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Abstract

Experiments are reported on the performance of a pitching and heaving two-dimensional foil in a

water channel in either continuous or intermittent motion. We find that the thrust and power are

independent of the mean freestream velocity for two-fold changes in the mean velocity (four-fold

in the dynamic pressure), and for oscillations in the velocity up to 38% of the mean, where the

oscillations are intended to mimic those of freely swimming motions where the thrust varies during

the flapping cycle. We demonstrate that the correct velocity scale is not the flow velocity but the

mean velocity of the trailing edge. We also find little or no impact of streamwise velocity change on

the wake characteristics such as vortex organization, vortex strength, and time-averaged velocity

profile development—the wake is both qualitatively and quantitatively unchanged. Our results

suggest that constant velocity studies can be used to make robust conclusions about swimming

performance without a need to explore the free-swimming condition.
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INTRODUCTION

Many fishes laterally oscillate their fins in order to propel themselves and this fin motion

generates an unsteady propulsive force, which in turn produces an unsteady swimming

speed and acceleration [16, 23, 25, 26]. To study the unsteady hydrodynamics of fish-like

swimming, however, most experimentalists simplify the problem and laterally oscillate foils

in a flow with a fixed freestream velocity. An obvious question to ask is whether the behavior

of a foil in a flow of fixed velocity accurately represents the behavior of a foil that is free to

move as it accelerates periodically.

The few studies that have addressed the effects of the free-swimming condition on the

forces and energetics of a propulsor indicate that the differences from constant-velocity

swimming may actually be rather small. For instance, Wen & Lauder [29] found that

adding a periodic streamwise motion to a heaving flexible foil in an otherwise constant

velocity flow had no impact on its average power consumption, though the range of added

streamwise motions considered was quite small. Similar results have been found for the

performance of fish and fish models. For example, Borazjani & Sotiropoulos [4] found

in their simulations that the Strouhal and Reynolds numbers for fixed and free-swimming

carangiform and anguilliform swimmers at zero net-thrust were similar and that the efficiency

and power coefficients for these two conditions were also in good agreement. Similarly, Bale

et al. [3] found that the fluctuating component of the swimming speed in knifefish and larval

zebrafish contributed very little to the total power.

Simulations by Hieber & Koumoutsakos [15] and Zhou & Shu [32] showed that as an

anguilliform swimmer increases speed from rest to a steady-state free-swimming velocity,

the net-thrust only depends very weakly on the mean swimming velocity, while the side-

force shows no impact. A force analysis by Curet et al. [6] successfully predicted the

free-swimming speed of a robotic knifefish by balancing the thrust force generated while

tethered in still water and body drag force as it varied with speed.

Despite these observations, it is not widely recognized that the time-averaged performance

of unsteady propulsors is independent of the flow velocity, and that tethered and free-

swimming conditions can often be conflated. For example, Carling et al. [5] specifically

states that “[m]odels that assume a constant forward speed cannot be used to reach reliable

conclusions about the development of forces during swimming.” Though this work considers
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anguilliform swimmers, it highlights a prevailing attitude toward free-swimming within the

community. For more recent examples, see Das et al. [7], Ryu & Sung [18], and Young et

al. [31].

Here we attempt to bring some clarity to this question by analyzing the impact of substan-

tial changes in the freestream velocity on the mean propulsive performance characteristics

and wake structure of pitching and/or heaving rigid foils. We consider foils oscillating in

either continuous or intermittent motion, and we examine the effects of changing the mean

velocity, as well as adding velocity oscillations by moving the foil in the streamwise direction

sinusoidally with an amplitude of up to 38% of the mean velocity, considerably higher than

that seen in biology [30]. Although we study simple rigid propulsors in isolation, we expect

our results to apply more broadly to aquatic swimmers where the main source of drag can

be separated from the main source of thrust, such as thunniform or carangiform swimmers

where the body (drag source) and the caudal fin (thrust source) can be distinctly identified.

Examples include tuna, mackerel, dolphin, and trout.

