of parameters for which
drop ejection is observed. We present a phenomenological formula that predicts the jet velocity for
the full range of parameters and compare it to a theoretical prediction based on curvature reversal.
The results are then discussed in light of both their fundamental applications in the understanding
of the phenomena and their quantitative implications in air–sea interactions.

I. INTRODUCTION

Ocean spray is composed of small liquid droplets formed through two main pathways : the spume drops, produced
from the tearing of breaking wave crests by strong winds [1, 2] and the film and jet drops produced by bursting bubbles
[3–7], after a breaking wave event has entrained air below the sea surface [8–10]. These drops play a crucial role in
the exchange between the ocean and atmosphere by transporting water, heat, dissolved gases, salts, surfactants, and
biological materials. Once transported in the upper atmosphere, they may evaporate, affect the radiative balance of
the atmosphere and serve as cloud condensation nuclei [11–14]. After a bubble reaches the free surface, the thin liquid
film separating the bubble from the atmosphere drains and disintegrates producing film drops [15]. This process leaves
an unstable opened cavity which collapse [7, 16, 17] and eventually throw jet drops [18] mainly vertically above the
surface, through the formation and eventually the break up of a rising jet (see Fig. 1, 2 and 3). This latter mechanism
is thought to account for sea spray aerosol particles in the atmosphere with radii between 1 and 200 µm [14]. A
recent study shows that the chemical composition of small jet drops differs from those of film drops, and discusses
implications for atmospheric chemistry [19]. The generation of ocean spray by bursting bubbles in coastal areas during
red tides of harmful algae can bring pathogens in the atmosphere as aerosols, causing health issues [20, 21]. Control of
jet drops sizes and velocity has also been a subject of interest with application to the sparkling wine industry [22, 23].

Since the pioneering study of bursting bubbles published by Woodcock et al. in 1953 [24], the past sixty five years
have witnessed a number of studies documenting jet drop properties, however the fundamental mechanism leading to
the ejection of jet drops is still unclear. The first comprehensive study, realized by Duchemin et al. [17] using numerical
simulations based on a free-surface formulation of the Navier–Stokes equations, showed that fast jets are produced
by the self-similar collapse of a cavity created by focusing capillary waves. The cavity collapse leading to the jetting
dynamics can be described by a self-similar dynamic based on the balance of inertia and capillarity [25, 26]. This leads
to a singular behavior where the velocity diverges. The singularity is in practice regularized by viscous and capillary
effects. Viscosity was shown to play a crucial role in the control of this focusing. Counter-intuitively the fastest jets
are not obtained for a vanishing viscosity, rather they occur in a relatively narrow range of optimal viscosity : for
a Laplace number La = γR0ρ/µ

2 around 1000, with R0 the bubble radius and γ, ρ and µ, respectively the surface
tension, density and viscosity of the liquid. For this particular value the system approaches a finite-time singularity,
where the curvature and subsequently the pressure and the velocity tend to diverge [25, 26].

An explanation of this phenomenon is that the damping action of viscosity shelters the self-similar collapse from
short wavelength capillary perturbations, allowing it to come closer to the singular limit and therefore produce faster
and smaller droplets. Earlier numerical simulations of the phenomenon relied on boundary integral methods for an
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inviscid fluid [27–30] and thus missed this important mechanism. Full Navier Stokes simulations have recently been
presented and focused on the range of existence of jet drops [31]. A theoretical study has just just been published
[32] based on a balance between viscosity, inertia and surface tension during the curvature reversal leading to the jet
formation (neglecting gravity, thus valid for small Bond numbers, Bo� 1).

However, several aspects of the phenomenon were not addressed in Duchemin et al. [17]. In particular, the effects
of gravity were not taken into account. As a consequence a simplified initial condition was used : a spherical bubble
exactly tangent to a flat surface with a very small hole at the top. This can indeed be seen as the limiting case where
surface tension effects are much larger than gravity effects. Furthermore, only limited and qualitative comparisons
with experiments were made, mostly due to the scarcity of quantitative experimental data available at the time. In
this context, the present article has two primary aims : 1) verify that experimental and numerical results are indeed
quantitatively consistent across the entire range of accessible parameters (and clarify the theoretical assumptions
necessary to obtain such an agreement), 2) obtain a complete quantitative description of the dependence of the jet
velocity on both viscosity and gravity, and properly separate these two effects.

This article presents a full cross-validation of numerical and experimental results for this problem, and includes high-
resolution, high-fidelity direct numerical simulations of the full two-phase flow problem. In particular the convergence
of the results close to the singular limit is discussed and the shape of the collapsing cavity, and its velocity are analyzed
and compared in detail with experiments. The dependency on the Bond number (effect of gravity relative to surface
tension) is studied systematically using numerical simulations, significantly increasing the range of parameters covered
experimentally. This unique data set allows us to propose a universal relationship for the jet velocity.

The article is organized as follows. In §2, we present the numerical techniques, experimental results used for compari-
sons, relevant non-dimensional numbers, as well as examples of the cavity collapse, jet formation and drop generation.
Experimental and numerical cavity collapse are cross validated and we discuss the definition of the jet velocity by
comparing laboratory and numerical data. In §3, we explore numerically a wide parameter space in terms of non-
dimensional numbers : the Laplace number (viscous relative to inertia) and the Bond number (gravity relative to
capillary forces). We then discuss the influence of the capillary wavelength on the jet velocity. The crucial role played
by the initial cavity shape on the final jet velocity, through the selection of different wavelengths capillary waves, is
detailed in an appendix. Finally, we present a universal scaling for the jet tip velocity formed by bursting bubbles,
as a function of the Laplace and Bond numbers. Finally, we compare our numerical results with recent theoretical
work [32]. The theory from Ganan-Calvo [32] is restricted to small Bond numbers (Bo� 1), neglecting the effect of
gravity. We extend this work to finite Bond numbers and show how the theoretical scaling for the jet velocity can be
adapted to account for the influence of gravity.

II. EXPERIMENTAL CONFIGURATION AND NUMERICAL SIMULATION

A. Experimental and numerical setup, non-dimensional numbers

The experiments have been described in details in Ghabache et al. [7, 18, 33] and consist in releasing a gas bubble
from a submerged needle in a bulk liquid and recording the upward jet after the bubble bursts at the free surface.
The bubble radius, selected by imposing the needle diameter, ranges from 300 µm to 5 mm, and the liquids used
include water-glycerol-ethanol mixtures with varying viscosity, surface tension and density. The bubble collapse and
jet dynamics are analyzed through fast and close-up imagery using a digital high-speed camera and zoom lens systems.
The spatial resolution is typically 5 µm per pixel and the acquisition rate between 10000 and 150000 frames per second.

As described in [7, 15], when the cavity collapse starts (just after bursting of the film), the cavity presents the
static shape of the bubble at the gas-liquid interface. This can be obtained theoretically by solving the Young–Laplace
equations [15, 34], assuming that surface tension is constant and bubble is shaped by the competition of surface
tension and gravity. For each bubble cavity of radius R0 (or in a non-dimensional way, for a given Bond number) we
have to compute the static bubble profile, which has been shown to accurately describe the shape of the bubble cavity
after the initial film break-up, right before the cavity left by the bubble starts to collapse [7, 15].

