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We study a mechanism for active aerodynamic drag reduction on morphable grooved cylinders,
whose topography can be modified pneumatically. Our design is inspired by the morphology of
the Saguaro cactus (Carnegiea gigantea), which possesses an array of axial grooves, thought to help
reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind load-
ing. Our analogue experimental samples comprise a spoked rigid skeleton with axial cavities, covered
by a stretched elastomeric film. Decreasing the inner pressure of the sample produces axial grooves,
whose depth can be accurately varied, on demand. First, we characterize the relation between
groove depth and pneumatic loading through a combination of precision mechanical experiments
and finite element simulations. Secondly, wind tunnel tests are used to measure the aerodynamic
drag coefficient (as a function of Reynolds number) of the grooved samples, with different levels of
periodicity and groove depths. We focus specifically on the drag crisis and systematically measure
the associated minimum drag coefficient and the critical Reynolds number at which it occurs. The
results are in agreement with the classic literature of rough cylinders, albeit with an unprecedented
level of precision and resolution in varying topography using a single sample. Finally, we leverage
the morphable nature of our system to dynamically reduce drag for varying aerodynamic loading
conditions. We demonstrate that actively controlling the groove depth yields a drag coefficient
that decreases monotonically with Reynolds number and is significantly lower than the fixed sample
counterparts. These findings open the possibility for the drag reduction of grooved cylinders to be
operated over a wide range of flow conditions.
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I. INTRODUCTION

The Carnegiea gigantea, commonly known as the Saguaro cactus (Fig. 1a), is an iconic and endemic plant to the
Sonoran desert in the American southwest. These cacti can grow to be 15 m tall with diameters over 0.8 m and weigh
over 1800 kg [1, 2]. Despite their shallow root base, these essentially cylindrical plants are able to withstand wind
speeds of up to 38 ms−1 without failure due to this aerodynamic loading and live as long as 150 years [3]. The surface
morphology of a mature Saguaro cactus comprises between 10 and 30 vertical (axial) grooves that are equally spaced
around its circumference [1]. The depth of these grooves varies along the trunk [4], and their shape also changes
with the seasons [1]. During the wet season, the trunk undergoes hygroscopic swelling and the grooves are less
pronounced. In reverse, during the dry season, the stored water is gardually comsumed and the grooves deepen [1].
For a 1.5 m tall cactus, the ratio between groove depth and plant diameter has been measured to be approximately
0.07 [5]. A possible evolutionary advantage of the grooves is that they may provide additional structural support to
the plant. Another prevailing hypothesis in the literature [4, 6] is that the axial corrugations are thought to yield an
aerodynamic advantage that reduces the overall form drag on the structure. This drag reduction may then allow the
plant to withstand high wind loads, for example, during storm conditions. In our current study, we do not set out
to determine which hypothesis is correct. Instead we use the latter interpretation of the effect of the grooves on drag
reduction as an original source of inspiration and motivation for our work.

Smooth cylinders under high Reynolds number flow conditions (Re & 2×105, taking the diameter as the character-
istic length), are well-known to undergo a phenomena referred to as the drag crisis [7]. With increasing Re, the drag
coefficient, Cd, first drops sharply (critical regime), until a minimum is reached at a critical Reynolds number, Re∗,
after which Cd increases again (supercritical regime), before plateauing (transcritical regime) [8, 9]. This drop in drag
is related to a delay in separation caused by a laminar-to-turbulent flow transition in the boundary layer. Rough-
ening the surface of the cylinder causes the drag crisis to occur earlier by promoting the transition from a laminar
to turbulent boundary layer [4, 9, 10]. Numerous past studies have investigated the influence of surface topography
on the drag crisis of bluff bodies [9, 11–14]. For example, covering the surface of cylinders or spheres by sand grains
to produce an uniformly random surface roughness has been shown to reduce their drag coefficient by as much as a
factor of 1.8 (for cylinders) [9] or 5 (for spheres) [12], when compared to their smooth counterparts. Periodic patterns
of dimples have also proven to be effective at reducing the drag on both spherical [11, 14] and cylindrical [13] bluff
bodies.

Returning to the resilience of Saguaro cacti under wind loading, it has been proposed that the axial grooves on their
surface have an effect similar to the aforementioned rough cylinders, thereby enhancing the aerodynamic performance
of the plant [10]. This hypothesis inspired our work.