EXPERIMENTAL SETUP

Experiments were conducted in a water channel on a pitching and/or heaving foil, as

shown in figure 1. The water channel was a free-surface recirculating facility with a test

section 0.46 m wide, 0.3 m deep, and 2.44 m long. Surface waves were minimized through

baffles on the top surface, and the maximum turbulence intensity was 0.8%. The mean

freestream velocity was varied from U∞ = 60 mm/s to 120 mm/s. A belt drive (Baldor

BSM50N-375AF motor) was used to impose sinusoidal velocity oscillations by moving the

foil in the streamwise direction with amplitude ua, where ua/U∞ varied from 0 to 0.38,

corresponding to maximum streamwise position changes of 40 mm (50% of the chord). The

resolution of streamwise movement is 0.292 mm per degree of motor rotation.

The propulsor was a two-dimensional teardrop foil with a chord length c = 80 mm,

maximum thickness 8 mm, and span s = 279 mm. The foil was pitched about the leading

edge via a RC-motor (Hitec HS-8370TH) and heaved with a linear actuator (Linmot PS01-

23x80F-HP-R), monitored via encoders. Performance measurements consisted of: (1) pitch

only, amplitudes θ0 = 5◦ to 15◦ in intervals of 1◦; (2) heave only, amplitudes h0/c = 0.125 to

0.25 in intervals of 0.0125; and (3) combined pitch heave motions, amplitudes θ0 = 10◦ and
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FIG. 1. Experimental setup.

h0/c = 0.0625 to 0.1875 in intervals of 0.0125, where the pitching motion lagged the heaving

motion by 90◦. All imposed motions were sinusoidal. We consider both continuous and

intermittent (duty cycle 0.5) swimming motions at fixed actuation frequencies of f = 0.75

Hz and 1 Hz, respectively. All six components of forces and moments were monitored via a

load cell (ATI Mini40) with force and torque resolutions of 5× 10−3 N and 1.25× 10−4 N·m

in the x- and y-directions respectively, and 10−3 N and 1.25× 10−4 N·m in the z-direction,

sampled at 1 kHz. Each time-averaged quantity consisted of an average of three separate

trials of 20 actuation periods.

As shown by the analysis presented in Appendix B, the inertia of the foil will have no

impact on our results; the effects of inertia on the mean forces and power are exactly zero

for the types of motion studied here.

Wake measurements were taken with two-component particle image velocimetry (PIV) on

a measurement plane at the half-span of the foil. Silver coated hollow ceramic spheres (Potter

Industries Inc. Conduct-O-Fil AGSL150 TRD) were used to seed the flow, illuminated using

a 3500 mW gallium-nitride continuous laser (S3 Arctic Series). Images were captured and

processed via a LaVision PIV system with a 5.5 mega-pixel sCMOS camera acquired at
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FIG. 2. Propulsor mean thrust force for continuous (a) pitching and (b) heaving motions for U∞ =

60 mm/s (white circles); 80 mm/s (light grey circles); 100 mm/s (dark grey circles); 120 mm/s

(black circles). One pitch and three heave amplitudes are shown. Adapted from Floryan et al. [11]

with permission.

50 Hz. Ten actuation periods were sampled for phase-averaging. Images were processed

sequentially using a final spatial correlation interrogation window size of 64×64 pixels with

50% overlap. The final trimmed vector field grid size is 68×80 velocity vectors. Average

and instantaneous velocity errors were estimated to be 2.7% and 1 to 5%, respectively [19].

PERFORMANCE RESULTS

Here, we will present the experimental results on thrust and power in dimensional form,

and the appropriate scaling will be discussed in the following section. We first consider the

performance of a pitching and/or heaving foil that is actuated sinusoidally and continuously,

that is, with a duty cycle of one.

The impact of changing the mean velocity U∞ on the mean thrust produced F x is shown

in Figure 2. For these cases, the foil was fixed in place and not allowed to move in the

streamwise direction, and the mean velocity was varied over the range 60 mm/s to 120

mm/s. In pitching motions, we see that the mean velocity has no measurable impact on

the magnitude of the thrust. In heaving motions, there is little impact of mean velocity

compared to relatively similar changes in foil kinematics (amplitude and frequency).
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FIG. 3. Propulsor mean (a) thrust and (b) power undergoing streamwise velocity oscillations

0 ≤ ua/U∞ ≤ 0.38 (dark to light symbols), for U∞ = 80 mm/s. Continuously heaving (circular

symbols), pitching (square symbols), and pitching combined with heaving (triangular symbols) foil.

