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Abstract

Recent findings (Wu et al. 2017 PNAS vol. 114) reinforce earlier assertions (e.g., Falco 1991 Phil.

Trans. Roy. Soc. A vol. 336) that the sublayer pocket motions play a distinctly important role

in near-wall dynamics. In the present study, smoke visualization and axial velocity measurements

are combined in order to establish the scaling behavior of pocket events in the viscous sublayer of

the turbulent boundary layer. In doing so, an identical analysis methodology is employed over an

extensive range of friction Reynolds numbers between 388 ≤ δ+ ≤ 2.2×105. Both the pocket width

(W ) and time interval between pocket events (T ) increase logarithmically with Reynolds number

when normalized by viscous units. Normalization of W and T by the Taylor microscales evaluated

at a wall-normal location of about 100 viscous units, however, appears to successfully remove

this Reynolds number dependence. The present results are discussed in the context of motion

formation owing to the three-dimensionalization of the near-wall vorticity field, and concomitantly,

the recurring perturbation of the viscous sublayer.

∗ corresponding author email: m.metzger@utah.edu
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I. INTRODUCTION

Understanding the physical mechanisms that sustain turbulence production and drag

force generation has been of interest in turbulent boundary layer research at least since

Theodorsen’s introduction of the hairpin vortex model1 over 65 years ago. Coherent vor-

tical motions, including but not limited to quasi-streamwise vortices, hairpin vortices, and

so-called typical eddies, are individually and collectively purported to play significant, but

varying, roles in both turbulence production and momentum transport.2–9 Sublayer streaks

have been believed to play an integral role in the near-wall self-sustaining bursting cycle that

involves the generation and evolution of quasi-streamwise vortices.10–12 Alternatively, Falco

and co-workers,7,13 portray streaks as the far-field signature of intermediate-scale wallward

advecting vortical motions whose stronger near-field interaction culminates with the rapid

formation of sublayer pockets. Consistent with this, recent analyses of direct numerical sim-

ulations by Wu et al.14, provide convincing evidence that viscous sublayer streaks are passive

structures in the near-wall regeneration process, and largely symptomatic of the presence

of “turbulent-turbulent spots” (referred to as TUTSs) in the inner layer. Deciphering the

nature of the connection between inner-layer structures and their impact on the sublayer,

and hence the skin friction, is of paramount importance for advancing turbulence theory and

improving the accuracy of numerical models, especially as the Reynolds number becomes

large.

Two main turbulence structures have been observed in the sublayer, streaks and pockets;

see Robinson6 for an overview. Figure 1 illustrates these structures as would be seen by

sublayer smoke visualization. A significant feature of the streak motions is that when nor-

malized by viscous scales their average spanwise streak spacing, `s, is apparently invariant

with Reynolds number, `+s ' 100.15,16 Note that a superscript ‘+’ indicates normalization

by the kinematic viscosity, ν, and the friction velocity, uτ , (=
√
τwall/ρ), where τwall is the

mean wall shear stress, and ρ is the fluid density. Conversely, while also known to be present

in both high and low Reynolds number flows, the inner-normalized size of the pocket mo-

tions show variations with Reynolds number, δ+ = δuτ/ν, where δ is the boundary layer

thickness.15 If streaks are essentially passive entities in the sublayer as the results by Wu et

al.14 suggest, then that would imply that pockets are the predominant dynamically active

motions in the viscous sublayer. Such considerations motivate the present study of pocket

2



mean flow typical eddy (a) side view 

smoke 
wall 

pocket 

(b) plan view 

smoke 
wall 

streaks pocket 

FIG. 1: Idealization of streaks and pocket structures as made visible by smoke visualization of the

viscous sublayer: (a) side view, streamwise-wall normal plane, (b) plan view, streamwise-spanwise

plane. Note, pockets are quasi-symmetrical regions devoid of the tracer, often (but not always)

occurring between two streaks. [Adapted from Falco.(author?) [7]]

scaling behaviors.

A considerable and growing body of evidence indicates that, even very close to

the wall, a number of inner-normalized turbulence statistics exhibit Reynolds number

dependencies.17–19 The physical origin of some of the observed phenomena has been shown

to connect to inner/outer interactions,20 while other studies suggest that these δ+ depen-

dencies are associated with the scaling structure of the mean dynamical equation,21,22 and

accordingly the mechanisms of inertial turbulent transport.23 Here, a relevant observation

is that many of these Reynolds number dependencies are approximately logarithmic.17,24,25

As first observed in flow visualizations,26 when a tracer is continuously injected into the

sublayer (via a tangential slot in the wall), pockets are identified in plan view as initially

circular and then crescent shaped regions devoid of tracer. The laboratory measurements

of Falco and co-workers, along with analysis of visualizations conducted on the salt playa

of western Utah, indicate that the inner normalized pocket width (W+) and time interval

between pockets (T+) increases approximately logarithmically with Reynolds number.7,15

Although both streaks and pockets are observed in the viscous sublayer, it is reasonable

to conclude that, because of the difference in scaling properties between the two types of
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coherent structures, the mechanisms responsible for low-speed streaks are not identical to

those of pockets. Collectively, these considerations motivate the present focus on correlating

pocket motion attributes with wall-layer turbulence structure.

