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Abstract

We present a minimal system for generating flow at low Reynolds number by oscillating a pair

of rigid rods in silicone oil. Experiments show that oscillating them in phase produces no net

flow, but a phase difference alone can generate rich flow fields. Tracer particles follow complex

trajectory patterns consisting of small orbital movements every cycle and then drifting or swirling

in larger regions after many cycles. Observations are consistent with simulations performed using

the method of regularized Stokeslets, which reveal complex 3D flow structures emerging from simple

oscillatory actuation. Our findings reveal the basic underlying flow structure around oscillatory

protrusions such as hairs and legs as commonly featured on living and non-living bodies.
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I. INTRODUCTION

The reversibility of viscous flow was elegantly demonstrated by G. I. Taylor in a fluid

confined between two concentric cylinders: a small colored dye in the fluid gets sheared as

the inner cylinder rotates slowly, and then remarkably returns to its original position after

reversing the rotation [1]. No net flow arises from such a sequence of reciprocal motion at low

Reynolds number (Re), a regime where viscosity dominates over inertia [2]. To generate flow

with periodic motion, microorganisms typically employ flexible structures that can oscillate

back and forth [3, 4], but rigid structures can also generate flows which are yet to be fully

explored. The basic physical principle of driving flow with oscillatory motion has important

implications on biophysics at small scales [5] and recent advances in micro- and nano-scale

technology [6].

Here we demonstrate that oscillating a pair of rigid rods can generate rich flow fields con-

sisting of numerous eddies, hereafter referred to as swirls. Table-top experiments confirm

that a phase difference alone is sufficient for generating flow and they reveal qualitatively

different flow patterns depending on the orientation of the rods. The experiments are com-

plemented by simulations based on the method of regularized Stokeslets [7], which show that

complex 3D flow structures arise from simple oscillatory actuation. Each oscillatory rod un-

dergoes reciprocal motion, unlike the rotary motion of rigid bodies considered before [8]. The

key driving mechanism is the phase difference between the oscillatory rods, similar in prin-

ciple to freely-moving oscillators that can collectively swim [9–11]. We build on these past

studies, which recognized the importance of phase in generating net motion, by examining

the possible flow structures around a pair of rods undergoing prescribed oscillations.

The flow around rigid bodies undergoing oscillations is an important physical problem

which offers fundamental insight into the basic underlying flow structure around more com-

plex bodies. Organisms such as algae and crustaceans have numerous protruding body parts

that often oscillate asynchronously [3, 12], which has inspired the design of microfluidic de-

vices for mixing and pumping fluids [13]. While the bodies driving the motion in living and

non-living systems are generally complicated by additional factors such as flexibility and

inertia [14, 15], the resultant fluid-structure interactions yield a difference in phase which is

key to generating flow. Our minimal experimental system is designed to isolate the key role

of phase delay in order to examine its effect on the resultant flow. We employ methods to
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FIG. 1. Schematics of the experimental setup viewed from (a) the side and (b) the top. Servo-

driven horizontal rods (Rods 1 and 2) of length L and diameter ǫ oscillate at distance H below

the air-silicone oil interface. The two pivot points are separated by distance D. θ1 and θ2 are the

angles of Rod 1 and Rod 2 with respect to the x-axis. (c) Three floating tracer particles (top,

middle, and bottom) trace the fluid flow in the x-y plane. (d) Angular variations of the rods within

one cycle for the three representative cases.

visualize and analyze the flow around a body completely immersed in fluid by considering

one half of the body submerged beneath a free surface and exploiting reflective symmetry,

which enables electric components to drive the body without getting them wet as done in

our set up. The techniques are useful for studying flow around any symmetric body as

commonly found in many systems, thus they are expected to apply to a broader class of

problems having a plane of symmetry.

II. METHODS

The experimental system features a pair of servo-driven arms in silicone oil (Fig. 1a).

Each arm (3D printed with ABS plastic) consists of a rigid horizontal rod (labeled Rod 1
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Case Description φ (rad) θ̄1 (deg) θ̄2 (deg) A (deg)

1 No phase delay 0 135 45 45

2 Phase delay, distinct mid-angles π/2 135 45 45

3 Phase delay, same mid-angles π/2 90 90 42

TABLE I. Median angle, phase difference, and amplitude for each case.

and Rod 2) of length L = 40mm and diameter 2ǫ = 2mm, supported by a vertical rod of

the same length and diameter 2.75mm. The arms are dipped to a depth of H = 5mm below

the surface of a large cylindrical bath (depth 115mm and diameter 300mm) of silicone oil

(viscosity ν = 12500mm2/s at room temperature).

