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We examine the spatial field of orientations of slender fibers that are advected by a two-dimensional fluid
flow. The orientation field of these passive directors are important in a wide range of industrial and geophysical
flows. We introduce emergent scar lines as the dominant coherent structures in the orientation field of passive
directors in chaotic flows. Previous work has identified the existence of scar lines where the orientation rotates
by π over short distances, but the lines that were identified disappeared as time progressed. As a result, earlier
work focused on topological singularities in the orientation field which we find to play a negligible role at long
times. We use the standard map as a simple time-periodic two-dimensional (2D) flow that produces Lagrangian
chaos. This class of flows produce persistent patterns in passive scalar advection, and we find that a different
kind of persistent pattern develops in the passive director orientation field. We identify the mechanism by which
emergent scar lines grow to dominate these patterns at long times in complex flows. Emergent scar lines form
where the recent stretching of the fluid element is perpendicular to earlier stretching. Thus these scar lines can
be labeled by their age, defined as the time since their stretching reached a maximum.

I. INTRODUCTION

When slender fibers are advected in a fluid flow, they be-
come aligned by the flow [1–7] which produces dramatic ef-
fects including changes in material properties such as fluid
rheology and scattering of electromagnetic waves. These ef-
fects of fiber alignment appear in many applications including
design of fiber suspension flows for the paper industry [8, 9],
prediction of the albedo of icy clouds [10–13], and controlling
turbulent drag by adding fibers [14, 15]. Other applications
include liquid crystals [16] and active nematics [17, 18].

The motion and alignment of small, slender fibers in fluid
flow has many similarities to the advection of passive scalars
such as the concentration of a dye. This passive scalar prob-
lem has proven to be a rich area for scientific study [19–21].
For passive scalars, the case of time periodic two-dimensional
flows has been a source of many insights since it is the sim-
plest case that produces Lagrangian chaos [22]. A wide vari-
ety of mathematical tools have been developed for analyzing
passive scalar advection [21]. Particularly relevant to fiber
flows is analysis using finite time Lyapunov exponents (which
quantify the stretching experienced by each infinitesimal fluid
element) that has allowed insights from simple 2D time peri-
odic flows to be extended to identification of Lagrangian co-
herent structures in complex flows [23].

The advection of small slender rigid fibers in fluid flow can
be called the passive director problem. Symmetric fibers are
described by directors rather than vectors because the two
anti-parallel orientations of the particle are equivalent. The
orientational degree of freedom of the director introduces new
physics that is not present in the passive scalar problem. For
passive directors, a flow produces non-trivial patterns in the
orientation field even for homogenous initial conditions lead-
ing to an entirely new class of problems [1]. However, the
basic phenomenology of the orientation field for passive di-
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rector advection in 2D chaotic flow matches the passive scalar
problem quite closely.

Despite extensive study of the dynamics of fibers in fluid
flows [6, 7], we still do not have a clear phenomenology of
the fiber orientation field in chaotic and turbulent flows. Szeri
and coworkers [1, 24–27] analyzed the orientation dynamics
of microstructured fluids in a framework applicable to rigid
fibers as well as deformable microstructure such as polymers.
Their mathematical formalism describes cases where the fluid
flow experienced by a particle is steady or periodic in time.
In these simple cases, they already find a rich range of phe-
nomenology including chaotic dynamics of particle orienta-
tions. Because these flows have integrable translational mo-
tion of particles, many interesting features of passive scalar
advection do not yet occur. Two studies which explored the
orientation field of passive directors in flows with chaotic fluid
trajectories were performed by Wilkinson et al. [2, 28]. They
used a random flow in which they highlighted the existence of
scar lines and topological singularities. Another study by the
same team [29] extended the work of Szeri and coworkers on
flows with integrable translational trajectories. Parsa et al [3]
performed an experimental study in which they measured the
orientation of fibers in 2D chaotic and turbulent flows and
identified how tools from continuum mechanics can be used
to quantify fluid stretching and understand fiber orientations.
They only considered single fibers and not the spatial field of
fiber orientation.