Three different physical mechanisms capable of producing pocket formations have been

described in the literature.7,27,28 Falco and co-workers29 primarily considered pockets as foot-

prints of so-called “typical eddies” (identified from flow visualizations as spatially-compact

regions of concentrated vorticity having a ring-like configuration30) that propagate in the

outer region, and in some cases advect toward the wall. Smith et al.27 observed pocket-type

events during the formation and lift-up of hairpin vortices, in between the vortex legs and

behind the vortex head. In his direct numerical simulation (DNS) interrogation, Robinson28

found that local regions of high pressure coincide with the spanwise divergence of streamlines

in the sublayer, indicative of wallward moving fluid and pocket formations. This connection

between pressure fluctuations and pocket events is corroborated by the high Reynolds num-

ber pressure measurements of Klewicki et al.25. In that study, the peak in the spectra of the

fluctuating wall pressure gradient (both streamwise and spanwise gradients) was found to be

consistent with the characteristic length scale of pockets at similar Reynolds number. Note,

wall pressure gradients are important because they provide a mechanism for the surface flux

of vorticity,31 and thus likely play a critical role in the near-wall self-sustaining process of

the turbulence.

Potentially significant common attributes of the pocket forming physical mechanisms

described above are the presence of positive absolute spanwise vorticity (ωz), i.e., having

a sign opposite sign to that of the mean vorticity (−∂U/∂y), in conjunction with a high

pressure perturbation giving rise to a localized region of high pressure gradients along the

wall. Two-point correlations of spanwise vorticity for probe separations in the wall-normal

direction at low Reynolds number reveal the regular occurrence of opposing sign ωz motions

in the near-wall region.32 Similar, albeit more limited, measurements provide evidence that

this structural feature is preserved at δ+ = O(105).24 These behaviors are compatible with

the expected vorticity distribution of a typical eddy,7 as well as the generation of positive ωz

under a shear layer motion as it rolls-up to form a hairpin-like vortex.27,33 Consistent with

the increasing probability of positive ωz motions with wall normal distance,34,35 analysis of

DNS data indicates that there is a rapid transfer of mean enstrophy to fluctuating enstrophy

in the region 5 . y+ . 50, that coincides with the rapid three-dimensionalization of the

4



overall vorticity field.36 Accordingly, into the logarithmic region and beyond, the motions

bearing positive ωz increasingly gain parity with those bearing negative ωz.
36,37

In his physical model, Falco7 proposes that the positive ωz motions characteristic of

the outer region advect toward the surface at (generally) shallow angles, and through the

subsequent interaction with the surface produce the pocket motions. In support of this

picture, plan-view flow visualizations simultaneous with hot-wire measurements in the buffer

layer reveal large negative contributions to the Reynolds shear stress (associated with the

wallward movement of high momentum fluid) coincident with pocket formations.26 Outside

of the sublayer (y+ > 10), measurements at both high and low δ+ indicate that the duration

of spanwise vorticity events with large positive fluctuation (magnitude greater than 1 rms)

scale according to the local Taylor time scale.32,36 Note, this threshold level guarantees that

nearly all of the positive detected events have positive ωz. The present paper provides

evidence that the average pocket width (W ) and time interval between pockets (T ) also

scale with the Taylor microscales evaluated in the near-wall region, but just beyond where

the mean-to-fluctuating enstrophy transfer mentioned above occurs. An important feature

of the the present study is that the friction Reynolds number varies over three orders of

magnitude, achievable through a combination of laboratory and field experiments.

II. EXPERIMENTAL METHODS

The present flow visualization experiments were conducted in the boundary layer wind

tunnel located in the Fluid Mechanics Laboratory at the University of Utah. Three different

Reynolds numbers were investigated: δ+=1131, 1977, 3050. Theatrical fog was injected

through a thin, nearly tangential slot in the wind tunnel floor and illuminated with a hori-

zontal laser sheet using an argon-ion laser (5 W, Spectra-Physics 2000). The height of the

laser sheet was positioned 2 mm above the floor of the wind tunnel, which corresponds to a

wall-normal distance of 10–34 viscous units across the three Reynolds numbers investigated.

Plan view flow visualization images were captured at 500 frames/s with a motion picture

camera (Red Lake 16 mm) positioned above the transparent wind tunnel ceiling. A sample

frame from the video is shown in Fig. 2. The friction velocity at each δ+ was determined

using the Clauser method, based on mean velocity profile measurements from a hot-wire.