Inlaid graphic represents the relative leading edge lateral position—or pitch angle for pitch only

cases (red solid line), and streamwise position (dashed blue line).

The effects of adding oscillations to the streamwise velocity while continuously pitching

and/or heaving are shown in Figure 3 for U∞ = 80 mm/s. During continuous actuation, the

thrust produced by the foil occurs at a frequency that is twice the actuation frequency due

to the symmetry of the motion, so we imposed a streamwise velocity oscillation on the foil

with a frequency that was twice the actuation frequency to mimic a naturally accelerating

propulsor. Figure 3 shows the mean thrust and power for pitching and heaving motions. For

velocity oscillation amplitudes up to 38% of the freestream velocity, there is no discernible

difference in performance from the case with no streamwise motion.

We now consider the effects of intermittent actuation, that is, the effects of changing

the duty cycle. For intermittent actuation, we imposed a streamwise velocity oscillation

that mimicked burst and coast swimmers. The velocity oscillation frequency was set to half

the actuation frequency so that the foil accelerated forward during the burst portion of the

cycle and decelerated during the coast portion. For this experiment, we did not include

the accelerations that would occur during the thrust cycle at twice the actuation frequency

since the previous experiments demonstrated that these effects are negligible (see figure 3).

Figure 4 presents the thrust and power for intermittent pitching and/or heaving motions
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FIG. 4. Propulsor mean (a) thrust and (b) power undergoing streamwise velocity oscillations

0 ≤ ua/U∞ ≤ 0.38 (dark to light symbols). Intermittently heaving (circular symbols), pitching

(square symbols), and pitching combined with heaving (triangular symbols) foil (duty cycle of 0.5).

Inlaid graphic represents the relative leading edge lateral position—or pitch angle for pitch only

cases (red solid line), and streamwise position (dashed blue line).

(duty cycle of 0.5), and we see that the performance of foils with intermittent actuation is

not sensitive to substantial streamwise velocity oscillations. In all respects, the behavior is

almost identical to that seen by Floryan et al. [12] in a study of a fixed foil undergoing

intermittent actuation.

SCALING

To understand these dimensional results better, we need to consider the appropriate non-

dimensionalization, that is, the correct scaling parameters for the data. In most of the

literature, the propulsive performance is represented by the thrust and power coefficients

defined according to

CT =
Fx

1
2
ρU

2

∞sc
, CP =

Fyḣ+Mz θ̇
1
2
ρU

3

∞sc
(1)

where Fx and Fy are the streamwise and cross-stream forces acting on the foil, respectively

(we call Fx the thrust), Mz is the spanwise moment, θ is the instantaneous pitch angle, h

is the instantaneous heave amplitude, and ρ is the fluid density. The foil kinematics are

characterized by the Strouhal number, St = 2fa/U∞, where a is the peak amplitude of the
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trailing edge motion, and by the reduced frequency, f ∗ = fc/U∞.

These non-dimensional thrust and power coefficients are obviously not the correct pa-

rameters for the data presented here, in that any non-dimensionalization with respect to

U∞ would eliminate the collapse of the data in dimensional form. Therefore we seek a more

appropriate velocity scale.

In this respect, Floryan et al. [11] demonstrated that for pitching motions the thrust is

due purely to added mass effects and the unsteady lift forces make no contribution. Thus,

the thrust for pitch is expected to scale as the component in the streamwise direction of the

added mass (∼ ρc2s) times the acceleration (∼ cθ̈). That is,

Fx ∼ ρsc3θ̈θ,

so that the mean thrust scales as

F x ∼ ρsc3f 2θ20 ≈ ρscf 2a20, (2)

where a0 ≈ cθ0 is the trailing edge amplitude for pitching motions. We see that the scal-

ing suggests that the time-averaged thrust is independent of velocity, as borne out by the

experimental results given in figure 2a.

Similarly, Floryan et al. [11] found that for heaving motions, the thrust is due purely

to unsteady lift forces and that the added mass terms make no contribution to the thrust.