Also motivated by the cactus analogy, a series of previous studies have addressed the aerodynamics of cylinders with
longitudinal grooves [4, 6, 10, 16–21]. For example, Refs. [4, 10] report experiments that explore the effect the surface
shape (smooth, rough and cactus-shaped grooves) of cylinders at high Reynolds numbers (2 ≤ Re [×104] ≤ 20). In
this study, the samples with v-shaped grooves (similar to those of cacti) were machined with a depth to cylinder

(a) (b1) (b2) (b3)

1 cm

FIG. 1. (a) Representative photograph of a Saguaro cactus (Scottsdale, Arizona) [15]. (b) Photographs of a grooved cylindrical
sample covered by a stretched latex film. The surface topography can be morphed pneumatically by increasing the pressure
differential between the inside and the outside of the samples: (b1) ∆p = 1000 Pa, (b2) ∆p = 5000 Pa, (b3) ∆p = 10, 000 Pa. A
laser sheet aligned at 45 ◦ with respect to the cross section of the sample is used to measure the depth of the surface grooves.



3

diameter ratio spanning 0.035 ≤ L/D ≤ 0.105. Within the tested range of Re, the grooved cylinders showed a
monotonic increase in Cd with increasing Re, then asymptoting at values in the range 1.04 ≤ Cd ≤ 1.13, depending
on the groove depth (the deepest grooves providing the lowest Cd). This monotonic dependence indicates that all
cases considered in these experiments were already in the supercritical and transcritical flow regimes (i.e, the critical
Reynolds number was below the the explored range of Re; Re∗ < 2× 104) [4].

A subsquent experimental study [19] also examined the effect of the shape of grooves on Cd over range of Reynolds
numbers (1 ≤ Re [×104] ≤ 10). These experiments used 48 mm diameter cylinders with 0.5 mm deep grooves of
triangular and arc-shaped geometries. The results showed that both triangular and arc-shaped grooves induced the
drag crisis at the same value of Re, but the triangular-grooved cylinders exhibited a lower value of the minimum
drag coefficient [19]. A more recent study [21] focused on catenary shaped grooves in the critical Reynolds number
regime (2 ≤ Re [×104] ≤ 12). The experiments were performed with cylinders of varying groove depth, width and
area. Increasing the ratio, A∗, between the area of all the grooves and the area of the cylinder decreased the critical
Reynolds number and increased the minimum drag coefficient. This finding was robust regardless of whether A∗ was
increased by increasing the groove depth, groove width or shape factor [21].

In addition to the shape of grooves, the effect of the number of grooves on the drag on cylinders (with triangular-
shaped features) has also been investigated [20]. Samples with an increasing number of grooves (from 20 to 30)
exhibited the drag crises at lower values of Re, and the drag crisis was characterized by a more gradual the drop,
even if the minimum drag coefficient appeared unchanged [20].

Overall, combining the findings from the past studies mentioned above establishes that different groove patterns can
change the aerodynamic performance of a cylinder. However, these investigations were limited in the range and extent
of the explored parameter space by the time and cost needed to fabricate individual samples for each configuration.
Additionally, each individually manufactured samples (with a fixed surface shape) minimizes the drag coefficient at
a single value of Reynolds number, Re∗, whereas, for all other Re, the drag can be specifically higher. As such,
an important shortcoming precluding the translation of this drag reduction mechanism with fixed topographies into
engineering applications is that any aerodynamic enhancement is limited to relatively narrow ranges of Re.

Here, we study the aerodynamic performance of cylinders using a single, albeit morphable, sample whose topography
that can be varied systematically and precisely, on demand. The tuning of the surface shape is accomplished by the
pneumatic actuation of the flexible elastomeric film covering an inner rigid skeleton, with a single pressure signal that
can be continuously varied. In Fig. 1b, we present representative photographs of a sample at three different states of
pneumatic loading (∆p = 1, 5 and 10 kPa). Therefore, by varying the internal pressure of the sample, we can set the
sample to numerous fixed groove shapes, specifically the groove depth. Wind tunnel tests are used to characterize
the aerodynamic drag of our samples, over a wide range of Reynolds numbers, for each fixed depth. We determine
which groove depth exhibits the lowest drag coefficient at any given Reynolds number. Finally we present a system in
which the drag on the samples can be automatically minimized by changing the groove depth ‘on the fly ’, depending
on the measured velocity of the oncoming flow.

Our paper is organized as follows. In Section II, we describe our experimental apparatus used to measure the drag
forces on the cylindrical samples, and detail the sample fabrication method. In Section III, we describe the finite
element simulations and mechanical experiments used to study the mechanics of deformation of the outer elastomeric
film and establish a relationship between the groove depth and the internal pressure in the samples. Next, the protocol
of the wind tunnel experiments is presented in Section IV A. Finally, the results of the aerodynamic experiments are
presented in Sections IV B and IV C.