Another line of research has explored the alignment and
curvature of fluid elements in chaotic and turbulent flows.
Fluid element orientation is closely related to passive director
orientation, and so the curvature of fluid elements is related to
the spatial gradient of the passive director orientation. Pope
and coworkers used direct numerical simulations to analyze
the curvature of material elements in turbulent flows [30, 31].
They find that the probability distribution of curvature ap-
proaches an asymptotic form while the mean square curva-
ture diverges exponentially. In 2D chaotic flows, the field
of stretching and curvature of fluid elements has been ana-
lyzed to understand mixing [32–34]. Among other things,
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Figure 1. (color). (a) Poincaré section of the standard map showing
the regular regions and chaotic regions for K = 2. (b) The stretching
experienced by the fluid over four periods at the same value of K,
where Λ1 is the eigenvalue of the Cauchy-Green strain tensor defined
in Appendix A.

these studies explore a correlation between curvature and low
stretching which was first observed in a study of model turbu-
lent flow [35]. One particularly relevant result is the existence
of asymptotic directionality in 2D time-periodic flows which
causes fluid element orientations to approach a persistent pat-
tern [33] similar to the persistent patterns observed in passive
scalar advection [36, 37].

There are several other problems where the spatial field of
director orientations are studied. Work on nematic liquid crys-
tals has developed many of the tools to study these fields [16].
Active nematics such as films of microtubules and molecular
motors add additional dynamics to the nematic liquid crystal
problem [17, 18]. Studies of pattern formation in Rayleigh
Bernard convection also involve director fields formed by the
orientation of convection rolls [38, 39]. Studies of the po-
larization orientation in optics also involve a similar director
field [40, 41]. Recent work has shown the importance of di-
rector fields in the dynamics of cells [42–44]. These director
fields all necessarily produce similar topological singularities,
primarily those with ±1/2 Poincaré index, which are like the
core and delta ridge patterns first identified in the study of fin-
gerprints. We will see that the fluid passive director problem
is an interesting case to contrast with the others. It is a limit-
ing case where the lack of interactions between directors leads
to patterns with many features in common with patterns in the
passive scalar problem.

In this paper we identify the key coherent structures in fiber
orientations in chaotic 2D flows and the mechanism by which
they form. We find that the topological singularities that have
received extensive attention are not central to understanding
fiber orientation fields. Instead, it is scar lines [2] that domi-
nate the fiber orientation fields and we identify the mechanism
that produces the emergent scar lines that dominate the field
at long times.

II. PHENOMENOLOGY OF PASSIVE DIRECTOR
ORIENTATION IN THE STANDARD MAP

We study passive directors advected in the standard map,
which is a convenient model for a two-dimensional fluid flow
that exhibits Lagrangian chaos. The standard map is area pre-
serving and invertible, it is defined as [46]

yt+1 = yt + K sin xt (1)

xt+1 = xt + yt+1 (2)

where spatial coordinates x and y are periodic over 2π, and
t is an integer that specifies the time measured in periods that
the flow has been iterated. This is often called the kicked rotor
system and q and p are used instead of x and y for the phase
space variables of the Hamiltonian dynamical system. The
standard map can be produced by a continuous flow field with
the velocity in the first half of each period given by ẋ = 0;
ẏ = 2K

T sin x and in the second half of each period the velocity
is given by ẋ = 2

T y ; ẏ = 0. This flow alternates between
a vertical Kolmogorov flow and a horizontal linear shear. A
visualization of passive scalars in this flow is shown as an an-
imation in the supplemental material [45].

Figure 1(a) shows the Poincaré section for the standard map
for K = 2 with the regular and chaotic regions clearly visi-
ble [47]. Figure 1(b) shows the field of fluid stretching often
called the finite-time Lyapunov exponent (FTLE) field which
is used to visualize Lagrangian coherent structures [23, 48].

The orientation of a fiber advected in the flow defined by
the standard map is

θt+1 = arctan
(

K cos xt + tan θt

1 + K cos xt + tan θt

)
. (3)

The orientation field of advected fibers can be defined in
two different ways [28]. Fibers with initial orientation field
p̂0(r) evolve over time t to a final orientation field p̂(r, t). We
will call this final orientation field the advected director field.
In 2D, this field is most easily represented by an orientation
angle field θp(r, t). Alternatively, each point can have a dis-
tribution of initial orientations, P0( p̂, r), which evolves under
the flow to a distribution of final orientations, P( p̂, r, t). The
orientation field is then defined by the final preferred orienta-
tion of fibers at any point in space. In the simplest case with
uniformly distributed initial orientations, the preferred orien-
tation can be obtained as the eigenvector of the left Cauchy-
Green strain tensor (CGST) that corresponds to the maximum
eigenvalue, which we denote as êL1. We will call this the
eigenvector field and represent it by the orientation angle field
θe(r, t). The left Cauchy-Green Strain tensor is C(L) = FFT

