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The macroscopic properties of fluid flow and transport through porous media are a direct con-1

sequence of the underlying pore structure. However, precise relations that characterize flow and2

transport from the statistics of pore-scale disorder have remained elusive. Here, we investigate the3

relationship between pore structure and the resulting fluid flow and asymptotic transport behavior4

in 2D geometries of non overlapping circular posts. We derive an analytical relationship between the5

pore throat size distribution fλ ∼ λ−β and the distribution of the low fluid velocities fu ∼ u−β/2,6

based on a conceptual model of porelets (the flow established within each pore throat, here a Hagen–7

Poiseuille). Our model allows us to make predictions—within a Continuous Time Random Walk8

(CTRW) framework—for the asymptotic statistics of spreading of fluid particles along their own9

trajectories. These predictions are confirmed by high fidelity simulations of Stokes flow and ad-10

vective transport. The proposed framework can be extended to other configurations which can be11

represented as a collection of known flow distributions.12

PACS numbers: 47.56.+r, 92.40.Kf, 05.60.Cd, 05.40.Fb

I. INTRODUCTION13

In soil, aquifers, industrial filtration systems and may14

other situations, the motion of fluids is confined within15

small spaces, typically of size λ ranging between 10−6 −16

10−2 m. In this conditions, fluids flowing through such17

confined media are forced to pass between solid imper-18

meable obstacles (grains, represented by gray disks in fig.19

1) that separates spaces (pores) that can be filled by the20

flow: the associated velocities of fluids are typically very21

small, on the order of u ∼ 1−100µm/s (∼ 0.1−10 m/d)22

[1]. These porous media flows have a rich structure whose23

spatial and temporal complexity plays a critical role in24

natural and engineered processes such as groundwater25

contamination and remediation [2, 3], water infiltration26

in soil [4], geologic carbon sequestration [5], enhanced hy-27

drocarbon recovery [6], water filtration systems [7] and28

polymer electrolyte fuel cells [8]. Traditionally, the het-29

erogeneity of these flows is considered at scales where the30

main structure of the host medium varies, e.g. varying31

from one type of rock to another in a geological forma-32

tion, but the organization of grains and pores, is not33

resolved. In these situations, the fluid motion is repre-34

sented by an averaged, Darcy-like, flow through an equiv-35

alent continuous permeability field, that represents the36

ability of the host medium to transmit the fluid, as a37

result of an applied pressure gradient [9].38
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Due to the complex geometry of the connected pore39

space, it has been challenging to formulate predictive40

models for permeability based on the knowledge of the41

main medium features. Semi-empirical relations between42

medium structure, such as porosity or grains size, and43

permeability [10, 11] have been validated and extended44

for specific media [12–14]. However, the theoretical de-45

termination of fluid velocity distributions, which char-46

acterize its heterogeneity, from statistical descriptions of47

pore-scale geometry remains an open challenge. Under-48

standing and quantifying velocity heterogeneity in porous49

media is important because it controls the late times par-50

ticle spreading [15–20] and fluid mixing [21–24], which51

also mediates chemical reactions [25–29] and biological52

activities [30, 31].53

Laboratory experiments on bead packs [1, 32–36], sand54

columns [37] and real rock samples [38, 39], as well as nu-55

merical simulations at the pore scale [19, 32, 33, 40–43]56

have shown the emergence of highly heterogeneous veloc-57

ity distributions, even in simple macroscopically homo-58

geneous porous media. This velocity heterogeneity leads59

to consequences at larger scale that can be quantified in60

terms of anomalous particle-transport behavior such as61

early arrival and late-time tailing of breakthrough curves,62

non-Gaussian plume shape and nonlinear scaling of mean63

square displacement (MSD). These phenomena can be64

captured and understood only after direct observation65

or computational characterization of the pore-scale fluid66

mechanics [41].67

Earlier experimental [35, 36, 39] and computational68

[19, 40, 41, 44, 45] studies have identified distinct behav-69

iors for high and low velocities. High velocities are con-70

trolled by the formation of channels, while low velocities71
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FIG. 1. a. Representation of the 2D porous media considered in this study, showing the disordered arrangement of disks (gray
circles), and the magnitude of the fluid velocity from a high fidelity simulation of Stokes flow rescaled by the mean velocity,
u/〈u〉. b. Zoomed-in view of the red box in a. c. Zoomed-in view of the blue box in b. d. Schematic of the conceptual
model of pipes (cyan squares) associated with pore throats. e. Same field as in c, in logarithmic scale. Red color indicates an
above-average velocity; blue color indicates a below-average velocity.