Further details regarding the laboratory experiments are given by Fershtut.38
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FIG. 2: Sample snapshots of sublayer smoke visualization with several pocket events identified:

(left) wind tunnel, (right) atmospheric surface layer. The corresponding physical scale is indicated

in each case. Flow is from top to bottom.

The field experiments were performed in the atmospheric boundary layer that flows over

the salt flats of Utah’s western desert. Flow visualizations of the sublayer were accomplished

using floodlighting, a CCD camera (60 frames/s), and a buried reservoir that allowed the-

atrical fog to seep through a tangential slot made flush with the desert floor. Note, the

camera lens was focused on the top surface of the slot. Plan view images of the sublayer

were captured during sunset as the atmosphere transitions through neutral thermal stability

(during which buoyancy effects become negligible). The local friction velocity was estimated

using a hot-wire rake capable of measuring the velocity gradient near the surface. Further

details of the field study are described by Klewicki et al.,15 hereafter referred to as K95.

The Reynolds number associated with the atmospheric boundary layer was estimated as

δ+ ≈ 2.2 × 105 ± 11% using the local friction velocity and kinematic viscosity along with

an estimate of the surface layer depth based on the work of Metzger et al.39

The average pocket width and time interval between pocket events were measured using

identical analysis techniques for the laboratory and field data, namely those described in K95.

Important features of this methodology are summarized here. To obtain pocket width data,

a horizontal reference line was drawn on the video monitor at an arbitrary distance of 3 cm

(wind tunnel) and 6 cm (atmosphere). For all pockets passing through the reference line, a
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FIG. 3: Inner normalized profiles of the Taylor microscales: (left) Taylor length scale, (right) Taylor

time scale. Solid symbols represent the field data from Metzger40 acquired over three different years:

� (1995), • (1999), N (2002); gray open symbols are laboratory data from Vincenti et al.,41 and

black open symbols are laboratory data from Klewicki.42

precision rule was used to measure the maximum width between the centers of concentrated

fog lines outlining the crescent-shaped pocket pattern. From the field data, 869 pockets

were measured; while from the laboratory data, 200 pockets were measured at each δ+. The

average time interval between pocket events was determined by dividing the total number

of pockets detected by the total time elapsed during the interrogation period. The inner

normalized time interval was then weighted by the ratio 2W+/Z+, where Z+ represents

the inner normalized screen width. This weighting allows T+ to be interpreted as the inner

normalized time interval between events that would be detected by an imaginary probe

located at a fixed y+ in the measurement plane. Note, the exact wall-normal location of the

measurement plane for the present flow visualization data remains somewhat ambiguous,

but is believed to be in the region 10 ≤ y+ ≤ 30 based on agreement with the prior work

of Falco7,26. Although a slightly different method was used to determine T+ in the study

of K95, renewed analysis of their data using the present method38 yield results essentially

identical to those originally published in K95.

In the present study, Taylor microscales are used to normalize W and T . Here, λ and λt

denote the Taylor length and time scale, respectively. For reference, profiles of λ+ and λ+t

as a function of δ+ and y+ are shown in Fig. 3 over a range of Reynolds numbers spanning

three decades. In the case of the Taylor length scale, λ+ increases nearly monotonically with
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y+ at each Reynolds number, except for a short plateau region between 10 < y+ < 100.

On the other hand, in the case of the Taylor time scale, the λ+t versus y+ profiles exhibit a

local minimum near y+ ≈ 50. The data also reveal apparent Reynolds number trends. For

any given y+ < ∼5, both λ+ and λ+t increase with δ+. One can observe different regimes

where the Reynolds number behavior changes. For example, both λ+ and λ+t increase

more dramatically with δ+ in the log region, y+ > ∼200; whereas, δ+ variations are less

pronounced closer to the wall. In the viscous sublayer, λ+ appears to be independent of

Reynolds number. Later, evidence is given that the pocket width W and time interval

between pockets T scale with the Taylor microscales using values for λ and λt in the region

∼50 < y+ < ∼100. Note, this scaling region corresponds approximately with the region in

the y+ profile where λ+t exhibits a local minimum and λ+ exhibits a plateau.

Specific details regarding the laboratory and field experiments, from which the hot-wire

data in Fig. 3 were taken, are provided elsewhere.40–42 Note, since the field data were acquired

over different years, the friction Reynolds numbers for each data set are not the same.

Specifically, the atmospheric flow visualizations are characterized by a Reynolds number

of δ+ = 2.2 × 105; whereas, the Taylor microscale measurements from the atmosphere are

characterized by slightly larger Reynolds number (for the 1995 hot-wire data, 2.6 × 105 ≤

δ+ ≤ 4.6 × 105; for the 1999 hot-wire data, 5.7 × 105 ≤ δ+ ≤ 7.9 × 105; and for the 2002

hot-wire data, 5.9 × 105 ≤ δ+ ≤ 6.5 × 105). The effect of this on scaling pocket width W

and the time between pocket events T is discussed in the next section.