Hence, the thrust for heave is expected to scale as the component in the streamwise direction

of the instantaneous lift force. That is,

Fx ∼ L(ḣ/U∗)

where L is the lift, h is the instantaneous heave amplitude, and U∗ is the effective velocity

seen by the foil. If we assume that the contribution to the lift is quasi-steady, and that the

angle of attack α ≈ ḣ/U∗, for small α we obtain

Fx ∼ 1
2
ρU∗2sc (2πα)(ḣ/U∗) ∼ πρsc ḣ2,

so that the mean thrust scales as

F x ∼ ρscf 2h20 = ρscf 2a20, (3)

where a0 = h0 for heaving motions. This analysis indicates that the velocity does not appear

in the leading order approximation of the mean thrust, and the experimental results shown
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in figure 2b demonstrate that this approximation holds well for the range of conditions

studied here. The full unsteady analysis was given by Floryan et al. [11]. The extension to

simultaneous pitching and heaving motions was developed by Van Buren et al. [24].

What about the effects of streamwise velocity perturbations? Let g = b0+b1u
′+b2u

′2+ ...

be the Taylor series expansion of the instantaneous thrust or power with respect to the

perturbation velocity u′. When averaging in time, the first-order term integrates to zero

since u′ is periodic. Thus, the effect of the perturbation velocity on the mean thrust or

power is only at second-order and expected to be small for small values of u′.

We see that the mean thrust forces developed by a pitching or heaving foil do not scale

with dynamic pressure, in contrast to what might be assumed from aerodynamic consid-

erations. In fact, at the level of approximation adopted here, they do not depend on the

mean velocity at all. Instead, we find that the thrust for both pitching and heaving motions

depends on the mean speed of the trailing edge, V = fa0. We are not the first to suggest the

importance of the lateral velocity scale. The work by Garrick [13] on flapping and oscillating

airfoils suggests that the mean thrust should depend approximately on V 2 (Garrick’s equa-

tion 29 simplified), although this early result seems not to be widely known. In the context

of fish swimming, Bainbridge [2] indicated that the thrust should depend on “the square of

its speed of transverse movement”, but the reasoning is unclear. More recently, Gazzola et

al. [14] offered a mechanistic basis for the importance of the transverse tail velocity, and they

showed that for added mass forces the thrust should scale as V 2. However, as Floryan et

al. [11] demonstrated, aerodynamic forces are important when heaving motions are present,

and so considerations of pitching and heaving propulsors need to take into account both

added mass and lift-based forces. Our experiments substantiate the primacy of the lateral

velocity scale over the streamwise velocity.

We therefore define new thrust and power coefficients according to

C∗T =
Fx

ρ(fa0)2sc
C∗P =

P

ρ(fa0)3sc
. (4)

As an example, figure 5 shows the data of figure 4 using this scaling, where a∗ = a0/c. Note

that the plots appear noisier because we are non-dimensionalizing by a measured output, a0,

and errors will go as 1/a30 and 1/a40 for the new thrust and power coefficients, respectively.

This is more apparent at small a0.

9



(a) (b)

FIG. 5. Propulsor mean (a) thrust and (b) power non-dimensionalized by the trailing edge velocity.

Symbols and colors as in figure 4.

WAKE STRUCTURE

For free-swimming full-bodied fish, the wake changes with swimming speed [9, 22] because

the propulsor thrust balances the drag of the body, which is a function of swimming speed.

Thus, different swimming speed requires different thrust, resulting in different tail kinematics

and wake structure. Here, instead, we consider an isolated foil, and we examine the impact

of oscillations in the streamwise velocity on the wake without changing the foil kinematics.

Figure 6 shows the phase-averaged vorticity distributions in the wake for the continuous

and intermittent heaving motions with a steady freestream velocity (ua/U∞ = 0) and with

the largest streamwise velocity oscillation explored here (ua/U∞ = 0.38). We see the ex-

pected reverse von Kármán vortex street for the continuous motions, and for the intermittent

motions the wake is comprised of a vortex pair generated by the active portion of the cycle,

surrounded by small secondary structures, consistent with the observations by Floryan et al.