where Fi j = ∂xi
∂X j

is the fluid deformation gradient [3, 5, 49],
also referred to as the monodromy matrix [28]. An equiv-
alent definition is to use an eigenvector of the tensor order
parameter [16]. Appendix A discusses the definitions and re-
lationships between these quantities in more detail. An im-
portant distinction between the advected director orientation
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Figure 2. (color). (a) Angle of the advected directors, θp, of initially horizontal fibers. (b) Angle of the eigenvectors of the left Cauchy-Green
strain tensor, θe. (c) and (d) Director representations of (a) and (b). All angles are measured with respect to horizontal. Animations of all four
of these figures are included as supplemental material [45]. (K = 2; t = 4)

field, θp(r, t) and the eigenvector orientation field, θe(r, t), is
that θp depends on a choice of initial orientation while θe does
not.

The two orientation fields, θp and θe, are shown in Fig. 2
at time t = 4. Both the fiber fields (Fig. 2c-d) and higher
resolution color maps of the orientation angles (Fig. 2a-b) are
shown. The two different definitions of the fiber orientation
field are quite similar, but there are some clear differences.
For example, at (x, y) = (2.37, 4.48) in Fig. 2(b) we see there
is a pinwheel where the eigenvector orientation is not defined,
a topological singularity, while at this point, the advected di-
rector field in Fig. 2(a) is smooth. We show in section III that
these fields have very different topological structure and yet
as observed by Wilkinson et al [2], they converge toward the
same field at long times in chaotic regions of the flow.

An effective way to observe the dominant coherent struc-
tures in the orientation fields is to calculate the gradient of
the fiber orientation, as shown in Fig. 3. In both the advected
director field (3(a)) and the eigenvector field (3(b)), the domi-
nant features are thin lines over which the orientation changes
by π over a very short distance. These have been called scar
lines by Wilkinson et al [2].

The basic mechanism for formation of a scar line is sim-

ple. When fluid is stretched by the flow, fibers rotate toward
alignment with the stretching direction. However, some fibers
that are initially perpendicular to the stretching direction will
not align. The set of points with initial orientations that are
exactly perpendicular to the stretching direction fall on lines.
In chaotic regions of the flow where stretching increases ex-
ponentially in time, the width of the perpendicular region is
shrinking exponentially in time, causing the orientation field
to rotate by π across very short distances.

It is not immediately obvious how the mechanism in the
previous paragraph creates scar lines in the eigenvector field.
Wilkinson et al. briefly identify type 2 scar lines as lines that
form where rotational regions with complex eigenvalues of the
deformation gradient (or monodromy) matrix have repeatedly
been stretched and folded so they become very narrow. Com-
plex eigenvalues appear where the trace of the monodromy
matrix is between -2 and 2. We find that the scar lines in the
eigenvector field appear in regions of low stretching which are
often associated with these stretched rotational regions. How-
ever, the mechanism we observe for the formation of scar lines
in the eigenvector field does not clearly match the definition
of type 2 scar lines by Wilkinson et al.. In section IV B we
show how the scar lines in the eigenvector field emerge as the
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Figure 3. Gradient of the angle of the fiber orientation field after
advection in the standard map for four periods. (a) Gradient of the
advected director field starting with initially horizontal fibers. (b)
Gradient of the eigenvector field. The large gradients lie on thin lines
called scar lines [2]. (K = 2; t = 4)

result of an initial stretching which creates a preferred ori-
entation. When the later stretching experienced by that fluid
element is perpendicular to the initial stretching, a scar line is
created. We call these emergent scar lines and find that they
dominate the orientation field of both advected directors and
stretching eigenvectors at large times. The reversal of stretch-
ing results in scar lines being associated with regions of low
stretching, connecting with earlier observations that curvature
of fluid elements preferentially occur in regions of low stretch-
ing [32, 34, 35]. The mechanism for creation of emergent
scar lines is similar to the mechanism for creation of type 1
scar lines except that the stretching over an initial time inter-
val replaces the initial fiber orientation. At large times, type
1 scar lines become unobservably thin so that emergent scar
lines that have been formed in the recent past dominate the ob-
served orientation fields. In section IV C we show how these
emergent scar lines can be labeled by the time since their cre-
ation.
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Figure 4. (color). The two different types of singularities. The first
row ((a) and (b)) shows the angle of êL1 with respect to the horizontal.
The second row is a director representation of the eigenvector field.
(a) and (c) show a singularity with a Poincaré index of + 1