The numerical simulations are performed by solving the axisymmetric, two-phase, incompressible Navier–Stokes
equations with surface tension using the open source solver Gerris [35, 36], based on a quad/octree adaptive spatial
discretization and a multilevel Poisson solver. The interface between the high density liquid and the low density gas
(air) is reconstructed by a Volume Of Fluid (VOF) method and an accurate, well-balanced surface-tension model
is used. The Gerris Flow Solver has been extensively used and validated for complex multiphase problems such as
atomization [37, 38], the growth of instabilities at the interface [39], wave breaking in two and three dimensions
[9, 37, 40, 41], capillary wave turbulence [42] and splashing [43, 44]. Here, we use the adaptive mesh of Gerris to
solve the collapsing dynamics at very high resolution, with a grid size up to an equivalent of 81922 (corresponding to
1638 grid points per bubble diameter), which is necessary to obtain numerically-converged results, especially for the
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very narrow and high speed jets. The ejection velocity of the jet and the resulting droplets can then be analyzed and
compared to the experimental results.

The physical parameters of the problem are the bubble radius R0, liquid density ρ, dynamic viscosity µ, surface
tension γ and gravity g. The density of the gas is set to ρg = 10−3ρ while the viscosity of the gas is set to µg = 10−2µ,
meaning that we are working at high density and viscosity ratio. In this context the gas is supposed to have no
influence on the dynamics of the cavity collapse and jet formation.

We initialize the liquid-gas interface with the theoretical shape of the cavity left by a bursting bubble of radius R0.
The initial condition of the simulation is therefore a close match to the experimental one. We will show later that
the details of the cavity shape participate in selecting the capillary waves generated during the cavity collapse, and
therefore strongly influence the jet velocity. Consistent comparisons with laboratory experiments thus require that
the capillary/gravity equilibrium bubble shape be used as initial condition. Note that we do not attempt to resolve
numerically the break-up of the initial film (the bubble cap) but start the simulation directly with the opened cavity.

This system is therefore fully described by only two dimensionless numbers, for example the Bond number Bo (ratio
between gravity and capillary forces), and the Laplace number La (ratio between inertio-capillary and viscous effects,
effectively similar to a Reynolds number) :

Bo =
ρgR2

0

γ

La =
ργR0

µ2

(1)

We choose as characteristic length and time scales of the problem, the bubble radius R0 and the inertio-capillary
time scale tic =

√
ρR3

0/γ, equivalent to the frequency of a capillary wave with wavenumber k = 1/R0. As in the
experimental study of Ghabache et al. [7], we can also work with the Morton number, instead of the Laplace or Bond
number, with the definition :

Mo =
gµ4

ργ3
= BoLa−2 (2)

The Morton number has the advantage of being constant for a given fluid, however it has the disadvantage of being
harder to interpret as it ”mixes” all parameters/effects, in contrast with the Bond and Laplace numbers which can
simply be interpreted as the non-dimensional gravity and inverse of viscosity (i.e. a Reynolds number) respectively.
Note that instead of the Laplace number, the Ohnesorge number can also be used, Oh = La−1/2, as in Walls et al.
[31]. Experimentally, Ghabache et al. [7] defined an effective bubble radius based on an elliptic fit and the two axis of
the fitted ellipse, Reff . We have verified that using Reff or R0 leads to differences in the characteristic non-dimensional
number of less than 1%. These differences are well below the experimental or numerical uncertainties.

The primary measurement is the velocity of the jet Vtip, we will discuss its definition in §3. Earlier numerical studies
have defined Vtip as the instantaneous velocity when the jet crosses the z = 0 horizontal line [17]. Experimentally,
Ghabache et al. [7] measured the averaged jet velocity over the first few images after it passes the z = 0 horizontal
line. We will see that these two velocities are not necessarily equal since the jet velocity can still be decreasing when
it passes z = 0. This difference in definition can lead to biases when comparing experimental and numerical results,
and also when comparing results from different groups. Here, the jet velocity is measured as it reaches a stationary
state, usually just before the first drop detaches from the jet, which is consistent with experimental measurements [7].
This velocity is then directly related to the top drop ejection velocity. Since we analyze the jet tip velocity, we define
non-dimensional numbers related to this velocity, for example the Weber number :

We =
ρV 2

tipR0

γ
, (3)

which compares inertial effects and surface tension, or the capillary number :

Ca =
µVtip

γ
, (4)

which compares the jet velocity with the visco-capillary velocity σ/µ. One of the goal of the paper is to provide a
master curve for a non-dimensional tip velocity as a function of the Bond and Laplace numbers.

Solving the small scale features of the collapsing cavity and the emerging jet is a challenging numerical task,
requiring very high resolution. As already mentioned, we use the adaptive feature of Gerris with meshes equivalent
to at least 2 × 211 and up to 2 × 213 grid points. All results presented in the papers are converged with respect to
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Figure 1. Direct numerical simulations of the axisymmetric Navier–Stokes equations, using Gerris, of a bursting bubble
and subsequent jet formation. Top : Bond number Bo = 0.1172, and Laplace number La = 6.7 · 104, or Morton number
Mo = 2.63 ·10−11 corresponding to a bubble radius R0 = 934µm in water. Several fast capillaries propagate towards the center
of the cavity, with significant vorticity being generated, and leading to the creation of a jet, that then pinches off to release
droplets. Times of the snapshots are t/tic = 0, 0.16, 0.32, 0.40, 0.48, 0.54 and 0.60. Bottom : bursting close to the optimal Laplace
number, with bond number Bo = 0.01, and Laplace number La = 103. During the cavity collapse, a single capillary wave is seen
propagating towards the center with relatively low vorticity being generated before focusing. The collapse can be described by a
self-similar dynamics and gets close to the finite time singularity. At focusing, a very strong vorticity field is observed, associated
with a very thin and fast jet, small drops being quickly ejected. Times of the snapshots are t/tic = 0, 0.16, 0.32, 0.43, 0.45, 0.46
and 0.48. The color field represents vorticity Γ in the gas and liquid (with maximum vorticity in red, Γtic = 190, and minimum
in blue Γtic = −190). Maximum refinement corresponds to a grid equivalent to (213)2, corresponding to 1638 grid points per
bubble diameter.

the mesh size, i.e. results do not change if the resolution is increased. The numerical convergence of the jet velocity
was verified for the entire range of Laplace numbers. The resolution necessary to reach convergence depends mostly
on the Laplace number. If the Laplace number is around 1000, i.e. close the dynamics get close to the finite time
singularity, then convergence is observed for a resolution between 212 and 213, while for higher Laplace numbers,
typically for La > 3000, mesh convergence is observed for resolutions between 211 and 212. Finally, the results are
carefully validated against laboratory data [7] for a wide range of Laplace and Bond numbers.