[12] of the wake of an intermittently actuated foil fixed in the streamwise direction. There

is no discernible impact of the addition of an oscillating streamwise velocity on the shed

vorticity field when comparing figure 6i.a to i.b for continuous motions and figure 6ii.a and

ii.b for intermittent motions. A similar result was obtained for pitching motions.

These results are actually not surprising. Regardless of whether the freestream velocity

is constant or changing in time, the vortices shed into the wake will be generated at twice

the actuation frequency of the foil and at the same phase in the actuation cycle. The
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FIG. 6. Phase-averaged vorticity for (i) continuous and (ii) intermittent heaving motions at stream-

wise velocity amplitudes (a) ua/U∞ = 0 and (b) 0.38. Phase angle of heaving motion ψ = 0◦

(passing through the neutral position moving into the positive y domain).

convection speed of the vortices will continue to be (approximately) equal to the mean

freestream velocity, and as long as the mean freestream velocity does not change the spacing

of the vortices is not expected to change either. Hence, the organization of the vortices

should not be affected by the streamwise motion of the foil after the vortices are created;

the vortices merely convect away from the foil at about the same speed as in the case where

the freestream velocity is constant.

The strengths of the vortices are also unaffected. For continuous heaving, the total

magnitude of circulation of two counter-rotating vortices at the phase angle of heaving

motion ψ = 0◦ (at x/c = 0.75 and 1.6 in figure 6.i) is Γ = (U∞c)
−1 ∫∫

S
|ωz| · dS = 1.53 and

1.50 for ua/U∞ = 0 and 0.38, respectively. Similarly, for continuous pitching (not shown for

brevity), Γ = 1.38 and 1.40 for the steady and most unsteady cases. These differences are

within 2%, which is the limit of our measurement accuracy.

The study by Fernando & Rival [10] on impulsively moving disks is helpful in explaining

these observations. In their work, an elliptical plate was impulsively set into motion in
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FIG. 7. Time-averaged streamwise velocity profiles at (a) x/c = 0.25, (b) 1, and (c) 1.75 for

continuous heaving (circular symbols) and pitching (square symbols) motions. Streamwise velocity

amplitudes ua/U∞ = 0 (dark symbols) and 0.38 (light symbols).

a direction perpendicular to its surface; this is similar to our pitching and heaving foils

moving in the cross-stream direction. They found that the circulation of the vortex created

by the impulsive start initially grows as Γ ∼ dUp, where d is the distance traveled and Up

is the plate velocity. Relating this to an oscillating foil, the analog of d is the amplitude

of oscillation, a, and the analog of Up is the velocity of oscillation, fa. This suggests that

the circulation of a vortex formed by an oscillating foil should scale as Γ ∼ fa2. Also, the

area of a vortex should scale as a2, in which case the strength of the vortex will scale as f .

Thus, we would not expect the size and strength of the vortices created by the foil to be a

function of the freestream velocity—only the amplitude and frequency of oscillation.

Given these results, we would expect the time-averaged velocity profiles to be also unaf-

fected by the unsteady motion in the streamwise direction. As shown in figure 7, the velocity

profiles indeed remain similar to one another throughout the downstream development, as

the initial peak in added velocity diffuses and decays.

These wake results agree well with the performance characteristics presented in section
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. The foil is producing the same strength vortices at the same spacing, which produces the

same velocity profile and so the thrust and power produced by the foil remain unchanged.

APPLICATIONS TO BIOLOGY

Consider the dynamics of a freely swimming fish where the drag from the body and the

thrust from the propulsor are distinct. The periodic forward swimming speed is given by

m
du

dt
= T −D, (5)

where m is the mass of the fish, u is its forward swimming speed, T is the thrust produced

by its propulsor (for example, its caudal fin), and D is the fluid drag experienced by the fish.

As we derive in Appendix A, the mean speed is given by the balance of mean thrust and

mean drag, minus a modification due to the unsteady part of the thrust. This modification

is generally small, thus, if we understand how the mean thrust is affected by the swimming

speed (both the mean swimming speed and oscillations about the mean), it would seem

that we may accurately predict the mean swimming speed for aquatic animals where the

thrust-producing propulsor is distinct from the drag-producing body, such as thunniform

and carangiform swimmers.