2 . (b) and
(d) show a singularity which has a Poincaré index of − 1

2 . To deter-
mine the Poincaré index, circle the singularity of (c) in the clockwise
direction. Around the circle, the orientation of θe rotates by π in the
clockwise direction, giving a Poincaré index of + 1

2 . (K = 2; t = 2)

III. TOPOLOGICAL SINGULARITIES IN PASSIVE
DIRECTOR ORIENTATION FIELDS

A major focus in previous work on the evolution of director
fields has been the development of topological singularities or
topological defects [16–18, 28, 29, 38, 39]. To conserve the
total topological charge of the field, singularities must always
form in pairs of opposite Poincaré indices. The two types of
singularities which form in director fields are shown in Fig. 4.
Figure 4 (a) and (c) show a singularity that has a Poincaré in-
dex of + 1

2 ; and Fig. 4 (b) and (d) show a singularity which
has a Poincaré index of − 1

2 . The Poincaré index is defined
as the number of multiples of 2π in which the director ori-
entation changes as we move around a closed loop. These
singularities are given different names by different communi-
ties. The terminology from fingerprint analysis is “core” for
+ 1

2 and “delta” for − 1
2 . They are also called “wedge” and

“trisector” [50], and in the study of optical polarization fields
there are similar singularities called “star” and “lemon” [41].
Recent work on patterns in cell populations has used ‘comet-
like’ for + 1

2 singularities [42–44].
Figure 5 shows how the orientation fields and the stretch-

ing field develop from ∆t = 2 to 8. As time progresses, the
structure of the advected director field, θp and the eigenvector
field, θe become more alike. However, certain regions are still
different. The differences occur in regions of low stretching
which are either in the elliptic islands of the flow (see Fig. 1)
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Figure 5. (color). (a-d) Angle of advected directors, θp, measured from horizontal over the time interval t = 2, 4, 6, and 8. (e-h) The angle of
stretching eigenvectors, θe, over the same time intervals with singularities marked: � + 1
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2 singularities. (i-l) The stretching

experienced by the fluid for the same time intervals. Animations of these three fields are provided as supplemental material [45]. (K = 2)

or within the thin lines where the stretching is small.

In Fig. 5a-h, the topological singularities are marked with
circles and triangles. The eigenvector field continuously de-
velops new topological singularities while the advected direc-
tor field always remains free of them. This difference occurs
because the directors start as a smooth field and are advected
by a smooth flow, so it is not possible for topological singular-
ities to form [2]. In contrast, the stretching eigenvector field
nucleates pairs of singularities at points where the stretching
is zero. An animation showing the generation of singularities
in the field of θe is provided as supplemental material [45].

Figure 6 shows a plot of the number of singularities in the
stretching eigenvector field at each period, N. After an initial
transient, the number of singularities grows exponentially. A
least squares fit to t > 5 gives N = 7.5 e0.36t. The exponen-
tial can be understood as the result of a process similar to a
Baker’s map where the thin lines of low stretching are folded
on themselves multiple times. New singularities are nucleated
in these low stretching regions, so the number of new zeros
in the stretching at each period is proportional to the current
number of zeros.

The number of singularities were calculated computation-
ally by performing a non-linear search for minima where the

stretching field is near unity. At these points that have not
been stretched, the eigenvector field has no preferred orienta-
tion, allowing a singularity in the field of θe. Serra et al. [51]
have shown that care is required because integrating trajecto-
ries in noisy or intermittent velocity fields can create artificial
singularities in the stretching eigenvector field. We have not
observed any artificial singularities, likely because of the sim-
ple analytic expressions for the standard map. The number of
singularities is increasing rapidly with time, while the spatial
extent over which the stretching is near unity becomes very
small. As a result, it becomes increasingly difficult to find
all the singularities as time progresses. We will see that the
shrinking of the size of the region affected by each singularity
allows the exponentially increasing number of singularities to
become less and less important to the orientation field as time
progresses.

By comparing the number of singularities found in sepa-
rate computations with a very large number of initial guesses,
we confirmed that we were able to find all singularities up
to t = 10, but by t = 12 it is clear that we were missing a
significant number and so we only report data up to t = 10.
To characterize the topological charge (Poincaré index) of the
singularities we move around each singularity in a small loop
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(500 points around a circle of radius 10−5) and calculate the
change in orientation of fibers around that loop.