B. Cavity collapse and jet formation : numerical and experimental validation

Figure 1 illustrates direct numerical simulations of two typical jetting events following a bubble bursting at a free
surface. The top panels illustrates a case in water, for a large Laplace number (radius in water is R0 = 934µm
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Figure 2. Jet dynamics of a bursting bubble in water, bubble radius is R0 = 934µm. Bond number Bo = 0.1172, and Laplace
number La = 6.7 · 104, or Morton number Mo = 2.63 · 10−11. Left : Experimental time sequences superposed with numerical
profiles. The top four panels show the event below the free surface, while the bottom 4 panels display the bubble above the free
surface. The top four panels take place before the first image of the bottom panels. Excellent agreement between the numerical
and experimental data is observed for the cavity collapse dynamics, as well as for the jet formation and the first ejected droplet.
Differences appear for the dynamics of the jet after the first drop is ejected and for the following satellite drops. Right : Time
evolution of the vertical velocity of the apex of the cavity, becoming the tip of the jet, Ca(t) = [ρνVtip(t)]/γ. Time is shifted
by t0, the time at which the jet crosses the z = 0 reference point and normalized by tic. Black circles are laboratory data from
[7] while color lines are DNS with increasing resolutions (from 211 to 213 equivalent grid size). Excellent agreement is observed
between the laboratory and numerical results, as well as mesh convergence. The velocity of the jet is still decreasing when it
crosses the z = 0 horizontal line, and reaches a constant value before the formation of the first drop, which we define as Vtip.
The first drop detachment is indicated with an arrow. Inset : same data for the vertical position of the central point of the
cavity, becoming the tip of the jet.

corresponding to a Bond number Bo = 0.1172, and Laplace number La = 6.7 · 104, or Morton number Mo =
2.63 · 10−11). We see a train of capillary waves propagating along the cavity, associated with a significant vorticity
generation [40], and focusing at the bottom. These collapsing waves focus at the center of the cavity and give rise to
a high-speed vertical jet shooting out above the free surface as observed in the top sequence. The jet then fragments
into droplets generating an aerosol of O(10) droplets [3, 33, 34]. During the focusing, the different capillaries arrive
to the center of the cavity at different times, leading to very fast oscillations of the bottom of the cavity before the
jet is formed and ejected. Entrainment of small gas bubble back into the liquid pool is visible.

The bottom panels illustrates a case close to the optimal Laplace number La = 103 and Bo = 0.01. While a similar
dynamic as in water is observed, we also see important differences. The train of capillary waves is damped by the
higher viscosity and only a single capillary wave is propagating towards the center of the cavity, with weaker vorticity
generation before reaching the center of the cavity. It leads to the creation of a sharp corner, and a dynamic getting
very close to the finite-time singularity with very strong vorticity field and the generation of a much faster and thinner
jet. Several drops are formed when the thin and fast jet moves upward. Entrainment of small gas bubble back into
the liquid pool is also visible.

Figure 2 (panels on the left) illustrates a typical jetting event following a bubble bursting at a free surface in water
(same case as in fig. 1). The bottom sequence shows the free surface view while the top one displays the underwater
dynamics. The first image of the bottom sequence shows a static bubble lying at the free surface. The film separating
the bubble from the atmosphere drains and bursts leaving an unstable opened cavity. The top sequence displays a
train of capillary waves propagating along the cavity and focusing at the bottom. The computed cavity and jet profiles
have been superimposed on both experimental sequences. Agreement between the experimental and computed profiles
is very good for the cavity collapse, the formation of the capillary waves on the cavity, the jet formation and up to
the detachment of the first drop. The size and velocity of the first drop are very well captured in the simulation while
the subsequent drops differ between the laboratory and numerical data.

Figure 2 (right) shows both the numerical and experimental time evolution of the vertical velocity (and position in
inset) of the central point of the cavity, which becomes the tip of the jet once it is formed, for this bubble in water
(Bo = 0.1172, La = 6.7 · 104). The time t0 corresponds to the moment when the tip of the jet crosses the z = 0
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Figure 3. Experimental time sequences superposed with numerical profiles of a typical jetting event following a bubble bursting
at a free surface of silicon oil. The bottom 4 panels show the event as seen from above the free surface, while the bottom 4
panels display the bubble under the free surface. The top 3 panels take place between the first two images of the top panels.
Bubble radius is R0 = 904µm. Bond number Bo = 0.14, and Laplace number La = 1697, or Morton number Mo = 4.86 · 10−8.
A single capillary wave propagates towards the center of the cavity, creating a sharp corner and leading to a very thin jet,
corresponding to the optimal Laplace number and a dynamic close to the finite-time singularity. Very good agreement between
experimental and numerical profiles is observed up to the formation of the first drop. The jet velocity Vtip is defined as the
velocity before drop ejection.

position, i.e. the beginning of the experimental recording of the jet. The time evolution is shown for different grid
resolutions and one can see that convergence is reached with only very small variations between the different grids. At
(t− t0)/tic ≈ 0.15, the first drop is ejected, and after that time, some differences between the different resolutions are
observed. The slight bump in velocity corresponds to oscillations of the detached drop. The numerical results are in
excellent agreement with the experimental data [7], given the complexity of both the experiments and the numerical
simulations.

The vertical velocity of the apex of the cavity increases very rapidly when the capillary waves focus, and experiences
rapid oscillations during the time the small ripples are reaching the apex and give rise to a vertical jet. Interestingly,
we will see that close to the singularity, these oscillations are not present, since focusing does not involve a train
of waves but a single one. The vertical jet reaches its maximal velocity just after formation, and the velocity then
decreases to reach a constant value before the first droplet ejection. It is clear that when the jet crosses the z = 0
mean water level, its velocity is still decreasing and therefore measuring the instantaneous jet velocity at this instant
is not physically meaningful, since it is still in a transient regime.

We therefore consider that the relevant jet tip velocity is the plateau value reached before drop ejection and we
define it as the jet velocity Vtip. This value is the one that is effectively measured experimentally when defining an
average velocity over the first few images after the jet crosses z = 0. Consequently, we only define Vtip for jets that
create a drop, and we will discuss the range of parameters (Bond and Laplace numbers) for which drop ejection is
observed.

Making this distinction between the jet velocity at z = 0 and Vtip as defined here is crucial for obtaining consistent
results between the experimental and numerical datasets. For some regimes, such as intermediate Laplace numbers
4000 < La < 40000, these two values are identical, since the z = 0 crossing coincides with the plateau velocity, but for
lower and larger Laplace numbers, this distinction must be made. This discussion on the definition of the tip velocity
has to be remembered when comparing results in the literature, both from numerical simulations and laboratory
experiments.

Figure 3 illustrates a jetting event at the free surface of a more viscous liquid. This case is similar to the one close
to the optimal Laplace number presented in fig. 1, with a bubble radius of R0 = 904µm, corresponding to a Bond
number of Bo = 0.14, and Laplace number La = 1697. The train of capillary waves is replaced by a single capillary
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wave propagating towards the center of the cavity, leading to the creation of a sharp corner and the generation of a
much faster and thinner jet. The cavity dynamics, as well as the jet formation and first drop generation are again
very well captured by the numerical simulations.