are dominated by stagnation zones. Recent studies have72

proposed phenomenological models for the distribution of73

high velocities—including stretched exponential [46] and74

power-exponential [45] distributions—but without an un-75

derlying mechanistic or statistical physics theory.76

The macroscopic transport through porous media has77

been extensively studied by tracking the displacement of78

fluid particles along their trajectories (e.g. [47]). While79

the high velocities control the overall ability of the80

medium to transmit the fluid, the distribution of low81

velocities in zones of fluid stagnation have been shown82
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to control and characterize late-time asymptotic parti-83

cle transport statistics [19, 41], mixing [22], and reactive84

transport [28]. To provide a conceptual explanation of85

this phenomenon, one may consider the evolution of a86

plume of a passive tracer in a heterogeneous medium.87

Plume spreading in the flow direction is determined by88

two simple mechanisms: fast migration of the leading89

part of the plume along high-velocity channels, and trap-90

ping of the trailing part of the plume in stagnation zones.91

This contrast in velocities, quantified by the broadness92

of the velocity distribution, controls the spreading rate93

of the plume. It has been shown theoretically [e.g., 15]94

and numerically [e.g., 48, 49], and has been confirmed in95

field and laboratory experiments [e.g., 29, 50], that the96

described mechanisms of advective spreading are persis-97

tent and dominate transport and mixing for times much98

longer than the characteristic diffusive time over scale99

of heterogeneity of the medium. Therefore, the possibil-100

ity to estimate the flow heterogeneity—in particular, the101

distribution of low velocities that are known to control102

asymptotic transport properties [15, 44, 47, 51]—based103

on knowledge of the host medium structure alone would104

constitute a powerful tool.105

To understand the origin of asymptotic transport be-106

havior, we investigate the relationship between the struc-107

ture of the host medium and the resulting distribution108

of fluid velocities in stagnation zones. We consider 2D109

porous media whose solid, impermeable structure con-110

sists of non overlapping circular disks of random posi-111

tion and radius (Fig. 1). This disordered arrangement112

of disks can be characterized geometrically by construct-113

ing a Delaunay triangulation of the disk centers [e.g.,114

52]: each triangle defines a pore body and each edge de-115

fines a pore throat (Fig. 2a). We characterize the sta-116

tistical properties of the medium through the distribu-117

tion of pore throat size, λ = d − r1 − r2, where d is118

the distance between the two disk centers connected by119

an edge of the Delaunay triangulation, and r1, r2 are120

the respective disk radii (Fig. 1d). The random posi-121

tion and size of the disks are generated such that the122

probability density function (PDF) of pore throat size123

is a power law fλ(λ) ∼ λ−β , with β > 0. We gen-124

erate five pore geometries whose distribution is power-125

law for small pores (0.01 < λ/〈λ〉 < 0.2) and it has126

a cut-off for large pores. The range of pore sizes dis-127

tributed as a power law are characterized by the expo-128

nent β which, for the 5 geometries considered, takes the129

value β = 0.25, 0.22, 0.17, 0.12, 0.08. The geometry asso-130

ciated with β = 0.17 is illustrated in Fig. 1 (see Fig. 7131

for all five geometries).132

Pore network models have been used in the past to133

study flow and flow-driven processes in complex pore134

structures. These models are based on the knowledge of135

some properties of the geometry of the pore space. There-136

fore, the pore networks are often constructed directly137

from images of porous media obtained with small scale138

imaging techniques [40], like X-ray micro-tomography,139

and the associated models are made by assuming hypoth-140

esis about what is a pore and what is a throat and how141

they are connected [53]. To the best of our knowledge, no142

pore network model or other type of analysis have been143

used, to date, to successfully investigate low velocities, in144