For both the laboratory and field studies, the Taylor length is estimated based on the

relation λ2 = 〈u2〉/〈(∂u/∂x)2〉, assuming isotropic turbulence,43 where u is the fluctuating

velocity along the streamwise coordinate (x). Here, 〈·〉 denotes a long-time temporal aver-

age. Furthermore, the instantaneous velocity signal is decomposed into its mean (U) and

fluctuating components (u), such that 〈u〉= 0. The derivative is evaluated using Taylor’s

frozen turbulence hypothesis along with a Savitzky-Golay filter. Note, the data of Klewicki42

indicate that outside of the buffer layer the assumption of isotropy provides a good estimate

of λ. The Taylor time scale, on the other hand, is determined using an osculating parabola

fit to the autocorrelation of u at zero time lag. Therefore, calculation of λt does not rely on

the assumption of isotropy.
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FIG. 4: Reynolds number dependence of the inner normalized pocket width (W+) and time interval

between pockets (T+). ◦ present, � Falco,7 � Klewicki et al.,15 - - logarithmic curve fits.

III. RESULTS

Figure 4 shows the present W+ and T+ data as a function of δ+. For comparison, the

W+ data from Falco7 over a Reynolds number range 400 < δ+ < 1500 are also shown. The

present low Reynolds number W+ data agree remarkably well with those of Falco. Curve

fits to the data reveal a logarithmic Reynolds number dependence of the inner normalized

pocket width and time between pockets that are respectively well-approximated by:

W+ = 27.6 log δ+ − 19.5 , (1)

T+ = 6.6 log δ+ − 1.1 . (2)

The error bars in Fig. 4 represent 95% confidence intervals for each data point, based upon

the standard deviation of the mean. The uncertainty in the field data is about twice as

large as that of the laboratory data, due to the increased uncertainty in measuring the

friction velocity associated with the atmospheric boundary layer. In addition, the width of

the square markers used for the atmospheric data correspond to the uncertainty in δ+ for

those data.

Since inner normalizations show mild (logarithmic) but apparent δ+ dependencies for W

and T , three other types of normalizations were investigated. These include (i) outer scaling

using normalization based on by the boundary layer thickness δ and freestream velocity

U∞, i.e., W/δ and T U∞/δ, (ii) meso scaling using normalization based on intermediate
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length and time scales defined by the geometric mean between the inner and outer scales,

i.e., W+/
√
δ+ and T+/

√
δ+/U+

∞, and (iii) Taylor scaling using normalization based on the

Taylor microscales, i.e., W/λ and T/λt. Note, meso scaling is, for example, inspired by the

scalings associated with the mean momentum balance as first shown by Wei et al.21

The performance of inner, outer, meso, and Taylor scales in terms of removing δ+ trends

in T and W are presented in Fig. 5. The normalized data (denoted generically as T̃ , W̃ )

are plotted for convenience on log-log coordinates, which is not necessarily meant to imply

power-law behavior. For example, the goodness-of-fit parameter (R2) associated with loga-

rithmic and power-law curve fits to W+ are 0.9998 and 0.9936, respectively, indicating that a

logarithmic function of δ+ fits the W+ data slightly better than a power law. Clearly under

the proper normalization, T̃ and W̃ versus δ+ will appear on the log-log plot as straight

lines having zero slope.

In Fig. 5, the grey dashed lines representing the inner, outer, and meso scalings of W̃ and

T̃ follow directly from the empirical expression for W+ and T+ in (1) and (2), respectively.

For the outer and meso scalings of T̃ , values of U+
∞ from the hot-wire data were also used.

The black markers represent Taylor scaling derived from the hot-wire data shown in Fig. 3.

For each δ+ data set, W+ and T+ are determined based on the empirical relations in (1)

and (2), respectively; then, these values are normalized by the corresponding λ+ and λ+t

obtained from the hot-wire data. In Fig. 5, λ+ and λ+t are evaluated at a fixed location of

y+ = 100 for all δ+. However, one would obtain nearly identical results using values of λ+

and λ+t at any y+ in the range 50 ≤ y+ ≤ 200. This is highlighted below; and, the physics

associated with this observation are discussed further.