Similar comparisons can be made for the whole range of Laplace and Bond numbers tested. The simulations capture
very well the collapse of the cavity, together with the jet formation and the first drop, while departure is observed
for the generation of satellite droplets. These differences are not surprising since, even in experiments, the size of the
second drop can take two different values (Spiel’s bimode), whereas the size of the first drop is very well defined and
unique [33, 34]. This is happening when what seems to be the future second and third drops are not able to separate
properly. In this case, we get either a big second drop (no separation) or a small second drop (good separation). This
process is not well understood but might be related to small asymmetries during the bubble collapse, responsible for not
perfectly vertical jets and then variability in the pinch off dynamic. In light of that discussion, simulations give access
to the ideal case of perfectly vertical and axisymmetric jets that are very difficult to achieve in laboratory experiments
whereas experiments give an overview of what happens in nature with non perfect axi-symmetric conditions.

III. JET DYNAMICS

A. The emerging jet and the tip velocity

Let us first give more details on the time evolution of the jet velocity as a function of the relevant parameters in
order to grasp the influence of each effect before we present a systematic study. Four regimes are identified in terms of
the Laplace number : at low Laplace numbers, La < 500, no drop is formed and we do not define the jet velocity, at
intermediate Laplace numbers 500 ≤ La ≤ 1000, drops are formed and the velocity increases, at high Laplace number
La > 1000, drops are formed and the jet velocity decreases as the Laplace number increases. An optimum is reached
for La ≈ 1000 with very thin and fast jets. Figures 4 shows the jet capillary number Ca as a function of time for three
Laplace numbers (500, 1000 and 104) and three different Bond numbers (0.1, 0.01 and 0.001) in each case, together
with the time evolution of the cavity and the jet formation for a single Bond number (Bo = 0.01).

At high Laplace number (La = 104), figure 4 (a) & (b) shows that the velocity of the center of the cavity increases
abruptly when the first capillary wave focuses at the center of the cavity. The peak capillary velocity Ca of the apex
for the three Bond numbers is lower than unity. Two main capillary waves are observed, arriving at different times
at the center of the cavity, before the jet forms. The jet is relatively thick and eventually pinches off to form a drop.
The jet reaches a well defined stationary velocity before the first drop is formed, which we define as the tip velocity
Vtip. This case is similar to the one presented for water in figure 2 (a), which was also for a high Laplace number. The
time of the first drop generation is indicated on panel (b) by an arrow for each simulation. The jet velocity decreases
when increasing the Bond number, and we observe a delay in the drop formation related to this lower velocity. The
lower velocity can be related to the wavelength of the capillary wave generated when the cavity starts collapsing,
with longer wavelength being selected by the initial condition, due to the effect of gravity on the initial bubble static
shape. This longer wavelength leads to the lower velocities as suggested by the dispersion relation of gravity-capillary
waves in deep-water c =

√
g/k + γk/ρ.

At low Laplace number (La = 500), figure 4 (c) & (d) shows that the apex velocity also increases abruptly when
the capillary wave focuses at the center, and then continuously decreases, with no drop formation. Only one capillary
wave is visible in this case, the smaller capillaries being damped by viscosity. This leads to a cleaner focusing and a
higher velocity at the center of the cavity than in the high Laplace number case because of a more efficient focusing
of the available energy in a smaller cavity. In this case, no drop formation is observed. When the jet moves upward,
transverse oscillations in the jet lead to some oscillations in the velocity, but are not strong enough to lead to drop
detachment, probably due to the strong viscous effects. These oscillations are related to capillary waves and the
pinching is avoided in a process that appears similar to the one described in Hoepffner and Paré [45]. Also, we observe
the entrainment of small air bubbles, which might take significant energy out of the jet, participating in preventing
drop ejection. The jet velocity decreases until it gets back to zero (not shown). In some cases a drop can detach during
the fall back of the jet, with a much smaller velocity than that of an ejected drop, before quickly falling back into the
bath. The velocity is smaller for higher Bond numbers, which is again attributed to the effect of gravity on the cavity
shape. We do not define a jet tip velocity in these cases where no drop is generated during the upward motion of the
jet.

Finally, one of the most interesting case is close to the optimal Laplace number, La = 1000 (fig. 4 (e) & (f)). The
dynamics are initially similar to the low Laplace number case, with a single wave propagating towards the cavity
apex, but when the capillary wave focus to the cavity center, the jet reaches a much higher normalized velocity, up
to Ca(t) ≈ 200. The cavity presents a singular square shape with dynamics well-described by a self-similar capillary
scaling and a dynamic getting close to a finite-time singularity [7, 17, 26]. A very thin and very fast jet is formed and
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Figure 4. Left panels (a,c,e) : Time evolution of the cavity profile, showing the collapse and jet formation for three Laplace
numbers, at Bo = 0.01. Time is color coded and increases from blue to red, with ∆t = 0.03tic between each profile. (a) :
La = 104 : several capillary waves are seen propagating toward the center, creating a jet that eventually pinches off and forms
drops. No air bubble entrainment is observed. (c) : La = 500 : a single capillary wave is visible propagating toward the center of
the cavity, leading to a thinner jet, which does not pinch off. Air entrainment in the liquid is observed when the jet is formed.
(e) : La = 1000, the self-similar collapse comes very close to a finite time singularity, with a single capillary wave focusing to the
center of the cavity, leading to a very fast and thin jet, which pinches off quickly and forms drops. Air entrainment is observed
when the jet is formed. Right panels (b,d,f) : Time evolution of the vertical velocity of the apex of the cavity, becoming the tip
of the jet Ca(t) = [ρνVtip(t)]/γ, for three different Laplace numbers and three Bond numbers, representative of the dynamics
at high Laplace number (La = 104), low Laplace number with no drop formation (La = 500), and Laplace number close to
the capillary singularity (La = 1000). Time is normalized, (t − t0)/tic. For each case, the velocity for three Bond numbers is
shown (Bo = 0.1, Bo = 0.01, Bo = 0.001), with the velocity decreasing when increasing the Bond number. (f) : La = 1000, the
dynamic is close to the finite time singularity for the smallest Bond numbers, while the velocity of the jet is much smaller in
the Bo = 0.1 case, due to gravity effects on the shape of the cavity. Arrows indicate the time just before drop formation.
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its velocity decreases very quickly before the first drop detaches. The plateau velocity of the apex just before drop
detachment, observed for a very short time, is taken as the tip velocity, and the time at which the first drop detaches
is indicated by arrows in panel (f). This quasi-singular behavior is observed for the two lowest Bond numbers (red and
blue curves), with a jet velocity slightly higher for the lowest Bond number. For the higher Bond number (Bo = 0.1),
the focusing is affected by gravity effects and is less efficient, and the dynamics does not get as close to the finite time
singularity as before, the earlier regularization leading to a significantly smaller jet velocity, due to the change in the
cavity shape by gravity effects. This result shows that both the Bond and Laplace numbers are necessary to describe
the singular dynamics of the jet, thus considering viscous, inertial, capillary and gravity effects.