Since the flow is defined by a simple analytic map, we can
calculate the positions at which singularities form over the
first few periods. At a singularity, the stretching is zero and
so the deformation gradient F represents a pure rotation. Here
we analytically calculate the positions of singularities that ap-
pear over the time range t = 1.5 to t = 2. The position of a
fluid element initially at (x0, y0) advected over time t = 3

2 + ε
2

where 0 ≤ ε ≤ 1 is

x1+ε

y2

 =


x0 + (1 + ε)(y0 + K sin x0)

+εK sin(x0 + y0 + K sin x0)

y0 + K sin x0
+K sin(x0 + y0 + K sin x0)

 (4)

Singularities can exist at points where the deformation gra-
dient F calculated from from Eq. 4 is a pure rotation so it
satisfies F11 = F22 and F12 = −F21.

The points that satisfy this condition are:
x0 = 2πm + cos−1

(
−1±ε

K

)
y0 = 2πl ± cos−1

(
(1+ε) cos x0

1−ε−2ε cos x0

)
− x0 − 2 sin x0

(5)

and
x0 = 2πm − cos−1

(
−1±ε

K

)
y0 = 2πl ± cos−1

(
(1+ε) cos x0

1−ε−2ε cos x0

)
− x0 + 2 sin x0

(6)

where l and m are integers. Note that these are initial coordi-
nates (x0, y0). The position of singularities are the final coor-
dinates, (x1+ε, y2), which are obtained by inserting the values
we find for (x0, y0) into Eq. (4). For ε = 0 and 1, the positions
of the singularities are periodic over 2π. For 0 < ε < 1, we
choose m and l so that the final singularity positions lie within
[0, 2π].

These analytical calculations for the position of singular-
ities agree exactly with the positions found computationally
in Fig. 5(e). Figure 5(e) shows only four singularities, be-
cause out of the eight singularities in Eqs. 5 and 6, four come
together in pairs and annihilate at the large elliptical island
leaving four singularities after two periods while conserving
the total topological charge throughout the process. The dy-
namics of the generation and annihilation of singularities in
the stretching eigenvector field are shown in an animation that
has been provided as supplemental material [45].

IV. SCAR LINES IN PASSIVE DIRECTOR ORIENTATION
FIELDS

The orientation fields of advected directors and stretching
eigenvectors become very similar to one another and approach
a stationary state in the long time limit, as is evident in Fig. 5.
In Fig. 7 these fields are shown at t = 10. In the chaotic
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Figure 6. (color). The number of singularities (N) as a function of
time (t). At later times the number of singularities increases expo-
nentially. (K = 2)

regions of the flow, the two fields appear to become almost
identical in the long time limit, reflecting the persistent pat-
tern [36, 37] or asymptotic directionality [33] that has been
observed in other work on time-periodic 2D flows. However,
the fields are also diverging in topology since there are an
exponentially increasing number of singularities in the field
of stretching eigenvectors, θe. Since the two fields converge
throughout almost the entire chaotic region and yet have com-
pletely different topology, the key coherent structures in these
fields are apparently not the topological singularities. Figure 3
suggests that instead, the key coherent structures are thin lines
across which the fiber orientation rotates by π. Wilkinson et
al [2] have called these structures scar lines. In the long time
limit the topological singularities only affect an infinitesimally
small region of the stretching eigenvector orientation field and
are screened by the scar lines which come to be the dominant
features of the field.

A. Type 1 Scar Lines

Type 1 scar lines form in the advected director field at
points where the initial fiber orientation is perpendicular to
the direction that the fluid will be stretched. The Right Cauchy
Green strain tensor, CR = FTF (see appendix A), has eigen-
vectors that indicate the directions of stretching in initial par-
ticle coordinates [3, 49]. In Fig. 8(a), we show the dot product
of initial fiber orientation with êR1, the extensional eigenvec-
tor of the right Caughy Green strain tensor. Type 1 scar lines
form where this dot product is zero. Figure. 8(b) shows the lo-
cations where this dot product is less than 0.03 superimposed
on the advected director field. The match with the locations
of most of the scar lines is very good. Some of the locations
with zero dot product do not initially appear to be scar lines,
but at higher resolution it becomes clear that the scar line had
simply become too thin to see at the 2000 by 2000 resolu-
tion of the plotted orientation field. This healing of type 1
scar lines was identified by Wilkinson et al [2], and here we
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Figure 7. (color). Orientation fields at longer times that shows the
persistent pattern that appears in the chaotic region of both fields. (a)
The orientation field of the advected directors, θp. (b) The orientation
field of the stretching eigenvectors, θe. (K = 2; t = 10)

see that in this flow it only takes 4 periods for many of the
type 1 scar lines to become too thin to be observed. There are
other points at which scar lines appear, but the zero dot prod-
uct condition from Fig. 8(a) is not met. These will be the topic
of Section IV B.