Equations 2 and 3 indicate that the mean thrust produced by an unsteady foil is given

by T ∼ ρscV 2 for both pitching and heaving motions, where V = fa0. We will assume

this result may be used to estimate the thrust produced by the caudal fin. Then, for a

constant drag coefficient, the mean body drag should scale as D ∼ ρscU
2

∞. Once the animal

reaches a constant swimming speed, the propulsor thrust balances the body drag, so that

U∞ ∼ V = fa0. This was partly alluded to by Bainbridge [1], who reported that the

swimming velocity of dace, trout, and goldfish obeyed a relationship U∞ = 1
4
L(3f − 4)

where L is the body length, although the tail amplitude as a fraction of body length was

assumed constant, thus ignoring the impact of a0. Bainbridge’s result then becomes U∞ ∼ f

at sufficiently high tail-beat frequencies. This observation of a linear dependence between

speed and tail beat frequency, with a tail beat amplitude that remains a constant fraction

of the body length, was also made by Rohr & Fish [17] for odontocete cetacean swimmers

such as dolphins, porpoises, and toothed whales (see figure 8). Similar trends have also

been seen in species of trout [27, 28] and tuna [8]. Triantafyllou et al. [21] and Taylor et al.
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FIG. 8. (a) Fluke-beat frequency and (b) non-dimensional fluke-beat amplitude as functions of

swimming speed per body length for several odontocete cetaceans. Adapted from Rohr & Fish

[17], and reproduced from Floryan et al. [11] with permission.

[20] find that swimmers and fliers both tend towards a constant range of Strouhal number,

0.2 ≤ St ≤ 0.4, which also implies U∞ ∼ fa0.

As noted earlier, Gazzola et al. [14] arrived at the same relation for thrust as we did con-

sidering only added mass effects. Equating thrust to drag, as we have here, they were able

to explain biological observations over a large range of species. By also considering a Blasius

drag law (D ∼ U
3/2

∞ ) they were able extend their scaling to lower Reynolds number swim-

mers. It should also be noted that Floryan et al. [11] suggest that thunniform/carangiform

swimmers adjust their frequency to change speed, not amplitude, because this allows them

to directly manipulate their propulsive efficiency.

CONCLUSIONS

By experiment and analysis, we have shown that there is little or no difference between the

performances (forces and energetics) of tethered and free-swimming simple propulsors. The

analysis uses simplified scaling arguments for such propulsors in heave, pitch, and combined

heave and pitch, derived from the more complete analysis given by Floryan et al. [11]. The

thrust in heave is derived from lift-based forces, while thrust in pitch is derived from added

mass forces. At this level of modeling, both forces are governed by the lateral velocity scale
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V = fa0, rather than the flow velocity U∞. The experiments confirm this expectation,

which for the mean velocity was anticipated by Garrick [13] for airfoils, observed in fish

by Bainbgridge [2], and, more recently, explained by Gazzola et al. [14] using only added

mass forces. We also show that this conclusion holds for streamwise oscillations in velocity,

at levels far higher (up to 38%) than considered in the past, and it extends unchanged to

intermittent (or burst-coast) swimming. Our scaling approach provides an explanation for

these observations. We further show that the structure of the wake is related to that seen

in startup flows, and advance a simple physical explanation for the nature of the wake with

variations in streamwise velocity, in terms of structure and mean momentum distribution.

The wake is unchanged both qualitatively and quantitatively.

Although our parameter space is limited, our observations suggest that the results of

constant velocity studies can be used to make robust conclusions about swimming per-

formance without the need to explore the free-swimming condition. We believe that this

message is important for the community, where this conclusion is not widely shared. Bio-

logical measurements of thunniform swimmers appear to support this conclusion, and the

observations by Gazzola et al. [14] suggest that it may extend even beyond non-thunniform

swimmers. Further studies may identify the importance of the free-swimming condition in

schooling/rearrangement, or escape and predation scenarios.

This work was supported by ONR Grant N00014-14-1-0533.