the range 10 − 104 times smaller than the average one.145

To this end we use a high-resolution numerical method146

described in Section II, allowing to accurately quantify147

the distribution of such low velocities.148

Our aim is to derive an analytical relationship between149

the pore throats size distribution (the smallest openings150

constraining the fluid flow) and the fluid velocity proba-151

bility density function (PDF). To do that, we hypothesize152

that what controls this relationship is the distribution of153

the throats size and not the connectivity between pores154

(which probably control the permeability and, thus, the155

overall flow), which we neglect. Strictly, large pores also156

contain a fraction of small velocities. However, because157

small pores are much more abundant (pore throats are158

power law distributed), we argue that it is reasonable to159

assume that the distribution of small velocities is con-160

trolled by the distribution of small openings.161

II. METHODS162

We simulate steady incompressible flow through each163

pore geometry, driven by a pressure gradient from left164

to right, and with no-flow boundary conditions at the165

top and bottom boundaries. We simulate flows at low166

Reynolds numbers, Re = ρ 〈λ〉 〈u〉
µ < 10−2, where 〈λ〉 is167

the mean pore throat size, 〈u〉 is the mean velocity mag-168

nitude, ρ is the fluid density, and µ is the fluid dynamic169

viscosity. Under these conditions, the flow is Stokesian,170

and is described by the equations:171

µ∇2u = ∇p, ∇ · u = 0, (1)172

where p is the fluid pressure and u is the fluid velocity.173

We neglect the gravitational term since we assume that174

the flow is horizontal, and we impose no-slip boundary175

conditions at the boundary of each disk.176

The Stokes equations are recast in terms of a vector-177

valued density function σ by using the indirect integral178

equation [54]179

u(x) =
1

π

∫
Γ

r · n
‖r‖2

r ⊗ r
‖r‖2

σ(y)dsy, x ∈ Ω, (2)180

where r = x − y, Γ is the boundary of the geometry181

Ω, and n is unit outward normal of Γ at y. Eq. (2) is182

called the double-layer potential and can be expressed in183

component form as184

u1(x) =
1

π

∫
Γ

r · n
‖r‖2

r · σ
‖r‖2

r1(y)dsy,185

u2(x) =
1

π

∫
Γ

r · n
‖r‖2

r · σ
‖r‖2

r2(y)dsy,186

187
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where r = (r1, r2). In addition, the pressure can be com-188

puted by evaluating the integral189

p(x) = −µ
π

∫
Γ

1

‖r‖2

(
I − 2

r ⊗ r
‖r‖2

)
n · σ(y)dsy, (3)190

where I is the 2× 2 identity matrix.191

To avoid the two-dimensional Stokes paradox, we192

bound the disks by a rounded-off rectangular boundary193

Γ0. We use a Dirichlet boundary condition on Γ0 to pre-194

scribe a plug flow at the left and right ends of the channel195

and a no-slip condition at the top and bottom of the chan-196

nel (Fig. 1a). Letting f be the above described Dirichlet197

boundary condition, the density function σ must satisfy198

the second-kind Fredholm integral equation [54]199

f(x) = −1

2
σ(x) +

1

π

∫
Γ

r · n
‖r‖2

r ⊗ r
‖r‖2

σ(y)dsy, x ∈ Γ.

(4)200

To summarize, solving Eq. (1) using an indirect inte-201

gral equation formulation requires a two-step procedure.202

First, Eq. (4) must be solved for the density function σ.203

Second, the velocity u(x) is computed for any x ∈ Ω204

using Eq. (2). In addition, if required, the pressure can205

be computed using Eq. (3). Therefore, the accuracy of206

the method is completely determined by two approxima-207

tions. First, the accuracy of σ, which depends on the208

quadrature method used to approximate the integral in209

Eq. (4), and, second, the quadrature method used to ap-210

proximate the integral in Eq. (2) and Eq. (3).211

To approximate the density function σ, Eq. (4) is dis-212

cretized at a set of collocation points {xj}Nj=1 and the213

integral is replaced with the trapezoid rule. The result is214

the dense linear system215

f j = −1

2
σj +

N∑
k=1

K(xj ,xk)∆skσk, j = 1, . . . N (5)216

where ∆sj is the Jacobian of Γ at xj ,217

f j = f(xj), σj = σ(xj), and218

K(x,y) =
1

π

r · n
‖r‖2

r ⊗ r
‖r‖2

.219

220

The diagonal termK(xj ,xj) is replaced with the limiting221

value222

lim
y→x
y∈Γ

K(x,y) =
κ(x)