In all cases, the tip velocity is maximum at the formation of the jet, when the capillary waves have focused. This
maximal velocity is highly dependent on the details of the focusing process. The velocity of the apex at the center of
the cavity then decays before reaching a plateau value just before drop ejection. This velocity is defined as the tip
velocity Vtip and is physically relevant since it is related to the drop velocity. At low Laplace numbers, the velocity
decreases continuously due to strong viscous effects, without drop formation.

B. A systematic study

We now perform a systematic study in the (La,Bo) parameter space, and extract the tip velocity Vtip as described
previously. First, we present an extensive comparison-validation of the numerical results with laboratory data. We
match and extend experimental conditions presented in Ghabache et al. [7] and work with five different Morton
numbers while varying the Bond number over a wide range. We then perform numerical simulations for a systematic
parameter sweep in terms of Laplace La and Bond Bo numbers.

Figure 5a shows the parameter space diagram (La,Bo) for which drop ejection is observed. Color symbols correspond
to runs at constant Morton number, each color representing a working liquid. We vary the Bond number and by
definition La = (MoBo)1/2. Black symbols correspond to a systematic sweep in the (Bo,La) space. A critical value
of Lac = 500 is found below which no drop formation is observed during the upward rise of the jet. Below this critical
value, drop ejection is prevented by viscous effects. This result is close to the one described by Walls et al. [31],
which found a critical Ohnesorge number of Ohc ≈ 0.04 which corresponds to Lac = Oh−2

c ≈ 650. As described in
[7, 31], for higher Bond numbers, gravity has a key influence on the jet velocity and participates in preventing drop
formation, and we see that the boundary between drop ejection and no drop ejection depends on the Bond number, for
Bo > 0.05. An empirical boundary is traced on the figure, describing the observed parameter space of drop ejection,
Lac(Bo > 0.05) ∝ Bo2/3 and equivalent to the one presented by Walls et al. [31], Ohc ∝ Bo−1/3 in the same regime
of Bond number.

Figure 5 (b) shows the jet capillary number Ca as a function of the Bond number for experiments (solid circles) and
numerical simulations in water (Mo = 2.63 ·10−11) (open symbols) for the four working fluids. Numerical convergence
is reached and excellent agreement between the laboratory and numerical data is observed. If the Morton number is
kept constant (i.e. same working liquid), the Bond number can only vary if the bubble diameter varies. We therefore
observe that velocity decreases as the bubble radius increases. Moreover, the numerical study highly extends the range
of Bond numbers investigated experimentally for the smallest bubbles. Here the smallest Bond number is 2.10−4 which
corresponds to a bubble radius of 38 microns in water while in Ghabache et al. [7] the smallest Bond was 1.10−2 and
corresponds to a bubble radius of 270 microns in water. Finally, we observe that for Bo > 0.01 in all liquids, the jet
velocity scales like Ca ∝ Bo0.6, while a change of slope for Bo < 0.01 is visible in the case of lower viscosity, and a
saturation can be seen for the higher viscosity.

Figure 5 (c) shows the capillary versus Laplace number. As already described in Duchemin et al. [17], and confirmed
experimentally in Ghabache et al. [7], the primary control on the jet velocity is the viscosity (i.e. Laplace number).
Viscous damping of high-frequency capillary waves improves the focusing of the primary wavelength (comparable to
the size of the initial cavity) and leads to a thinner and faster jet. If the viscosity is too high however, the jet velocity
decreases due to high shear, high vorticity generation and extra viscous damping of the focusing waves. Eventually,
drop formation is entirely suppressed by viscosity (for La < 500 in figure 5 (c)). An optimum is reached for Laplace
numbers of order 1000 corresponding to the near singular collapse studied by Duchemin et al. [17]. Note that this
regime is only reached experimentally for the most viscous liquids (red and green symbols). The influence of gravity is
best analyzed through the Bond number dependence and will be discussed in detail later in the article. At this stage
it is sufficient to note that increasing Bond numbers are related to increasing Morton numbers, so that the datasets
in figure 5 (c) are roughly ordered in increasing Bond number from dark blue to dark red. The primary influence of
the Bond number (i.e. gravity) is thus a downward shift of a master distribution which itself depends primarily on the
Laplace number. Note that we observe small differences between numerical and laboratory data near the singularity,
which might be attributed to the very high jet velocity and thin jets, leading to higher uncertainties in both the
experimental measurements and the numerical simulations. For all Morton numbers, a decay at high Laplace number



10

La

10
2

10
3

10
4

10
5

10
6

B
o

10
-4

10
-3

10
-2

10
-1

10
0

(a)

Bo

10 -4 10 -3 10 -2 10 -1 10 0

C
a

10 -2

10 -1

10 0

10 1

(b)

La

10 2 10 3 10 4 10 5 10 6

C
a

10 -2

10 -1

10 0

10 1

(c)

Bo

10
-4

10
-3

10
-2

10
-1

10
0

W
e

10
1

10
2

10
3

10
4

(d)

Figure 5. Color symbols are the runs at a constant Mo (and by definition La = (Bo/Mo)1/2). Each color is a different liquid
with increasing Morton number : blue, Mo = 2.63 · 10−11 (water), light blue Mo = 5.99 · 10−10, green Mo = 3.2 · 10−9, light
red Mo = 2.3 · 10−8, and dark red Mo = 4.8 · 10−8. DNS are open symbols (diamond and circles are 212 and 211 mesh size
respectively) and solid dots are experimental data. Mesh convergence is observed as well as good agreement between DNS and
laboratory data. (a) Parameter space (La,Bo) where drop formation is observed in the numerical simulations and experiments,
with at least one drop ejected by the ascending jet. Black symbols are from the (Bo,La) sweep. The black dashed line indicates
a critical Laplace number below which no drop ejection is observed, Lac = 500. The solid black line is the boundary between the
regimes with and without drop ejection, Bo ∝ La3/2. (b) Jet capillary number Ca = Vtipµ/γ as a function of the Bond number.
Dashed lines are Ca ∝ Bo−0.6 relationships for each working liquid, observed at high Bo while a change of regime, or saturation
of the capillary velocity is observed at lower Bo. (c) Jet capillary number Ca as a function of La. The singularity is observed
around La ≈ 1000. At a given Laplace number, the jet capillary number decreases when increasing the Morton number, due
to Bond number effects. Very good agreement is found between numerical and experimental data except near the singularity
La ≈ 1000 where some differences are visible due to the very high velocity of the jet. Solid lines are Ca ∝ La−1 relationships
for each working liquid, observed at high La. (d) We as a function of Bo. Solid lines are We ∝ Bo−0.6 relationships for each
working liquid at high Bond number and dashed line is We ∝ Bo−0.33 at low Bond number for water. The value of the We
seems to saturate, for a given liquid, to a constant value and a We ∝ Bo0.