Due to their production mechanism, the type 1 scar lines
are sensitive to initial orientations of the advected directors.
In Fig. 9 the orientation field for the advected directors, θp, is
shown for two different uniform initial orientation angles. It
can be seen from this figure that although the two have dif-
ferences caused by their initial orientations, the structure and
topology of the field remains mostly the same and is mainly
dominated by another type of scar line which is similar in
both fields and independent of initial orientations. We iden-
tify these scar lines as emergent scar lines.

0

1

2

3

4

5

6

0.2

0.4

0.6

0.8

(a)

x
0 1 2 3 4 5 6

y

00

1

2

3

4

5

6

1

2

3(b)

 (r
ad

)

y

Figure 8. (color). Locations of type 1 scar lines where the initial
fiber orientation is perpendicular to the direction the fluid will be
stretched. (a) p̂0 · êR1, The dot product of the initial orientation with
the maximum eigenvector of the right CGST. (b) Locations where
p̂0 ·êR1 < 0.03 superimposed on the stretching eigenvector orientation
field. (K = 2; t = 4)

B. Emergent Scar Lines

In this section we study the mechanism that creates scar
lines that are independent of initial conditions and the distant
past history of the flow. We find that the dominant struc-
tures in the fields of both θe and θp are emergent scar lines
that develop when the recent stretching of a fluid element is
orthogonal to the stretching it experienced earlier. We have
established that after sufficient time, there is a persistent pat-
tern in the fiber orientation field. This orientation pattern can
be thought of as the initial orientation field for the flow over
the next time interval. The structures with large gradient in
the fiber orientation field occur where the stretching over the
next time interval is orthogonal to the orientation produced
by the stretching of the previous time interval. Quantitatively,
a scar line will emerge where the stretching over some ini-
tial interval, which is defined by êL1, is perpendicular to the
stretching the fluid element will experience in a future inter-
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Figure 9. (color). The sensitivity of the advected directors and type 1
scar lines to initial orientation. (a) Orientation field, θp, of an initially
uniform grid of directors with an angle of +45◦. (b) Orientation field,
θp of an initially an initial uniform grid of directors with an angle of
+135◦. (K = 2; t = 4)

val, êR1. Since we are using a periodic flow, we can calcu-
late these stretching directions at any time and identify the
locations where the initial stretching is orthogonal to the later
stretching.

Figure 10 verifies this mechanism for the formation of
emergent scar lines. Figure 10(a) shows the dot product of
the stretching that the fluid has experienced over three periods
êL1(∆t = 3) with the stretching that the fluid will experience
for the remaining one period êR1(∆t = 1). The dot product of
these vectors should be zero at the locations of the emergent
scar lines for ∆t = 4, and Fig. 10(b) shows this condition, and
marks precisely the locations of the scar lines in the stretch-
ing eigenvector field in the chaotic region of the flow at t = 4.
In the large regular islands, the stretching is small and some
spurious points meet the condition of the dot product without
developing scar lines.

Figure 11 demonstrates the mechanism by which emergent
scar lines and singularities are generated in the eigenvector
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Figure 10. (color). Locations of emergent scar lines. (a) êL1(∆t =

3) · êR1(∆t = 1), The dot product of the maximum eigenvector of
the left CGST for three periods and the maximum eigenvector of the
right CGST for one period. (b) Locations where êL1(∆t = 3)·êR1(∆t =

1) < 0.03 superimposed on the stretching eigenvector orientation
field. (K = 2; t = 4)

field. This simple schematic flow consists of two steps. First,
the initially circular fluid elements experience a non-uniform
flow field that stretches and rotates them to the arrangement
shown in Fig. 11(b). Second, the fluid elements experience a
uniform pure strain flow with a horizontal extension direction
which results in the shapes in Fig. 11(c). In this process there
are points where the initial stretching experienced by some
fluid elements is exactly canceled by later stretching. These
points lie on the emergent scar lines where the direction of
the previous stretching is perpendicular to the later stretching.
These points that experience no net stretching are the singular-
ities of the stretching eigenvector field. Figure 11(d) shows a
director representation of the final configuration of the stretch-
ing direction with the singularities marked.