The two arms are driven independently by servos (TowerPro SG90) to pivot around

fixed vertical axes separated by a distance D = 40mm (Fig. 1b). The horizontal directions

from one pivot along and across the line to the other pivot are denoted by x and y axes

respectively. We set each rod i to oscillate periodically over time t such that it makes an

angle θi with the x axis according to

θ1(t) = θ̄1 + A sin(ωt), (1)

θ2(t) = θ̄2 + A sin(ωt+ φ). (2)

The phase difference φ and the mid-angle θ̄i around which each rod oscillates have profound

effects on the resultant flow, as investigated below in three representative cases (Table II

and Fig. 1d). The amplitude is fixed to A = 45◦, except in the final case where it is reduced

slightly to avoid the rods from coming into contact. The angular frequency is fixed to

ω = 0.115 rad/s (oscillation period is T = 2π/ω = 54.6 s) so that the Reynolds number

Re = ωL2/ν = 0.015 remains small.

Fluid flow on the surface is visualized with tracer particles (buoyant plastic spheres of di-

ameter 2.75mm). Their positions are recorded at five frames per second (Sony Alpha A6000

camera) and tracked using an open source tracking software (Tracker). Each experiment

starts with three tracer particles located between the rods (Fig. 1c); they are labeled as the

top particle (with initial coordinates x = 20mm, y = 60mm), middle particle (x = 20mm,

y = 40mm), and bottom particle (x = 20mm, y = 20mm).
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FIG. 2. Experimental trajectories of the three tracer particles for a duration of ten periodic cycles

in (a) Case 1, (b) Case 2 and (c) Case 3. The initial and final positions are marked with a circle

and square, respectively.

III. RESULTS

Trajectories of the three particles after ten periodic cycles are shown in Fig. 2. In Case

1 with no phase difference, each particle follows an almost linear path and then traces the

same path back within every cycle (Movie 1) [16]. However, with a phase difference of a

quarter period in Case 2, all three particles orbit counterclockwise (CCW) every cycle while

the top and bottom particles drift away in opposite directions (Movie 2) [16]. Finally, with

the two rods oscillating around the same mid-angle orientation in Case 3, all three particles

follow a figure-of-8 pattern while drifting away from their initial position (Movie 3) [16].

These distinct trajectory patterns demonstrate that the phase difference and orientation of

oscillatory rods have profound effects on the resultant flow.

The particle positions are sampled after each periodic cycle to show the net motion per

cycle (Fig. 3). We performed each experimental case three times to verify repeatability. In

Case 1 (Fig. 3a), no noticeable net motion is generated per cycle, drifting at most 1.5±0.3mm

after ten periodic cycles for the bottom particle. In Case 2 (Fig. 3b), significant net motion
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FIG. 3. Experimental trajectories of the three tracer particles sampled after each cycle in (a) Case

1, (b) Case 2 and (c) Case 3 for a duration of ten periodic cycles. For each case, three separate

runs were repeated. Arrows point in the general direction of flow.

is generated for the top and bottom particle. The top particle drifted 7.4 ± 0.3mm in the

positive direction of the x-axis while the bottom particle drifted 4.9±0.3mm in the opposite

direction. No noticeable net motion is generated for the middle particle. In Case 3 (Fig. 3c),

all three particles generated considerable net motion. The top and middle particles drifted

diagonally by 7.6±0.4mm and 13.9±0.3mm while the bottom particle drifted predominantly

upward by 15.1± 0.5mm after ten periodic cycles.

To gain further insights into the experiments, we simulated Stokes flow around the arms

using the method of regularized Stokeslets [7]. Each arm is represented by 23 Stokeslets, 3

along the centerline of the vertical and 20 along the horizontal rod, such that the Stokeslets

are equally spaced apart. The Stokeslet singularity is regularized using the commonly used

‘blob’ function φδ(r) = 15δ4/8π(r2 + δ2)7/2, where the blob size δ is set to half the radius

ǫ of the rod. In order to impose the stress-free boundary condition at the free surface,

we introduced image Stokeslets [17], reflections in the free surface shown in Fig. 4. This

assumption is valid for sufficiently weak flow on the free surface such that the surface remains

approximately flat. The wall and floor confining the flow are sufficiently far from the region

of interest and thus neglected in the simulations. The strength of each Stokeslet is computed
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FIG. 4. (a) A side-view diagram of the rod submerged beneath an air-silicone oil interface. (b) A

side-view diagram of a symmetric pair of rods completely immersed in silicone oil. The flow below

the plane of symmetry is a reflection of that above the plane and is equivalent to the flow beneath

the interface.

at each time step by prescribing the velocity of the rods as in the experiments. This enables

prediction of the entire fluid flow field, and consequently the particle trajectory given any

initial position. The particle positions are marched forward in time with 1000 time steps

per cycle.