Ca ∝ La−1 is observed.
Figure 5 (d) shows the Weber number versus the Bond number, it is similar to figure 5 (b). For Bo > 0.1 we see

a We ∝ Bo−0.6 scaling in water (dark blue), similar to the We ∝ Bo−0.5 scaling reported in Ghabache et al. [7]. A
change of slope is observed at smaller Bond number, with We ∝ Bo−0.33 for 10−4 < Bo < 0.1. This change of slope
is visible because the numerical simulations have widely extended the range of parameters. However, even with such
low Bond number, the jet velocity stays influenced by gravity and does not reach the pure inertio-capillary velocity,
characterized by a constant Weber number. This surprising result is at variance with recent discussion of Krishnan et
al. [46]. When the viscosity is increased (light blue), we observe the same scaling We ∝ Bo−0.6 for Bo > 0.01 as in
water, consistent with Ghabache et al. [7]. In this case, a saturation is reached at lower Bond number, i.e. a regime
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Figure 6. (a) Jet capillary number Ca as a function of the Laplace number, for four different Bond numbers (Bo = 0.001
in dark blue, Bo = 0.01 in light blue, Bo = 0.1 in yellow and Bo = 0.5 in red), the Bond number being color-coded. For
La > 2000, at a given Laplace number, the velocity increases with decreasing Bond number. The optimal Laplace number
for which the highest velocity is observed increases with the Bond number, the highest value of the capillary jet velocity
being obtained for small Bond numbers (Bo� 0.1). Asymptotically, at high Laplace numbers, the capillary jet velocity scales

like Ca ∝ La−3/4, with a pre-factor that depends on the Bond number. Dashed lines are the asymptotic solutions at high

Laplace number Ca ∝ La−3/4. The solid lines are Ca = kv(Bo)La−3/4(La
−1/2
∗ − La−1/2)−3/4 (eq. (5)). The critical Laplace

number is La∗ = Lac = 500 below which no drop ejection is observed. The pre-factor kv(Bo) is fitted to the data and we
find kv(Bo = 0) = kv(Bo � 0.1) = 19, while at finite Bond number, kv(Bo = 0.1) = 14 and kv(Bo = 0.5) = 10. Inset shows

kv(Bo), with the fitted curve in black kv(Bo)/kv(Bo = 0) = (1 +αBo)−3/4, with α = 2.2 fitted to the data. (b) Rescaling with
a Bond number correction, Ca as a function of La(1 + αBo). All DNS data are presented, including the (Bo,Mo) sweep. The

solid line describes the regime for La larger than the singularity value, with Ca = kv(Bo)La−3/4(La
−1/2
∗ − La−1/2)−3/4, and

kv(Bo) = kv(Bo = 0)La
3/8
∗ (1+αBo)−3/4. Diamond and triangles are 212 mesh size, while squares and circles are 211 mesh size.

where We ∼ Bo0, gravity has lost its influence. For higher viscosity (green, light and dark reds), we keep observing a
We ∝ Bo−0.6 scaling for Bo > 0.1, and the singular velocity is reached at lower Bond number, corresponding to lower
Laplace number. It is crucial to underline that the Bond number for which the maximum Weber number is obtained
depends on the viscosity, which confirms the fact that the Laplace number is the master parameter describing the jet
dynamics.

We should emphasize that all scaling laws observed are consistent with each other. We observe Ca ∝ La−1, which
implies that VtipR0 ∝ ν, which means that the velocity of the jet is controlled by viscosity, and VtipR0/ν is constant
for a given liquid (i.e. a fixed Morton number). Moreover, by definition we have We = CaVtipR0/ν. Thus, the two
scalings laws observed in the data at fixed Morton numbers Ca ∝ Bo−0.6 and We ∝ Bo−0.6 are consistent with each
other.

This closes the comparison-validation between numerical and experimental data. In the remainder of the article we
will focus on the analysis of the numerical results, and clarify the effect of the Laplace and Bond numbers.

C. The influence of the Bond number : a scaling for the jet velocity, Ca=f(La,Bo)

We have shown previously that our direct numerical simulations capture very well the formation of the jet and its
velocity. The Laplace number is the main parameter that sets the jet dynamics, the Bond number induces subtle but
significant changes. We now focus on the direct parameter sweep (La,Bo), where the Laplace number is changed,
keeping the Bond number constant and compare our results to recent theoretical findings [32].

Figure 6 (a) presents the behavior of the jet capillary number as a function of the Laplace number, four series of
data at a given Bond number (instead of Morton number as in Fig. 5). The different Bond numbers appear with
different colors as indicated by the color-code on the right. As already discussed before, for any Bond number, at
sufficiently low Laplace number, no drop formation is observed. At sufficiently high Laplace number, drops are formed
and the jet velocity decreases as the Laplace increases. An optimum is reached for a Laplace number that depends on
the Bond number.

For low-enough Bond numbers (Bo ≤ 0.01), the maximum jet velocity is reached around La = 1000, corresponding
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to an optimal self-similar focusing and a collapse dynamics close to a finite-time singularity, with a very thin and
fast jet. The singularity is in practice regularized by viscous and capillary effects, with viscosity playing a crucial role
in the control of this focusing. The fastest jet are obtained for an optimal Laplace number, an explanation of this
phenomenon is that the damping action of viscosity shelters the self-similar collapse from short wavelength capillary
perturbations, allowing it to come closer to the singular limit and therefore produce faster and thiner jet. For these low
Bond numbers, the capillary velocity decreases with La, following a Ca ∝ La−3/4 scaling for Laplace numbers above
the optimal value La ≈ 1000. This regime is also observed for higher Bond numbers (Bo ≥ 0.1), but the maximum
velocity is reached at a higher Laplace : La = 1500 corresponds to the maximum velocity for Bo = 0.1, and La = 3000
for Bo = 0.5). In these cases, the maximum velocity is lower than for lower Bond numbers. This indicates that both
gravity and viscosity play a role in sheltering the inertio-capillary self-similar collapse. The combination La ≈ 1000
and Bo ≈ 10−2-10−3 provides the best configuration for the collapse to approach as much as possible the finite-time
singularity. Note that this scaling is not incompatible with what we described in fig. 5, since previously we worked at
constant Morton number which mixes the effect of gravity, surface tension and viscosity. Here we are able to separate
the effect of gravity and we find that the asymptotic scaling at a fixed Bond number follows Ca ∝ La−3/4.