C. Age of Emergent Scar Lines

An emergent scar line forms when earlier stretching is re-
versed by later stretching. The time that divides earlier from



9

(a)

(b)

(c)

(d)

Spatially Non-Uniform Stretching

Spatially Uniform Stretching

Emergent 
Scar Lines

Emergent 
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Figure 11. Simple schematic flow that generates singularities and
emergent scar lines. (a) Uniform circular fluid elements. (b) Fluid
elements after deformation by a spatially non-uniform flow field. (c)
Fluid elements after a uniform pure strain flow with horizontal exten-
sion direction. Emergent scar lines form in the second row of fluid
elements where the uniform stretching is orthogonal to the initial
non-uniform stretching. (d) Director representation of the stretch-
ing eigenvector after the two stretching steps. The circle represents a
+ 1

2 singularity and the triangle a − 1
2 singularity.

later is different for different scar lines. Here we show how
each emergent scar line can be labelled with its age defined as
the time since its maximum stretching occurred and reversal
of stretching began. Since stretching increases exponentially
and scar line thickness decreases exponentially, there is of-
ten an age beyond which the emergent scar lines become so
thin that they are below the resolution of interest. In experi-
ments, there will be resolution limits and translational diffu-
sion which will remove old scar lines that have become suffi-
ciently thin. The scar lines that are young enough to remain
visible at the resolution of interest dominate the passive direc-
tor orientation field.

In Fig. 12 we show a field indicating the time when the
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Figure 12. (color). Quantifying the age of emergent scar lines. (a)
Field showing the time at which each fluid element experienced max-
imum stretching which we use to define the age of emergent scar
lines. Most of the field is white, indicating that maximum stretching
occurs at the current time, but several generations of scar lines appear
with maximum stretching before the present time. (b) Stretching as a
function of time for points that lie on emergent scar lines of different
ages. ∗, age 1 emergent scar line; +, age 2; �, age 3; �, age 4; 4, − 1

2
singularity on emergent scar line of age 2. (K = 2, t = 6)

maximum stretching occurred for each fluid element. Most of
the field is white, indicating that the maximum stretching is
at the current time. The thick blue region indicates the points
where the maximum stretching occurred one period ago. Pur-
ple indicates points whose maximum stretching was two peri-
ods ago marking an emergent scar line with an age of two peri-
ods. In this field created with an integration over 6 periods, we
observe scar lines with ages up to 4 periods. (There is a part
of the elliptic island which had its maximum stretching 5 peri-
ods ago, but without exponential stretching this does not form
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a scar line.) Figure 12(b) plots the history of the stretching at
the 5 points marked in Fig. 12(a). The purple curve marked
with a triangle is a topological singularity where the stretch-
ing goes to zero at time t = 6. It lies on an emergent scar line
with age 2, labelled purple, since its maximum stretching was
2 periods before the present. The other four points are chosen
to lie on scar lines with ages 1 through 4 periods.

Once an emergent scar line becomes well defined so that
its width is much less than the correlation length of the ve-
locity gradients in the flow, it will be advected by the flow
without being removed. Later stretching will rotate the line
and decrease its width by compressing the rotation by π to a
narrower region. The scar line remains where orientation was
perpendicular to the later stretching, and since the scar line
has orientations across the full range 0 to π, this is guaranteed
to occur in some region within the scar line.

A fluid element can have multiple maxima in its stretching
history so that multiple ages can be assigned to it. The age 4
point shown in red in Fig. 12(b) has later stretching that has
almost surpassed the maximum from 4 periods ago. Some
of these points are simply at the edge of the scar line and
at longer times will cease to be part of the scar line. How-
ever, some other points have had the recent stretching become
larger than the earlier stretching. This creates topological sin-
gularities by the process shown in the simple model in Fig. 11,
and the dynamics of scar lines near these topological singular-
ities is a topic that needs additional study. At long times, the
fraction of the chaotic region where the stretching is small
enough that recent stretching can overcome earlier stretching
becomes very small. So an exponentially increasing number
of topological singularities are occurring in a shrinking frac-
tion of the chaotic domain in a way that allows the overall
structure of the orientation field to be independent of what
happens in these regions near the singularities.

V. CONCLUSIONS

When fibers are advected in two-dimensional flows with ex-
ponential stretching of material elements, the primary coher-
ent structures in the fiber orientation field are scar lines over
which the fiber orientation rotates by π over short distances.
In exploring this problem, we have discovered that the re-
cently formed scar lines which dominate the observed orienta-
tion fields emerge by a process which had not previously been
documented. In particular, a scar line appears where the re-
cent stretching is perpendicular to the earlier stretching of that
fluid element. These emergent scar lines can be labelled by
their age, defined as the time at which their stretching reached
a maximum.