2π
(t(x)⊗ t(x)), x ∈ Γ,223

where κ(x) is the curvature at x, and t(x) is the unit224

tangent vector at x. Since the trapezoid rule has spectral225

accuracy for smooth periodic functions [55], the solution226

of Eq. (5) converges with spectral accuracy to the exact227

solution of Eq. (4).228

Eq. (5) is solved iteratively with GMRES [56] which229

requires a mesh-independent number of iterations [57].230

To accelerate the numerical solver, the necessary matrix-231

vector multiplication is done in linear time with the fast232

multipole method [58]. Finally, the number of GMRES233

iterations is reduced by applying a block-diagonal precon-234

ditioner, where each block corresponds to an individual235

disk.236

Once σj is computed with spectral accuracy, the veloc-237

ity u(x) for x ∈ Ω can be approximated. This is done by238

replacing the integral in Eq. (2) with the trapezoid rule239

with the same quadrature nodes used to solve Eq. (4)240

u(x) ≈
N∑
k=1

K(x,xk)σk∆sk, x ∈ Ω.241

The velocity is computed on a regular set of Eulerian242

points in Ω. When x is close to one of the disks, the243

accuracy of the trapezoid rule deteriorates since the in-244

tegrand becomes nearly singular, and a near-singular in-245

tegration strategy must be used. We adopt the strategy246

described in [59] which achieves fifth-order accuracy with247

only a slight increase in the algorithmic complexity. At248

the resolution we use, the smallest resolved velocity is249

approximately umax/105, where umax is the value of the250

maximum velocity simulated.251

III. RESULTS252

A simulated velocity field is shown in Fig. 1 for one of253

the geometries studied, corresponding to the pore throat254

size distribution power-law exponent β = 0.22. It is ap-255

parent that, despite the simplicity of the porous medium,256

the velocity develops a complex spatial structure that257

combines high-velocity channels with low-velocity stag-258

nation zones (Fig. 1e), which have been shown to play259

a major role in determining the fluid longitudinal and260

transverse asymptotic dispersion of transported particles261

[19, 41].262

We study the distribution of the velocity magnitudes263

u = ‖u‖, and its dependence on the characteristics of the264

porous medium. The medium geometry is characterized265

by the exponent β of the power law in the low range of266

pore throat size, fλ ∼ λ−β . To characterize the velocity,267

we define the rescaled velocity magnitude, ur = u/〈u〉.268

We find that the low velocities are well fitted by a power269

law with an exponent that depends on the pore throat270

size distribution, fur ∼ u
−β/2
r for ur � umax (Fig. 4a,b).271

High velocities, in contrast, are well described by an ex-272

ponential function, and the exponent of the distribution273

does not exhibit a detectable dependence on the pore ge-274

ometry statistics (Fig. 4c). To ensure that our numerical275

method is accurate enough to capture the low velocities276

distribution, for one geometry, we generated the same277

velocity field on a finer grid and found that the velocity278

distribution is unchanged. Therefore, the spatial resolu-279

tion of the numerical scheme is sufficiently fine to resolve280

the smallest pore throat generated, and obtains a veloc-281

ity distribution that is independent of the computational282

grid.283
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FIG. 2. a. Detail of the Delaunay triangulation of the pore
geometry: edges of the triangulation connecting the centers
of neighboring disks (red segments) define the pore throats.
b. Proposed conceptual model of porelets, consisting of a col-
lection of pore flows along pore throats (each of given width λ
and length cλ ∼ λ): for this simple geometry each porelet is
a Hagen–Poiseuille parabolic profile.