The dashed lines in Fig. 5 represent power law relations of the form:

W̃ = α (δ+)A, (3)

T̃ = β (δ+)B. (4)

In order for W̃ and T̃ to be independent of δ+, one seeks a normalization whereby A ≈ 0 and

B ≈ 0, which would yield a line with zero slope (when plotted in log-log coordinates). As

apparent, normalization by the Taylor microscales yields T̃ and W̃ values that are essentially

independent of Reynolds number. From this, one can obtain the following Reynolds number
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triangles indicate laboratory data, and squares indicate field data. The dashed lines represent

power-law curve fits.

invariant scaling relations:

W

λ(y+=100)
= C1 (5)

T

λt(y+=100)
= C2 , (6)

where C1 and C2 are constants with values (based on curve fits to the present data) of 0.8 and

3.8, respectively. Interestingly, Metzger et al.44 also found that the local Taylor microscale

succeeds in removing both Reynolds number and y+ trends in the statistical mode of the

bursting period (over a similar δ+ range). The connection between bursts and pockets can be

made loosely through the hairpin vortex packet paradigm.9 Another interesting correlation

stems from the recent work of Klewicki et al.,45 which showed that the characteristic length

associated with surface-pressure gradient perturbations also corresponds to the mean pocket

width. Furthermore, Priyadarshana and Klewicki46 revealed that Reynolds number effects

in the spanwise vorticity spectra at y+ = 320 can be scaled by normalizing the frequency

with the local Taylor microscale (the data from their study also spanned over three decades

in δ+). Note, in the context of the present discussion, the difference between y+ = 320 and

y+ = 100 is relatively insignificant (see Fig. 6).

Since λ and λt are functions of y+, there is some question as to which y+ location should

be used to evaluate the Taylor microscales for purposes of obtaining T̃ and W̃ . Figure 6

shows the effect of the y+ location, at which the Taylor microscales are evaluated, on the
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used in the Taylor normalization of Figure 5.

slope of the curve fits, defined as

W/λ(y+) ∝ (δ+)A(y
+), (7)

T/λt(y
+) ∝ (δ+)B(y+). (8)

The error bars indicate the uncertainty in the estimation of the slope based on the covariance

matrix of the curve fit parameters obtained from the non-linear regression analysis, which

accounts for uncertainties in the magnitudes of δ+, W , and T ; see Metzger47 for an example

application of this method. The case of A = B = 0 characterizes the proper normalization,

i.e., δ+-independence of T̃ and W̃ . One can notice a range of y+ values between about 50

and 200 wherein the curve fits yield nearly identical slope regardless of y+. In this range,

both slopes A and B are close to zero to within the uncertainty of the data and analysis.

Note, part of the uncertainty stems from the fact that the pocket data and Taylor microscale

measurements from the field studies were acquired at different friction Reynolds numbers,

with the differences being as much as ∆δ+ = 5× 105 in some cases. The root mean square

(rms) of the residual associated with A and B over the range 50 . y+ . 200 is around

3.5%. The rms of the residuals span between 1.6% and 5.6% over the entire y+ range

shown in Fig. 6. Therefore, the curve fits in (7) and (8) using λ and λt values in the range

50 . y+ . 200, respectively, are deemed good fits to the data.
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IV. DISCUSSION AND CONCLUSION

The present study along with K95 establish that, when inner-normalized, the length and

time scales of coherent motions detected in the sublayer consist of both a Reynolds number

invariant component (streaks) and a Reynolds number dependent component (pockets). The

latter is likely a consequence of spatially compact motions above the sublayer that impart

their signature on the sublayer. Apparently these motions play an increasingly important

role on near-wall dynamics with increasing Reynolds number.24 Conceptually, one can think

of the pocket size and time interval between pockets as having connection with some family

of eddies that gain proximity to the wall. Possibilities include, but may not be limited to,

typical eddies7, the “heads” of hairpin-like vortices that lift out of the sublayer27, and vortices

associated with the more recently identified turbulent-turbulent spots14. The present data

indicate that if the scale of the (eddy) motion is measured in Taylor units, then the proximity

of the eddy to the wall (as measured in viscous units), whereby a pocket formation may be

induced, remains nominally invariant with Reynolds number. In fact, the present study

suggests that this wall-normal location is 50 . y+ . 200.

Several interesting coincidences are noted. The location y+ = 100 lies near the lower edge

of the “traditional” log layer (observed in the inner normalized mean streamwise velocity

profile), and also corresponds to the location at which a shoulder/plateau begins to emerge

in the inner normalized rms streamwise velocity profile. Note, a compilation of streamwise

velocity statistics over a very large Reynolds number range may be found elsewhere24,39,40.

The inner normalized rms spanwise vorticity profiles also exhibit a noticeable knee (change

in slope) in the region 50 . y+ . 120 that appears to be nearly invariant with Reynolds

number.48 In connection with this, we note that analysis of the mean enstrophy equation

reveals that the region interior to y+ ' 50 is marked by a rapid decrease in the mean vortc-

ity magnitude.22 This coincides with a transfer of mean to fluctuating enstrophy and thus

physically attributed to the three dimensionalization of the vorticity field into more spa-

tially compact motions. Consistent with this, observations of the pre-multiplied streamwise

velocity spectra reveal that, over a very large Reynolds number range, the region of interest

lies between the inner spectral peak (characteristic of the near-wall cycle), and the mid-layer

peak associated with the motions that modulate the near-wall flow.20,49 In relation to co-

herent motions, we also note that Tomkins and Adrian50 found that merging vortex packets
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Markers are the same as that in Fig. 3, except all of the atmospheric data at δ+ = 2.2 × 105 are

plotted as black circles here. −−, η+ = (κ y+)1/4.