APPENDIX A

Consider the dynamics of a freely swimming fish where the drag from the body and the

thrust from the propulsor are distinct. The periodic forward swimming speed is given by

m
du

dt
= T −D, (6)

where m is the mass of the fish, u is its forward swimming speed, T is the thrust produced

by its propulsor (for example, its caudal fin), and D is the fluid drag experienced by the

fish. For illustrative purposes, let D = 1
2
ρu2AwCD, where ρ is the density of the fluid, Aw is

the wetted area of the fish, and CD is a constant drag coefficient. Once the system settles

on its periodic orbit, the speed and thrust may be written in terms of a Fourier series as

u =
∞∑

n=−∞

une
iωnt, T =

∞∑
n=−∞

Tne
iωnt, (7)
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where u−n = u∗n and T−n = T ∗n are the reality conditions with ∗ denoting complex conjuga-

tion, and ω is the angular frequency of motion. The modal equations are

n = 0 : u20 =
2T0

ρAwCD

−
∑
n 6=0

unu
∗
n, (8)

n 6= 0 : miωnun = Tn −
1

2
ρAwCD

∞∑
k=−∞

ukun−k. (9)

We see that the mean speed is given by the balance of mean thrust and mean drag, minus

a modification due to the higher harmonics. This modification is in general small because

the higher harmonics decay approximately as 1/n and only the even modes of thrust are

nonzero for symmetric motions of the propulsor.

APPENDIX B

Here we show that inertia of the foil has no impact on the mean forces or power. Consider

a foil of mass m held at its leading edge. The leading edge is located at position (x, y), its

center of mass is located a distance d from the leading edge, and its moment of inertia about

the leading edge is I. We move the foil in some periodic fashion in (x, y, θ). The position of

the center of mass is (x + d cos θ, y + d sin θ), its velocity is (ẋ− d θ̇ sin θ, ẏ + d θ̇ cos θ), and

its acceleration is (ẍ− d θ̈ sin θ − d θ̇2 cos θ, ÿ + d θ̈ cos θ − d θ̇2 sin θ).

The forces and moment due to the inertia of the foil are then given by

F = macm = m(ẍ− dθ̈ sin θ − dθ̇2 cos θ, ÿ + dθ̈ cos θ − dθ̇2 sin θ),

Mle = rcm/le ×macm + Iθ̈

= m
[
d cos θ

(
ÿ + dθ̈ cos θ − dθ̇2 sin θ

)
− d sin θ

(
ẍ− dθ̈ sin θ − dθ̇2 cos θ

)]
+ Iθ̈.

The mean force due to inertia is found by integrating over a full period T , so that

F =
1

T

∫ T

0

F dt

=
1

T

∫ T

0

ma dt =
m

T

∫ T

0

dv

dt
dt =

m

T

∫ v(T )

v(0)

dv′ =
m

T
[v(T )− v(0)] = 0,

due to periodicity. The inertia of the propulsor therefore does not affect our measurements

of mean forces.
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The mean power due to inertia is given by

P =
1

T

∫ T

0

P dt =
1

T

∫ T

0

(
Mθ̇ + Fyẏ

)
dt

=
1

T

∫ T

0

{
mθ̇
[
d cos θ

(
ÿ + dθ̈ cos θ − dθ̇2 sin θ

)
− d sin θ

(
ẍ− dθ̈ sin θ − dθ̇2 cos θ

)]
+ Iθ̈θ̇ +mẏ

(
ÿ + dθ̈ cos θ − dθ̇2 sin θ

)}
dt

=
1

T

∫ T

0

[
1

2
I
d

dt
(θ̇2) +

1

2
m
d

dt
(ẏ2) +

1

2
md2

d

dt
(θ̇2) +md

d

dt
(ẏθ̇ cos θ)−mdẍθ̇ sin θ

]
dt

= −md
T

∫ T

0

ẍθ̇ sin θ dt.

We note that the mean power is nonzero only if there are simultaneous streamwise and

pitching motions.

For the motions where the streamwise position of the propulsor changes with twice the

frequency of the actuation, the integrand is an odd periodic function, and so the integral is

exactly zero. For the burst-coast motions, the integrand is nonzero only during the bursting

phase. Re-centering about the middle of the bursting phase of the motion, the integrand is

an odd function, and so the integral is exactly zero. Thus for the motions considered in this

work, the inertia of the propulsor does not affect our measurements of mean power.
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