These results can be compared to the recent theoretical work from Ganan-Calvo [32] based on the idea of curvature
reversal. In the low Bond number limit (Bo � 1), the jet velocity capillary number Ca can be described by Ca =
kvφ

−3/4, where φ = (Oh∗ −Oh)Oh−2 is a scaling function, and Oh∗ is the critical Ohnesorge number for which drop
formation stops happening due to viscous effects. Ganan-Calvo [32] obtained Oh∗ ≈ 0.043 from fit to experimental
data in the literature. Since Oh = La−1/2, this leads to a critical Laplace number La∗ ≈ 550 close to the value we
report, which is Lac = 500. We will use our value of critical Laplace number in the following. The scaling for the

velocity can be rewritten as φ = (La
−1/2
∗ − La−1/2)La, so that the jet velocity capillary number can be written as

Ca = kvLa
−3/4(La

−1/2
∗ − La−1/2)−3/4. (5)

This relationship describes well the observed numerical and experimental results at fixed Bond number, and indeed,
at low Bond number (Bo� 1), the constant kv = 19 reaches an asymptotic value and does not depend on gravity. In

the high Laplace number limit, La � La∗ (or Oh � Oh∗), we obtain the asymptotic regime Ca ≈ kvLa
−3/4La

3/8
∗ ,

which is indeed observed at high Laplace numbers. For finite Bond numbers, the asymptotic relation is still observed
but with a modified pre-factor, i.e. kv(Bo) is a function of the Bond number. We find that the pre-factor can be
described the following empirical function kv(Bo)/kv(Bo = 0) = (1 + αBo)−3/4, with α = 2.2 a fitted parameter, as
plotted in inset of figure 6(a). Indeed, far from the optimal Laplace number, the effect of the Bond number can be
seen as a correction, while gravity is also shifting the optimal Laplace number. Figure 6 (b) shows Ca as a function of
La(1 +αBo), showing a reasonable rescaling of all data. Therefore, the capillary velocity for all data can be described
by the following scaling :

Ca = kv(Bo)La
−3/4(La

−1/2
∗ − La−1/2)−3/4, with kv(Bo) = kv(Bo = 0)La

3/8
∗ (1 + αBo)−3/4, (6)

valid until the optimal Laplace number is reached. Below this optimal Laplace number, which increases with the Bond
number, viscosity effects become stronger and the jet velocity decreases as the Laplace is further reduced. Note that,
as discussed by [32] this is compatible with the simulations at Bo = 0 from Duchemin et al. [17].

IV. CONCLUSIONS

We have presented high-fidelity direct numerical simulations of the jet dynamics arising from the collapse of a
cavity left by a bursting bubble, solving for the axisymmetric two-phase Navier-Stokes equations, for a wide range of
Laplace and Bond numbers. The numerical results for the entire duration of the phenomenon are fully converged in
terms of grid size, and we show that using an adaptive grid, a resolution equivalent to 213 is necessary to correctly
resolve the jet dynamics close to the capillary singularity, while a resolution of 212 is sufficient at higher Laplace
numbers. We carefully validate our numerical simulations against recent experimental data [7] for the full dynamical
process, from the cavity collapse, to the jet formation and the first drop generation. We show that the transient
nature of the jet formation process makes the definition of the jet velocity non-trivial, with various definitions in the
literature leading to large variations in the reported velocities. We define the jet velocity, as the stationary velocity
observed before drop ejection, which is consistent with most of the experimental measurements [7, 47]. We discuss the
existence and variation of the non dimensionalized jet velocity (Ca and We) for which drop ejection is observed, as a
function of non dimensionalized viscosity (La) and gravity (Bo). We find excellent agreement with recents numerical
and experimental studies [7, 31], for the whole existing range of parameters. We extend this range, especially we
explore low Bond numbers (Bo < 10−2) which is hard to reach experimentally. This allows us to propose new scaling
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laws We ∝ Boβ , and Ca ∝ Boβ where β depends on the Bond and Laplace numbers. In the appendix, we discuss the
importance of the cavity shape on the capillary wave selection process, which strongly modulates the jet tip velocity.
We show that this is the main reason why gravity effects need to be taken into account in this problem, since gravity
shapes the initial cavity and participates in the capillary wavelength selection process, the velocity of the capillaries
having a direct influence on the jet velocity.

Finally, we separate the role of gravity (through the Bond number) and viscosity (through the Laplace number)
using our direct numerical simulations. We present a universal formula for the dependence of the jet velocity capillary
number as a function of the Laplace and Bond numbers for the entire range explored in this study. We find that the
optimal Laplace number depends on the Bond number, and that the highest velocity is reached for vanishing Bond
numbers, with viscous effects participating in damping small capillaries, leading to a perfect focusing in space and
time of the collapsing cavity energy, well described by a self-similar dynamics, and coming close to the finite-time
singularity. This is compatible with earlier discussions [7, 17]. Our results at low Bond numbers are in excellent
agreement with recent theoretical work [32], based on the idea of curvature reversal and neglecting gravity. We
extend this theoretical framework to finite Bond numbers and gravity is seen to have two effects : first it shifts the
optimal Laplace number (the optimal Laplace increases with the Bond number), therefore the highest velocity can
only be obtained for vanishing Bond numbers (no gravity effects). Second, the capillary jet velocity is decreased when
gravity becomes important (due to the change in the initial cavity profile and the focusing of the capillaries). This
can be empirically incorporated in the theory by allowing for the pre-factor to vary with the Bond number, and

all data above the optimal Laplace number can be described by Ca = kv(Bo)La
−3/4(La

−1/2
∗ − La−1/2)−3/4, with

kv(Bo) = kv(Bo = 0)La
3/8
∗ (1 + αBo)−3/4. While the work from [32] has provided a framework to describe the jet

velocity without gravity effects, a theoretical explanation for the correction due to gravity and the change in the
focusing path of the capillaries, as well as the change of the optimal viscosity for jetting remain open questions.

This work provides universal formula for the jet velocity of bursting bubbles for all Laplace and Bond numbers,
which controls the velocity of the ejected drops. This provide a first step in computing the part of air-sea fluxes due
to bursting. We are in the process of extending this work for the size and velocity of the ejected droplets and hope to
report about those results in subsequent publications.
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Annexe: Importance of the initial cavity shape on the jet dynamics

In this appendix, we discuss the importance of the initial shape of the cavity on the jet velocity. We show that we
need to consider the real static bubble shape, and not a simplified spherical cavity, in order to obtain realistic jet
velocity. Indeed, even a small modification of the cavity shape will change the selected wavelengths of the capillaries
that propagates toward the apex of the cavity, and, consequently, the jet shape and velocity. We test the influence of
the initial shape of the cavity for two Bond numbers in air-water conditions : a small Bond number (Bo = 0.01) and
a relatively large Bond number (Bo = 0.1172). Four cavity shapes are used :

i) the static bubble shape computed theoretically by solving the Young–Laplace equations, which corresponds to
the observed bubble (shown in blue on Fig. 7 and 8).

ii) a spherical cavity with exponential reconnection to the mean level. The sphere lowest point is placed at the
same depth as in the static solution and it is connected to an exponential meniscus at the free surface, shown
as orange profiles on Fig. 7 and 8. This means the size of the hole at the top is slightly larger but the shape is
otherwise similar.

iii) a spherical cavity cut at the mean water level, with large hole. The sphere lowest point is placed at the same
depth as the static solution, the sphere is then cut when it reaches the mean water level. The connection to the
mean water level is flat. This gives a larger hole than in the static case. This profile is shown in yellow on fig. 7
and 8.