II. THE EXPERIMENTS

Our cylindrical samples comprised a rigid acrylic skeleton covered by a stretched cylindrical film made of latex.
The rigid skeleton contained a series of inner cavities set by an array of equally spaced radial spokes, aligned axially.
Decreasing the internal pressure in the cavities caused the outer latex film to stretch further and, consequently, increase
the depth of the axial grooves. Therefore, the topography of the samples could be tuned gradually and on-demand,
through pneumatic actuation. These samples were then loaded aerodynamically in a flow field generated by a wind
tunnel. The resulting drag force was measured directly by a precision system containing a load-cell. The velocity
of the incoming flow was then varied systematically to determine the drag coefficient, Cd, over a range of Reynolds
number (2.5 < Re [×104] < 15), and for different set values of the groove depth.

Next, we describe in more detail, first, the experimental apparatus and, then, the sample fabrication procedure.
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A. Experimental apparatus

Fig. 2a shows a photographs of the experimental apparatus used throughout this investigation. The incoming air
flow was produced by an open return wind tunnel with a 30.5× 30.5 cm2 test section, which was capable of producing
uniform steady flow speeds of 5 < U [ms−1] < 34, measured by a Pitot tube and a high accuracy capacitance
manometer (690A Baratron, MKS Instruments. For all the values of U used in this study, the turbulence intensity,
defined as fluctuations of the wind speed, were below 1% of the mean velocity. The flow direction was aligned with
the y-axis (see the definition of the axes in Fig 2a). The cylindrical samples were mounted such that they spanned
the width of the wind tunnel, along the x-direction, perpendicular to the incoming flow, and positioned at the vertical
center of the test section. The sample protruded through holes in the y-z side walls of the test section.

The cylindrical samples were 43 cm long with a 3.5 cm radius (measured from the center of the cylinder to the
extremity of one of the spokes). Circular caps made out of acrylic were inserted at both ends of the sample to ensure
sealing. One of these endcaps (left-and side of Fig 2a) contained a port to connect the sample, via PVC tubing,
to a vacuum pump (DOA-P704-AA, Gast). A high-resolution electronic pressure control valve (QPV1, Proportion-
Air, Inc.) was introduced between the sample and the vacuum pump to automatically regulate the pressure of the
system using a data-acquisition device (DAQ, USB-6008, National Instruments). This pressure control valve was then
controlled by a custom LabVIEW program (LabVIEW 2010, National Instruments). The two endcaps of the sample
were mounted onto a U-shaped aluminum frame, which was itself bolted to one end of a linear air bearing (RAB2,
Nelson Air Corp.). The other end of the air bearing was connected to a precision load-cell (LRM200 Minature S-Beam
Load Cell, Futek). With this setup, aerodynamic drag forces exerted onto the grooved cylindrical samples could be
measured in the range 0.05 < Fd N ≤ 22.2.

Both the force and the wind velocity signals were digitized simultaneously by the DAQ system. The experimental
setup detailed above allowed for the control of the internal pressure of the cylindrical samples (and thus the shape of
the grooves), while simultaneously enabling measurement and recording of both the drag forces on the sample and
the velocity of the incoming flow.
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FIG. 2. (a) Photograph of the experimental apparatus used to measure the drag force on a grooved cylindrical sample under
aerodynamic loading. The sample (1), mounted across the wind tunnel (2), is rigidly connected to a force sensor (5) via an
air bearing (4) to measure the exerted aerodynamic drag forces. The internal pressure of the sample is set by a regulated
vacuum pressure source (3). The air flow with average far-field speed U is aligned perpendicularly to the axis of the sample.
(b) Schematic diagram of the cross-section of the sample (top) comprising a rigid acrylic skeleton (red) covered by a thin latex
film (blue, thickness t = 0.25 mm). Depressurizing (∆p) the inner cavity of the shell results in deeper grooves (bottom).

B. Fabrication of the samples

In Fig. 2b, we present a schematic diagram of the cross-section of our cylindrical samples, which were custom
fabricated. The samples consisted of a latex film (represented by the blue line in Fig. 2b) stretched over a rigid acrylic
skeleton (represented by the red circle with spokes in Fig. 2b).