It is important to distinguish two different ways to quan-
tify the director orientation field. The orientation can be de-
fined by directors advected from a smooth initial orientation
field, or it can be defined by the average orientation of an en-
semble of initial orientations which can be quantified by the
stretching eigenvectors. The advected director field does not
develop new topological singularities, so it will always remain
smooth if it starts with a smooth inititial condition. However,

the stretching eigenvector field does develop new topological
singularities; and in this chaotic flow, the number of singular-
ities increases exponentially. Despite the very different topol-
ogy, the two orientation fields converge at long times indicat-
ing that the topological singularities are not the key coherent
structures in these orientation fields. Instead, emergent scar
lines dominate both orientation fields at long times.

The mathematical foundations for the passive director prob-
lem are still much less developed than for the passive scalar
problem [21] or for the detection of Lagrangian coherent
structures in velocity fields [23]. The close connections be-
tween the phenomenological description of passive direc-
tor fields developed here and work on strange eigenmodes
and Lagrangian Coherent Structures suggests that significant
progress on mathematical foundations of the passive director
problem may be possible. In particular, recent work that uses
the eigenvectors of the Cauchy-Green strain tensors for coher-
ent vortex detection [50, 51] considers the same topological
singularities that we study and should be able to be extended
to the passive director problem.

We also hope that future work can extend these insights
to the case of turbulent flows which are pervasive in indus-
trial and environmental fiber flows. The mechanism that cre-
ates emergent scar lines should be important in any flow with
chaotic exponential stretching of material line elements. We
expect that advected director fields in two-dimensional turbu-
lence will be dominated by scar lines that are similar to the
2D chaotic flow case studied here. The Lagrangian coher-
ent structures determined by fluid deformation in 2D chaotic
flows are similar to those found in turbulent flows [52, 53]. It
should be possible to determine the age of emergent scar lines
in 2D turbulence and select the age most relevant to obser-
vations at a given resolution. In three-dimensional (3D) tur-
bulence, the situation is less clear. Methods for detection of
Lagrangian Coherent Structures in 3D turbulence using mea-
sures of fluid stretching have shown promise [54]. Analysis of
fluid stretching has been shown to be an effective way to un-
derstand the alignment of fibers and other non-spherical parti-
cles in 3D turbulent flows [5, 55]. Additional work is needed
to determine whether the scar lines that dominate director ori-
entation fields in 2D chaotic flow will appear in 3D flows.

VI. APPENDIX A

To quantify fluid deformation, consider a point in the flow
that is initially at X and is advected after time ∆t to x. The
fluid deformation gradient is defined as Fi j = ∂xi

∂X j
. The defor-

mation gradient includes both rotation and strain, F = VR =

RU, where R is the rotational tensor and V and U are the
left and right stretch tensors respectively [5]. It is conve-
nient to extract only the strain contribution using the Cauchy-
Green strain tensors. The left Cauchy-Green strain tensor,
C(L) = FFT = VRRT VT = VV, has eigenvectors along the
principle axes of the ellipse formed after the fluid element
is deformed over ∆t. The right Cauchy-Green strain tensor,
CR = FT F = UT RT RU = UU, has eigenvectors along the ini-
tial direction that will become the principal axes after defor-
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mation. Thus the field formed by the eigenvector of the Left
Cauchy-Green strain tensor gives the preferred direction to-
ward which a fiber at that location will have rotated due to the
fluid deformation. Both the right and left Cauchy-Green strain
tensors have the same eigenvalues, Λ1 and Λ2 with Λ1 tradi-
tionally chosen to be the maximum (extensional) eigenvector.
The square root of the maximum eigenvalue gives the stretch-
ing the fluid element experiences, defined as the ratio of the
final semi-major axis of the elliptical fluid element divided by
the initial diameter. The finite-time Lyapunov exponents are
defined by λi = 1

t ln
√

Λi.
An alternative way to express the final preferred orientation

is to calculate the eigenvectors of a tensor order parameter.
The tensor order parameter which is widely used in the study
of liquid crystals is

Ii j =
1

2π

∫ 2π

0
dθ P( p̂(θ), r, t) (p̂i p̂ j −

1
3
δi j). (7)

Wilkinson et al. [29] used an order parameter without the
isotropic term. For initially uniform P( p̂(θ), r, t = 0), both
of these tensor order parameter have the same eigenvectors as
the left Cauchy-Green strain tensor.
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