We develop a novel model, based on a statistical ap-284

proach, to explain the observed distribution of the low285

velocities. In analogy with pore network models [e.g., 60–286

66], we understand the overall flow as equivalent to one287

through a collection of flow in pores, the porelets, that for288

these geometries result in Hagen–Poiseuille flows through289

pipes of distributed size. In contrast with network mod-290

els, however, here we are interested in reproducing the291

low velocity behavior in the pore space, that is, veloci-292

ties in the range 10 to 104 times smaller than the mean293

Eulerian velocity. Please note that we can investigate294

such a wide range of velocities due to the powerful and295

recent numerical scheme that we have adopted.296

The velocities through the porous medium are locally297

controlled by the size of the smallest openings, the pore298

throats, therefore, we conceptualize the flow through299

each throat of size λ, a porelet, as the one through a pipe,300

of width λ and length l which we assume begin propor-301

tional to it l = cλ (Fig. 2b), driven by a single effective302

pressure gradient 〈∇||p〉 along the pipe itself. This sim-303

ple conceptual model neglects the pore connectivity and304

is consistent with the isotropy of a porous material (in305

contrast with a fractured medium, where the fracture ori-306

entation determines a preferential direction). Moreover,307

it is supported by the direct observation of the parabolic308

velocity profile within throats [1, 32, 40]. The fluid veloc-309

ity through a pipe has only longitudinal component [67],310

and its magnitude has a parabolic profile:311

u(y) =
−〈∇||p〉

2µ

[(
λ

2

)2

− y2

]
.312

Letting A =
−〈∇||p〉

2µ , the maximum velocity, achieved313

FIG. 3. Zoomed-in views of the magnitude of the velocity field
around 4 typical pore throats with colormap in natural scale
(left column) and logarithmic scale (center column), and the
its interpolation along the segment connecting the grain walls
(right column). A parabolic fit (red solid line) is superposed
to the interpolation data (blue symbols).

TABLE I. Mean normalized residual 〈ru〉 of the parabolic fit
to the velocity profile along pore throats, for the five flow
configurations considered in our study.

β ndisks nthroats 〈ru〉
0.25 1660 1912 0.057

0.22 893 1182 0.055

0.17 823 962 0.053

0.12 753 931 0.047

0.08 994 1074 0.063

at the pipe centerline (y = 0), is uM = Aλ2/4, and the314

minimum velocity, achieved at the no-slip pipe walls (y =315

±λ/2), is um = 0.316

The main assumption of the proposed model is the ex-317

istence of the porelet. By porelet we mean the unit flow318

configuration at the pore scale (in our case, Poiseuille319

flow) that repeats itself, appropriately scaled, through-320

out the medium. Once the velocity fields have been sim-321

ulated, we verify this central assumption by interpolating322

the modulus of the Eulerian velocity field along each pore323

throat (the segments of the Delaunay triangulation con-324

necting disk walls) and fitting a parabola to the velocity325

profile from the high-resolution simulations. In Fig. 3326

we show the magnitude of the velocity field along for327

four representative areas of the geometries studied and its328

profile projected along the four pore throats. The results329

illustrate that the velocity profile is well approximated330
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by a parabola, thereby confirming our working hypothe-331

sis of a Poiseuille unit velocity configuration. We confirm332

this observation with a quantitative analysis over all pore333

throats in the five flow geometries studied. In each ge-334

ometry, we compute the mean normalized residual 〈ru〉335

between the simulated profile and the parabolic fit (Ta-336

ble I). The mean residual is below 6.5% in all cases,337

demonstrating that assumption of Poiseuille flow at the338

pore throats is accurate.339

The velocity PDF corresponding to each of these340

parabolic profiles is:341

fp(u) = − 2

λ

dy

du
=

2

Aλ2
√

1− 4u
Aλ2

. (6)342

For a collection of pipes with a given width distribu-343

tion fλ(λ), Eq. (6) represents the conditional probability344

of the local velocity u fu(u|λ) within a pipe of given345

width λ. In our conceptual model, the overall flow con-346

sists of a randomly distributed collection of pore flow, the347

porelet, each of width λ (Fig. 2b). To obtain the equiv-348

alent of the Eulerian velocity PDF, we must integrate349

the PDF of all the porelets by weighing the contribution350

from each individual porelet by the length over which the351

parabolic profile applies. We conjecture, based on the di-352

rect numerical simulations at the pore scale, that such a353

length l is proportional to λ. Therefore, we recover the354

following scaling for our velocity distribution, controlled355

by an ensemble of porelets:356

fu(u) ∼
∫ λM

λm(u)

fu(u|λ)fλ(λ)λ dλ, (7)357

where λm(u) is the pipe width such that the centerline358

velocity uM (λ) = u, that is, λm(u) = 2
√
u/A, and λM359

is the maximum width of the distribution fλ(λ). Since360

we constructed our porous media such that the distribu-361

tion of narrow throat widths scales as fλ(λ) ∼ λ−β , we362

approximate Eq. (7) in the range of low velocities as363

fu(u) ∼
∫ λM

2
√
u/A

2λ−β+1

Aλ2
√

1− 4u
Aλ2

dλ

∼ 1

2βA

( u
A

)−β/2 ∫ 1

u/umax

x
β
2−1(1− x)−

1
2 dx, (8)