provide an important mechanism of spanwise growth in the boundary layer up to a distance

of about y+ = 100, for the δ+ range they considered. This is relevant to the present study

because “merging structures are expected to leave a highly distinctive footprint or signature

in the flow field”; and, sublayer pockets may reflect this signature. Finally, Stanislas et al.51

observed a difference in vortex characteristics and behavior above y+ ≈ 100, compared to

the region below that. In particular, their measurements reveal that the characteristic size

of eddies increases from the wall and, for y+ > 150, tends to nearly a constant value, which

remains independent of Reynolds number when scaled by the local Kolmogorov length.

Interestingly, however, Reynolds number dependencies in the present pocket width data

do not scale with the local Kolmogorov length. Figure 7 attests to this fact by showing

the Reynolds number invariance of the inner normalized Kolmogorov length, η+, estimated

using the local isotropy assumption, which has been shown to correspond closely to the full

dissipation rate outside of the buffer layer.52 Therefore, in terms of pocket width scaling,

W/η behaves like W+. If sublayer pocket events are indeed believed to be linked to the

existence of eddies in the lower log layer, then the question arises as to why the Kolmogorov

length fails to scale the pocket width, when previous work51,53 indicate that the radius of

eddies in the log region does appear to scale with the Kolmogorov length.
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Undoubtedly, many factors affect the response of the sublayer to the motion of eddies

above it (i.e., in the form of pocket events). It may be rationally hypothesized, however,

that the primary factors driving this interaction are the vortical intensity of the eddy, the

size of the eddy, and the propagation velocity (magnitude/direction) of the eddy. The

near-invariance of the ω+
z and ω+

y intensities with Reynolds number,48 suggests that the

vortical intensity of an initiating eddy at y+ ≈ 100 does not vary appreciably with Reynolds

number. Therefore, one might surmise that the Reynolds number dependence of the char-

acteristic pocket scales has, less to do with the vortical intensity of the initiating eddy, and

more to do with its size and/or propagation velocity. However, since eddy size normalized

by the Kolmogorov length appears to be independent of Reynolds number at least in the

log region51,53, one is left deducing that the local propagation velocity provides the major

influence in determining characteristic pocket scales.

Given the proposed hypothesis stated above along with the present evidence that the

Taylor microscale at y+ ≈ 100 exhibits the same Reynolds number dependence as pocket

scales, one may aptly infer that sublayer pockets represent the footprints of wallward-moving

coherent vortical structures initially residing at y+ ≈ 100 independent of Reynolds number.

The important modifier here is the wallward motion of the eddy. Further corroboration

and qualification of this phenomenological picture is provided by Metzger et al.44, wherein

the burst period (or frequency) scaled by the local Taylor microscale was found to be both

independent of Reynolds number and wall-normal position. Note, burst events are generally

accepted to consist of a “sweep” of high momentum fluid toward the wall accompanied by

an “ejection” of low momentum fluid away from the wall6. The equivalency in the scaling

properties of (i) the time interval between sublayer pocket events and (ii) the burst period

strongly suggests that sublayer pocket events may be attributed to and visually signify the

occurrence of a sweep.

A simple scaling argument for pocket width W+ is presented to examine this idea further.

Consider the scenario illustrated in Figure 8 whereby an eddy of characteristic size `+ and

initially residing in the inner layer at a height of y+≈ 100 begins to propagate toward the

wall at a velocity ~V +
p . When this structure impacts the wall, the footprint is expected to

have a length L+, greater than `+ due to the actue angle of propagation θ. From geometry,

the length of the footprint is

L+ =
`+

sin θ
. (9)
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FIG. 8: Schematic of an eddy that initiates from the inner layer (at y+ ≈ 100) and propagates

toward the wall with a velocity ~V +
p . For a given characteristic size `+ of the eddy, the footprint at

the wall (in the form of a pocket event) is expected to extend a length L+ due to the acute angle

of propagation θ.

Assuming that the eddy propagates in a straight line, the propagation angle θ can be de-

termined from the components of the propagation velocity, ~V +
p = u+p î + v+p ĵ, where up and

vp denote the horizontal and vertical velocity components respectively. We further assume

that the width of the pocket is approximately equal to its length (W+ ≈ L+). Plan view

flow visualization videos reveal pockets to be quasi-circular structures, thus substantiating

this assumption. This leads to a relation for pocket width of the following form

W+ =
`+

v+p

√
(u+p )2 + (v+p )2 . (10)

In the analysis below, we show how (10) can be manipulated to obtain a logarithmic