Simulated trajectories for the first periodic cycle are compared with the experimentally

observed trajectories in Fig. 5, where the three trajectories in the middle column start with

the same initial conditions as in the experiments. In Case 1, all simulated particles move in

a line as observed in the experiment. In Case 2, all simulated particles orbit CCW as in the

experiments. In Case 3, the top and middle particles orbit CCW whereas the bottom particle

orbits CW, again in agreement with experiments. Furthermore, trajectories simulated away

from the middle show a figure-of-8 pattern, consistent with those observed experimentally

in Case 3 (Fig. 2c). Although the simulated orbits are slightly smaller than those observed

in Case 2 and slightly larger in Case 3, the final positions are in reasonable agreement with

experiments.

The long term behavior in Cases 2 and 3 observed in Fig. 3 is shown by the simulated

displacement field after five periodic cycles (arrows in Fig. 6). For comparison we show the

experimental data (circles) for particle positions sampled every five cycles over a duration of

30 cycles. In both cases, simulations show a swirling region in between the rods, consistent
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FIG. 5. Particle trajectories starting at different positions in Case 1 (top panel), Case 2 (middle

panel) and Case 3 (bottom panel). Experimental data (black curves) are compared with simulations

(grey curves) within one oscillatory cycle. Open circles represent final positions after one complete

cycle. Arrows indicate the sense of rotation.

with the observed motion of the bottom particle following the swirl in the CCW sense.

Simulations also show a large drifting region above the rods, consistent with the observed

drift of the top particle in Case 2 and top and middle particles in Case 3. In between the

swirling and drifting regions is a small stagnant region where the displacement arrows point

in opposite directions and have relatively small magnitudes. The presence of this region is
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FIG. 6. Net motion of particle tracers in Case 2 (top panel) and Case 3 (bottom panel). Ex-

perimental data of particle positions sampled every periodic cycle are connected by black lines,

with circle markers representing the positions every five cycles. Blue arrows indicate simulated

displacements after five cycles. The black bars represent the initial configuration of the rods. Note

that the tracers are above the plane of the rods and can appear to pass through them.

consistent with the long-term stagnant behavior of the middle particle in Case 2, though the

center points of the stagnant and swirling regions do not exactly match those observed in

the experiments. The formation of distinct flow regions and possible sources of discrepancy

between the simulated and observed data are discussed below.

So far we have focused on the 2D flow in the plane of symmetry, where there is no velocity

component in the direction normal to the plane. However, in a different plane parallel to

the plane of symmetry, our simulations predict a 3D flow field in the bulk fluid. In the

plane containing the rods, the displacement after one cycle has an upward or downward

component as shown in the left column of Fig. 7. The right column shows that the vertical

component is small compared to the total displacement, indicating that the displacement is
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FIG. 7. Vertically upward component of the displacement field after one cycle at the plane of the

rods, located at a depth z=−6mm below the plane of symmetry. The vertical component dz is

scaled by (a) L or (b) |d|, the magnitude of the total displacement, in Case 2. (c,d) Corresponding

results in Case 3. The black bars represent the initial configuration of the rods.

primarily horizontal. The horizontal displacement field is similar to Fig. 6 (not shown). In

both Cases 2 and 3, the vertical displacement is most pronounced near the rods, implying

that the fluid spirals up or down there. These results demonstrate that complex 3D flow

structures can arise from interactions between oscillating rods and their reflected images.

We performed additional simulations to explore the dependence on various parameters,

including the phase difference φ, amplitude A, and spacing distance D between the two

pivot points. A measure of the fluid transport around the rods is given by the magnitude

|d| of the displacement of the top particle (x/L = 0.5, y/L = 1.5) after one cycle, which

is plotted as a function of φ in Fig. 8a. The maximal displacement occurs at φ = ±π/2

in Case 2 but at a slightly different φ in Case 3. The displacement is primarily horizontal

and can switch direction (Fig. 8b), with no net displacement generated at φ = 0 and π as

expected. In Fig. 8c and d, the net displacement increases as amplitude A increases and as

the spacing D decreases. Note that we set the initial position to be half way between the
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FIG. 8. Simulated displacements of the top particle (initially located at x/L = D/2, y/L = 1.5)

after one cycle depending on (a,b) the phase difference φ, (c) amplitude A, and (d) distance

D between the two pivot points. In (b) the displacement direction is measured by the angle θd

it makes with the x axis. The angle θd switching from zero to π corresponds to reversal in the

direction of displacement. The circle cursor is for Case 2 and the square cursor is for Case 3.

rods (x/L = D/2) and restricted the parameter range so as to prevent the two rods from

coming into contact with each other. We also investigated the bottom and middle particles

which showed similar trends.