where we introduced the change of variables x = 4u
Aλ2 ,364

which plays the role of a rescaled velocity with respect to365

the centerline velocity of a pipe of width λ, x = u
uM (λ) .366

In the range of low velocities, the limit of integration367

u/umax → 0, and the definite integral in Eq. (8) con-368

verges to the Beta function B
(
β
2 ,

1
2

)
and loses its depen-369

dence on u. We conclude that our model of porelets for370

low velocities in a porous medium predicts a velocity dis-371

tribution that scales as:372

fu(u) ∼ u−β/2. (9)373

FIG. 4. a. PDF of the rescaled velocity magnitude, ur =
u/〈u〉 for all five geometries studied, with β = 0.25 (red),
β = 0.22 (green), β = 0.17 (blue), β = 0.12 (cyan), and
β = 0.083 (black). Symbols correspond to the direct numeri-
cal simulations, and straight lines are the power-law fits to the
symbols. Symbols and curves are shifted vertically for clar-
ity. b. The fitted exponents plotted against the theoretical
exponents −β/2 [Eq. (9)], where the error bars represent the
standard deviation in the least-squares estimate of the time
exponent. c. The symbols represent the same data as in a, but
plotted in semi-logarithmic axes to highlight the exponential
decay in the distribution of high velocities.

To test this prediction, we perform a power-law fit to374

the numerically simulated velocity distribution for each375

of the geometries considered (Fig. 4a), and we compare376

the fitted exponent with the theoretical exponent −β/2377

(Fig. 4b).378

We conclude that our simple conceptual model of a379

collection of porelets successfully captures the velocity380

distribution in the range of low velocities. The high ve-381

locities exhibit an exponential distribution that is largely382

insensitive to the statistical characteristics of the porous383
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FIG. 5. Streamlines for 500 particles initialized at the left
end of the channel at four equally spaced time steps. The
different colors for different groups of particles help visualize
the flow. On the right: magnification of small regions (the
associated red boxes on the left), illustrating the quality of
the streamlines furnished by our spectral-accurate velocity
field and high-order time integrator.

medium geometry: the slope in Fig. 4c has value 1 for all384

geometries (the exponential distribution is parametrized385

by the average value only).386

To illustrate the impact of fluid velocity heterogeneity387

and the importance of capturing the distribution of low388

velocities, we study macroscopic signatures of transport389

through the porous medium by tracking the displacement390

of fluid particles along streamlines (no diffusion, just ad-391

vection). The fluid trajectories are computed using a392

fourth-order Runge–Kutta time stepping scheme. In the393

Runge–Kutta scheme, instead of evaluating the veloc-394

ity u(x) using Eq. (2), we locally interpolate the fully395

resolved Eulerian grid near the particle location with a396

bicubic polynomial. Then the velocity at the particle397

location is approximated by evaluating the bicubic poly-398

nomial interpolant. By using the interpolant with a pre-399

computed Eulerian grid rather than using Eq. (2), we400

greatly accelerate the streamline calculation. To illus-401

trate the quality of the numerical solution, we plot the402

streamlines of 500 tracer particles initialized at the left403

end of the channel (Fig. 5), where same color identify404

groups of particle initiated within the same vertical seg-405

ment at the left boundary.406

At time t, the distance traveled by a particle j along407

its trajectory is sj(t). The first and second ensemble408

moments of sj over the Np simulated fluid particles are:409

〈s〉(t) =
1

Np

Np∑
j=1

sj(t), σ2
s(t) =

1

Np

Np∑
j=1

(
sj(t)−〈s〉(t)

)2

.