Reynolds number dependence of the inner normalized pocket width consistent with obser-

vations from the experimental data in Figure 4. In order to proceed, we make a number of

simplifying assumptions. First of all, it is assumed throughout that the wallward-moving

eddy initially resides at y+ = 100. Second, as mentioned earlier, Stanislas et al.51 indicate

the mean diameter of vortices in the log layer normalized by the Kolmogorov scale is `/η≈20

independent of Reynolds number. Using the relation η = (κ y+)1/4 yields a characteristic

eddy size of `+≈ 50 (based on values of κ= 0.38 and y+ = 100). Third, it is reasonable to

imagine that the propagation velocity components will be similar to the root mean square

velocity of the turbulence at the initiating height of the eddy, taken here to be y+ = 100.
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This gives u+p ≈ (U+)y+=100 + (u′
+

)y+=100 and v+p ≈ (v′
+

)y+=100, where the uppercase and

lowercase letters denote the mean and fluctuating (standard deviation) velocities, respec-

tively. It is well known that U+ is Reynolds number independent in the log layer18 with a

value of approximately 17 at y+ = 100. Similarly, v′
+

has also been shown to be Reynolds

number independent (for moderate to high Reynolds numbers) with a value of 1.16 in the log

layer.48 Therefore, the only quantity in the relation describing W+ that exhibits Reynolds

number dependence is u′
+

. In fact, Marusic et al.54 suggest a logarithmic dependence of the

form: (u′
+

)2 = B1 − A1 log(y+/δ+). That study examined a number of experimental data

sets yielding a range of values for A1 and B1. For purposes of the scaling analysis here, the

average values of A1 = 1.25 and B1 = 2.2 are considered. Substituting this relation into

(10) and performing some algebraic manipulation, one can show that to leading order

W+ ∼ (log(δ+))1/4 , (11)

where the proportionality constant is equal to `+A
1/4
1

√
2 (U+)y+=100/(v

′+)y+=100. Plugging

in the values stated above for each of the quantities yields a Reynolds number growth rate

of 266 for the inner normalized pocket width, i.e., W+ ≈ 266 (log(δ+))1/4 to leading order.

This slightly underpredicts (by only a few percent) the behavior of the data, which exhibit

a growth rate of 274 when curve fit to the scaling relation in (11). Note, the R2 value of this

curve fit, i.e., W+ = a (log(δ+))1/4 + b, is 0.991 indicating the data fit well to this scaling

model. The agreement between the scaling analysis and the data are quite remarkable

considering the assumptions and simplicity of the propagation model utilized. Given this,

it is not surprising that the Taylor microscale evaluated at y+ ≈ 100 succeeds in removing

Reynolds number dependencies in the pocket width, since the Taylor microscale inherently

incorporates information about the local streamwise turbulent velocity by definition.

In summary, the present results support the physical picture of the near-wall self-

sustaining process based on the “parent-offspring autoregeneration mechanism” as described

in the recent study of Wu et al.14 and in accordance with earlier work.9,27,55–57 In this pic-

ture, viscous sublayer streaks behave as passive entities, frequently perturbed by turbulent-

turbulent spots (TUTS) that are generated locally within the viscous sublayer and buffer

layer. TUTSs appear to originate from hairpin vortex packets occupying the near-wall re-

gion and, as such, are characterized by spatially intermittent concentration of small-scale

vortices. Wu et al. revealed that TUTSs are structurally analogous to transitional-turbulent
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spots that form as part of the secondary instability in laminar boundary layer transition.

In their DNS visualizations, they noticed that indented sublayer streaks often simply form

the edges of pockets that arise from the existence of TUTSs. The present results appear

consistent with this connection between pockets and TUTSs. Specifically, we have shown

that (i) pockets scale with the Taylor microscale measured at y+≈100, which is in the same

wall-normal region where TUTSs largely reside, and (ii) the Reynolds number growth of the

inner normalized pocket width (W+) can be obtained from a simple model of a compact

vortex located at y+≈100 that propagates obliquely toward the wall. It remains to be seen

whether the disturbances leading to pocket formation in the sublayer are responsible for

instigating the birth of infant TUTSs, or whether pockets are mere footprints of compact

vortical motions from more mature TUTSs aloft. In either case, future work is needed to

determine if there are specific events that initiate the wallward motion of pocket-producing

eddies, and how this overall picture of the near-wall process is linked to the observation of

a hierarchy of large-scale and very large-scale motions49,58 farther from the wall. In this

regard, determining the relative contributions of TUTSs to wall-layer turbulence production

(versus the self-sustaining process associated with streaks and quasi-streamwise vortices10)

would seem to be an important factor.
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[33] J. Jiménez, P. Moin, R. Moser, and L. Keefe. Ejection mechanisms in the sublayer of a

turbulent channel. Physics of Fluids, 31(6):1311–1313, 1988.

[34] J. Klewicki, C. Gendrich, J. Foss, and R. Falco. On the sign of the instantaneous spanwise

vorticity component in the near-wall region of turbulent boundary layers. Physics of Fluids

A, 2:1497–1500, 1990.