iv) a spherical cavity cut at the mean water level, with the correct hole. The sphere lower part is placed so that
the size of the hole matches the static hole. The connection to the mean water level is flat. This gives a hole the
same size as the static case. This profile is shown in purple on fig. 7 and 8.
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Figure 7. Influence of the initial cavity shape on the jet velocity. Bo = 0.01 in air-water (Mo = 2.63 · 10−11, La = 1.96 · 104).
(a) Initial shapes of the tested cavity : i) the static bubble shape, ii) the spherical cavity with exponential reconnection to the
mean level, iii) the spherical cavity cut at the mean water level, with large hole, iv) the spherical cavity cut at the mean water
level, with small hole. (b) Same figure with a zoom on the cap and hole to see the differences in hole size. (c) Jet capillary
number as a function of the normalized time (t− t0)/tic, for the four cavity shapes. Differences in the final tip velocity as large
as 20% can be observed due to the change in the initial conditions. (d) Profiles of two cavities (static bubble shape, and large
hole) at different times, showing that the generated capillaries have different wavelengths when the hole size changes. Shorter
capillary waves are selected for a smaller hole (static case), leading to faster waves, leading to a faster jet.

All these choices are arbitrary but lead to variations in the size of the hole and the way the hole is connected to
the mean water level, which are the main geometrical properties of the cavity which influence the initial generation,
and then the propagation and focusing of capillary waves inside the cavity.

Figures 7 and 8 show the profile of the initial cavity for the four cases defined above (a,b), as well as the jet capillary
number as a function of time (c), and the comparisons of time evolutions of the cavity profiles i) and iii) (d). We run
these four cavity shape scenarios for two different Bond numbers : Bo = 0.01 for Fig. 7 and Bo = 0.1172 for Fig. 8.

For a low Bond number (Bo = 0.01) the differences between the cavity shapes are subtle, and visible mainly when
zooming on the hole size (fig. 7 (b)). Therefore, the low Bond number case primarily tests the influence of the size of
the hole on the generated jet. The case with the hole of the same size as the static shape (iv) has a jet velocity very
close to the one obtained for the static shape while the other two cases (ii) and (iii) exhibit stronger differences, of
the order of 20% for (iii) (fig. 7 (c)). This shows that at small Bond number, the relatively small size of the initial
hole in the cavity is crucial and is a very sensitive parameter in setting the final jet velocity. These differences can be
qualitatively explained by the selected capillary waves when the cavity starts to collapse. When looking at the time
evolution of the cavity profiles (i) and (iii), we can see that a smaller hole leads to the generation of shorter capillary

waves (larger wave-numbers), which, given the dispersion relation c = ω/k =
√

(γ/ρ)k, travel faster. These faster
waves give birth to a faster jet (fig. 7 (d)).

For the intermediate Bond number (Bo = 0.1172), the differences in the cavity shape are stronger, since the static
shape is greatly influenced by gravity, and our arbitrary shapes are not. The size of the hole is larger than for the
small Bond number case, and the reconnection to the mean water level is very different in the flat and exponential
cases (fig. 8 (a)&(b)). The case (ii) is relatively similar to the static shape, while the other two cases (iii) and (iv) are
significantly different with changes in the final velocity as large as 30% (fig. 8 (c)). The hole is relatively large in all
cases, which makes changes in this parameter less important, while the reconnection to the mean water level becomes
critical. Again, this is related to the generation of capillary waves, which are shorter leading to a faster jet, as shown
in the time dependent profiles (fig. 8 (d)).

This section has introduced the role of the capillary wave velocity on the jet tip velocity, with shorter capillary
waves traveling faster and leading to faster jets. To conclude, the sensitivity of the jet velocity on the initial cavity
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Figure 8. Influence of the initial cavity shape on the jet velocity. Bo = 0.1172 in air-water (Mo = 2.63 · 10−11, La = 7 · 104).
(a) Initial shapes of the tested cavity : i) the static bubble shape, ii) the spherical cavity with exponential reconnection to the
mean level, iii) the spherical cavity cut at the mean water level, with large hole, iv) the spherical cavity cut at the mean water
level, with small hole. (b) same figure with a zoom on the cap and hole to see the differences in hole size. (c) Jet capillary
number Ca as a function of the normalized time (t− t0)/tic, for the four cavity shapes. Differences in the final tip velocity as
large as 30% can be observed due to the change in the initial conditions. (d) Profiles of two cavities (static bubble shape, and
large hole) at different times, showing that the generated capillaries have different wavelength when the hole size is changed.
Smaller capillaries wavelengths are selected for a smaller hole (static case), leading to faster waves, leading to a faster ejected
jet.

shape is strong and differs for small and intermediate Bond numbers. For small Bond numbers (Bo < 0.1), the cavity
is almost spherical and the most important parameter is the size of the hole. For larger Bond numbers (Bo > 0.1),
due to gravity, the hole is larger and the static shape maximum is above the mean water level, and it is critical to
capture the upper part of the cavity shape (i.e. the way we connect the spherical shape to the mean water level). In
all cases, the details of the initial cavity participate in selecting the capillary waves that travel towards the center of
the cavity and give rise to the jet. Shorter capillary waves travel faster and give birth to faster jets. Therefore, while
a simplified cavity shape might give results similar to those observed experimentally in some ranges of Bond and
Laplace numbers, it will fail in other ranges. This clearly shows that we have to work with the real static bubble shape
when trying to compare to experimental results and determine the velocity of emerging jets in natural conditions.
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[23] T. Séon and G. Liger-Belair, “Effervescence in champagne and sparkling wines : From bubble bursting to droplet evapo-
ration,” The European Physical Journal Special Topics 226, 117–156 (2017).

[24] A. H. Woodcock, C. F. Kientzler, A. B. Arons, and D. C. Blanchard, “Giant condensation nuclei from bursting bubbles,”
Nature 172, 1144–1145 (1953).

[25] M. P. Brenner, “Fluid mechanics : Jets from a singular surface,” Nature 403, 377–378 (2000).
[26] B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop, “Singularity dynamics in curvature collapse and jet eruption on a

fluid surface,” Nature 403, 401–404 (2000).
[27] J. M. Boulton-Stone and J. R. Blake, “Gas bubbles bursting at a free surface,” J. Fluid Mech. 254, 437–466 (1993).
[28] H. N. Oguz and A. Prosperetti, “Dynamics of bubble growth and detachment from a needle,” J. Fluid Mech. 257, 111–145

(1993).
[29] A Prosperetti and H N Oguz, “The impact of drops on liquid surfaces and the underwater noise of rain,” Annual Review

of Fluid Mechanics 25, 577–602 (1993).
[30] Michael S Longuet-Higgins and Hasan Oguz, “Critical microjets in collapsing cavities,” J. Fluid Mech. 290, 183–201 (1995).
[31] PLL Walls, L. Henaux, and J. C. Bird, “Jet drops from bursting bubbles : How gravity and viscosity couple to inhibit

droplet production,” Phys. Rev, E 92, 021002 (2015).
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