(10)410

In Fig. 6 we plot the temporal evolution of particle411

spreading
√
σ2
s , as a function of time rescaled by the char-412

acteristic advective time across a pore, τ = 〈λ〉/〈u〉. Par-413

ticle dispersion exhibits two power-law regimes
√
σ2
s ∼414

tα. For t/τ < 1, the fluid dispersion is ballistic (α = 1),415

as expected since individual fluid particles have not yet416

explored enough space to significantly alter their velocity.417

For t/τ > 1, the dispersion of fluid particles along their418

trajectories slows down, but it retains a super-diffusive419

behavior (α > 1/2) which is persistent over two orders420

of magnitude in time. The transition time between these421

two regimes, t/τ ∼ 1, corresponds to the time when par-422

ticles move between porelets, and therefore sample dif-423

ferent velocities.424

From the wide spectrum of statistical models of trans-425

port [e.g., 68–70], here we employ an uncorrelated Con-426

tinuous Time Random Walk (CTRW) model that is427

known to reproduce late-time anomalous spreading from428

the broad velocity distribution [15], as we observe in our429

simulations. CTRW theory predicts the asymptotic scal-430

ing of tracer particle dispersion in Eq. (10) [15]:431

〈s〉(t) ∼ t,
√
σ2
s(t) ∼ t(1−γ)/2,432

where γ is the characteristic exponent of the velocity dis-433

tribution γ = −β/2, which leads to
√
σ2 ∼ t1/2+β/4, and434

is therefore super-diffusive for β > 0. The CTRW theory435

agrees well with the direct numerical simulations (Fig. 6).436

Therefore, the late-time scaling of tracer particle disper-437

sion is controlled by the distribution of low velocities and,438

consequently, from the pore throat size distribution.439

IV. CONCLUSION440

In summary, we have taken steps to address a long-441

standing challenge in porous media flows: the relation-442

ship between pore structure and velocity distribution443

from Stokesian flow through the pore space. We have444

focused our study on describing the low velocities, as445

their distribution controls asymptotic properties of parti-446

cle transport, fluid retention time, mixing efficiency, and447

reaction rates. We have proposed a conceptual model448
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FIG. 6. Temporal evolution of particle spreading
√
σ2
s as a

function of rescaled advective time, for the five geometries
considered, with β = 0.25 (red), β = 0.22 (green), β = 0.17
(blue), β = 0.12 (cyan), and β = 0.08 (black). Symbols
correspond to the results from direct numerical simulations.
Dashed lines are power-law fits to the late-time spreading be-
havior, which show excellent agreement with the exponents
predicted by CTRW theory with the velocity distribution
from the proposed porelet model, (t/τ)(1/2+β/4) (inset). Solid
lines correspond to separate CTRW simulations that account
for the correlation structure in the velocity field, which are
capable of capturing the transition from the ballistic regime
to the super-diffusive regime [19, 41].

of flow as a collection of porelets—here Hagen–Poiseuille449

parabolic flows through the throats width—from which450

we derive the scaling properties of the velocity distribu-451

tion. Despite its simplicity, the analytical predictions452

from the model agree well with high-resolution simula-453

tions, both in terms of velocity distribution and the con-454

sequent anomalous particle spreading. Our results show455

that, for the cases studied, knowledge of the throat size456

distribution is sufficient to describe the PDF of low ve-457

locities (and, thus, the asymptotic transport properties),458

and that information about medium connectivity is not459

needed. This theoretical and computational study uncov-460

ers the analytical relationship between the pore throat461

size distribution and the distribution of fluid velocity.462

This conceptual model of porelets allows us to make pre-463

dictions also for the statistics of fluid particles spreading464

along their own trajectories, which are confirmed by high465

fidelity simulations of Stokes flow and advective trans-466

port. While we have studied simple 2D porous media,467

the proposed framework is rather general, and the abil-468

ity to work out the analytical predictions carries over to469

other flow configurations for which it is possible to dis-470

assemble the considered complex flow into a collection of471

known spatial velocity distributions. Indeed, we have re-472

cently started to extend our approach to simple but fully473

3D geometries consisting of dense packs of polydisperse474

spherical beads [71], with encouraging results for the pre-475

diction of the entire velocity distribution from character-476

istics of the pore geometry. We plan to document these477

findings in a future manuscript.478
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FIG. 7. The modulus of the rescaled velocity field u/〈u〉 in each of the 5 considered geometries. On the left the color scale
varies linearly, while on the right it changes logarithmically, showing the separation of the flow in channels of high velocity (red
areas) and zones of stagnation (blue). The white color is associated to the average velocity.