IV. DISCUSSION

The direction of net flow in the drifting region outside the rods can be partly explained by

considering the orientation of the rods at different stages within each cycle. At the critical

instants when a rod attains maximal speed (see Fig. 1d and Movies 4 and 5) [16], the other
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rod is stagnant and drags the flow. This drag is greater when each rod moves to the left

while the other stagnant rod is closer, compared to when each rod moves to the right while

the other stagnant rod is further away, leading to a net rightward flow in the outer region.

The flow is in the direction away from the rod that is delayed in phase. This is consistent

with the direction of motion of multi-legged swimmers whose legs oscillate with a phase

delay closer to the front end of their body [11].

Why does the region in between the rods swirl in the CCW sense? Let us first consider

tracer particles initially above the second pivot point, that is, in the vicinity along Rod 2 in

Case 2. The particles predominantly follow the direction of motion of Rod 2, with a slight

modification due to the motion of the more distant Rod 1 (Movie 4) [16]. This modification

drives the particles downwards when Rod 1 has a downward moving component but drives

the particles upwards by a greater amount when Rod 1 has an upward component, when

Rod 2 is further away from the particles. This leads to an upward drift above the second

pivot point. By a similar argument, we expect a downward drift above the first pivot point.

By continuity we expect a CCW swirl in the region in between the rods. The larger scale

swirls may be able to rotate large objects of similar size which may be useful for organisms

and bioinspired robots to probe objects in their environment.

There is a few possible sources of discrepancy between the experiments and simulations.

We initially placed the rods at the air-liquid interface but that resulted in an unsatisfactory

comparison between the simulation and experiment due to noticeable surface deformation,

with the motion of each rod causing the surface to slightly rise ahead and dip behind it. By

lowering the rods below the interface, we were able to keep the surface almost undeformed

and get a better agreement. Nevertheless, a very minor deformation at the interface may have

contributed to the slight discrepancy between the experiments and simulations. We chose

not to lower the rods deeper into the liquid because that would result in a weaker flow on the

surface and increased effects of the floor. The silicone oil is bounded by the wall and floor

of the container which is not accounted for in the model. While the model does not capture

all aspects of the flow in quantitative detail, it nevertheless provides results consistent with

the main experimental findings. This demonstrates that any Stokes flow containing a plane

of symmetry could be studied theoretically and experimentally by exploiting the symmetry

and considering one half of the region as done in our model and experiments. Thus our

approach could be applied to a broader class of Stokes flow problems featuring a plane of
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symmetry.

There are numerous important implications of flows driven by oscillatory motion at low

Re, as commonly encountered in nature, for instance, in biological systems. A specific

example is the asynchronous beating of a pair of flagella and the sharp turns associated

with swimming cells [3]. If the phase is delayed in the left flagellum compared to the right

such as in Case 2, we expect outer flow circulation to the right, thus driving the cell to turn

CCW. The flexibility of flagella may reinforce or counter the flow. In other situations, slender

bodies could oscillate passively in response to an external periodic force, and the oscillations

may not be in phase if the bodies respond differently to the force. The different responses

could be exploited to generate flow at low Reynolds number in numerous applications, for

instant for pumping and mixing fluids in microfluidic devices. The basic underlying structure

of the resultant flow should have drifting and swirling regions as presented here.

In conclusion, a complex flow field can be obtained in a viscous fluid by the asynchronous

oscillation of two rigid rods. The rich flow field consists of small orbital motion every

periodic cycle and larger drifting or swirling motion after many cycles. Suspended particles

can drift in different directions depending on their initial positions. The experiments agree

well with simulations based on the method of regularized Stokeslets. The simulations show

that fluid is most transported with an optimal phase difference of a quarter period, and

moreover, reveal complex 3D flow structures away from the plane of symmetry. The motion

arises generally for any phase difference, except in the special case of oscillations that are

completely in-phase or anti-phase. Even a small difference in phase should generate flow

every cycle, thus the phase-induced flow is expected to arise ubiquitously in a variety of

fluids driven by a system of oscillatory body parts, as commonly encountered in biological

physics and technological applications.
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