[35] S. Rajagopalan and R. Antonia. Structure of the velocity field associated with the spanwise

vorticity in the wall region of a turbulent boundary layer. Physics of Fluids A, 5:2502–2510,

1993.

[36] J. Klewicki. A description of turbulent wall-flow vorticity consistent with mean dynamics.

Journal of Fluid Mechanics, 737:176–204, 2013.

[37] Y. Wu and K. Christensen. Population trends of spanwise vortices in wall turbulence. Journal

of Fluid Mechanics, 568:55–76, 2006.

[38] A. Fershtut. On the Reynolds number dependence of passive contaminant motions in the

viscous sublayer. Master’s thesis, University of Utah, Salt Lake City, Utah, 2006.

[39] M. Metzger, B. McKeon, and H. Holmes. The near-neutral atmospheric surface layer: tur-

bulence and non-stationarity. Proceedings of the Royal Society of London A, 365:859–876,

2007.

[40] M. Metzger. Length and time scales of the near-surface axial velocity in a high reynolds

number turbulent boundary layer. International Journal of Heat and Fluid Flow, 27:534–541,

2006.

[41] P. Vincenti, J. Klewicki, C. Morrill-Winter, C. M. White, and M. Wosnik. Streamwise ve-

locity statistics in turbulent boundary layers that spatially develop to high reynolds number.

Experiments in Fluids, 54:1629:1–13, 2013.

[42] J. Klewicki. On the interactions between the inner and outer region motions in turbulent

boundary layers. PhD thesis, Michigan State University, East Lansing, Michigan, 1989.

[43] H. Tennekes and J. L. Lumley. A First Course in Turbulence. The MIT Press, Cambridge,

Massachusetts, 1972.

[44] M. Metzger, B. J. McKeon, and E. Arce-Larreta. Scaling the characteristic time of the bursting

process in the turbulent boundary layer. Physica D: Nonlinear Phenomena, 2009. in press.

[45] J. Klewicki, P. Priyadarshana, and M. Metzger. Statistical structure of the fluctuating wall

21



pressure and its in-plane gradients at high reynolds number. Journal of Fluid Mechanics,

609:195–220, 2008.

[46] P. Priyadarshana and J. Klewicki. Reynolds number scaling of wall layer velocity-vorticity

products. In J. A. Smits, editor, Reynolds number scaling in turbulent flows, pages 117–123.

Kluwer Academic Publishers, 2003.

[47] M. Metzger. Scalar dispersion in high Reynolds number turbulent boundary layers. PhD

thesis, University of Utah, Salt Lake City, Utah, 2002.

[48] P. Priyadarshana, J. Klewicki, S. Treat, and J. Foss. Statistical structure of turbulent-

boundary-layer velocity-vorticity products at high and low reynolds numbers. Journal of

Fluid Mechanics, 570:307–346, 2007.

[49] N. Hutchins and I. Marusic. Evidence of very long meandering features in the logarithmic

region of turbulent boundary layers. Journal of Fluid Mechanics, 579:1–28, 2007.

[50] C. Tomkins and R. Adrian. Spanwise structure and scale growth in turbulent boundary layers.

Journal of Fluid Mechanics, 490:37–74, 2003.

[51] M. Stanislas, L. Perret, and J.-M. Foucaut. Vortical structures in the turbulent boundary

layer: a possible route to a universal representation. Journal of Fluid Mechanics, 602:327–

382, 2008.

[52] J. C. Klewicki and R. E. Falco. On accurately measuring statistics associated with small-scales

in turbulent boundary layers using hot-wire probes. Journal of Fluid Mechanics, 219:119–142,

1990.

[53] M. Tanahashi, S.-J. Kang, T. Miyamoto, S. Shiokawa, and T. Miyauchi. Scaling law of fine

scale eddies in turbulent channel flows up to Reτ = 800. International Journal of Heat and

Fluid Flow, 25:331–340, 2004.

[54] I. Marusic, J. P. Monty, M. Hultmark, and A. J. Smits. On the logarithmic region in wall

turbulence. Journal of Fluid Mechanics, 716(R3):1–11, 2013.

[55] J. Zhou, R. J. Adrian, S. Balachandar, and T. M. Kendall. Mechanisms for generating coherent

packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 387:353–396, 1999.

[56] R. Panton. Overview of the self-sustaining mechanisms of wall turbulence. Progress in

Aerospace Sciences, 37:341–383, 2001.

[57] R. Adrian, C. Meinhart, and C. Tomkins. Vortex organization in the outer layer region of the

boundary layer. Journal of Fluid Mechanics, 422:1–54, 2000.

22



[58] Y. H. Lee and H. J. Sung. Very-large-scale motions in a turbulent boundary layer. Journal of

Fluid Mechanics, 673:80–120, 2011.

23