To manufacture the rigid skeleton, first, spokes with a height of 9.5 mm were laser cut (Laser Pro, Spirit GLS) out
of 1.6 mm thick acrylic plates. Second, a series of rectangular holes were laser-cut on the surface of an acrylic tube
(50.8 mm outer diameter and 3.175 mm wall thickness). There were two sets of holes cut into the base tube. The first
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set was uniformly spaced around the circumference of the cylinder and were subsequently plugged with the spokes
to create the skeletal structure, with an outer diameter of 69.8 mm. The second set of holes was cut to allow air to
flow between the inside of the tube and the cavities created beneath the latex film (more below). This allowed for the
pressure to equalize inside the base tube and in the cavities. The spacing between the ends of two neighboring spokes,
w, depended on the number of grooves in the sample. In our experiments we used samples with N = {14, 16, 20, 24}
grooves (i.e., w = {15.5, 13.6, 10.9, 9.1}mm, respectively).

Thin latex sheets (McMaster-Carr, part # 8611K13, thickness t = 0.25 mm and shear modulus G = 577± 32 kPa)
were cut into rectangles, and the ends glued together to form tubular shells with 50.8 mm diameter. The latex film was
then stretched over the acrylic skeleton and the ends were sealed with o-rings. The resulting value of the prestretch
(defined as the ratio between the perimeter of the latex film after and before stretching over the skeleton) depended
on the number of grooves of the sample: λ = {1.364, 1.366, 1.369, 1.371} for N = {14, 16, 20, 24}, respectively.
These values of pre-stretch were chosen to ensure that no fluttering of the latex membrane was observed in the wind-
tunnel experiments (Section IV B), especially in the upper range of Reynolds numbers explored, where vortex-induced
vibrations were otherwise possible.

The elastic properties of the latex films (needed for the Finite Element Simulations detailed in Section III, below)
were determined using an universal testing machine (5943, Instron). Dog bone specimens (ASTM D412 type A
and B) were laser-cut from the same latex material used to make the samples, and tested under uniaxial tension.
The experimental data for the engineering stress versus stretch obtained from the tensile test were then fitted to a
Gent constitutive model [22]. This model is widely used to describe elatomeric materials under large deformation and
involves three parameters: two elastic coefficients, C1 and C2, and one coefficient, Jm, related to the maximum stretch
ratio. The two elastic coefficients can be used to estimate the shear modulus, G, of the material. From the fitting of
the Gent model to the stress-stretch data we obtained: Jm = 37.5± 1.7, C1 = 115.7± 5.7 kPa, C2 = 518.0± 30.2 kPa
and G = 577± 32 kPa.

III. MECHANICS OF DEFORMATION OF THE GROOVED SURFACE

In this section, we present the results of both mechanical experiments and finite element (FE) simulations used to
characterize how the shape of the grooves, specifically the groove depth, d, depends on the internal pressure, ∆p. This
relationship between d and ∆p will be required later (Section IV) to inform the wind tunnel experiments. In Fig. 2b,
we show a schematic diagram of a segment of the latex film suspended above a single cavity of the rigid skeleton.
When the value of the pressure inside the cavity, pi, is smaller than the exterior pressure, pe, the pressure differential,
∆p = pe−pi, loads the latex film. This loading causes the film to deform inward and, thus, deepen the surface groove.
The study the mechanics of deformation of the film, we performed a series of experiments where ∆p was fixed to a set
value and a laser sheet was then projected onto its surface, at a 45o angle relative to the central axis of the cylinder.
Photos were taken of the resulting line of illumination, representative examples of which are shown in Fig. 1b. From
these photographs, we extracted the height profile of the grooves, using a custom image processing code (Matlab).

Along with the physical experiments, we performed Finite Element Modeling (FEM) using Abaqus/Standard 6.14.
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FIG. 3. (a) Schematic diagram of a single groove after applying the pneumatic loading by setting the pressure differential
to ∆p. The groove depth, width and film thickness are represented by d, w and t, respectively. (b) Results of experiments
(solid lines) and FEM simulations (dashed lines) showing the shape of the surface of the latex film at increasing values of
∆p = {2, 4, 6, 8, 10} kPa, for a sample with N = 14 grooves. The rigid (acrylic) skeleton is represented by the thick black
lines. Given the periodicity of the system, only the data for a single groove is shown.
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Given the axial symmetry of the system, the model was simplified to a single two-dimensional (2D) groove sec-
tion (shown in Fig. 3). The acrylic skeletal structure was simulated with rigid elements, while the film was simu-
lated with 2D solid elements (CPE4H). A convergence study was performed, which led to the selection of a regular
mesh with 150 elements along the arc-length of the latex film, and 8 elements along its thickness. The simulation
protocol was as follows: (i) first, the film was preconditioned by deforming it to appropriate value of prestretch
(λ = {1.364, 1.366, 1.369, 1.371} for the samples with N = {14, 16, 20, 24}, respectively); (ii) then, a uniform nega-
tive pressure was applied to the inner surface of the film, so that the pressure differential was increased linearly from
∆p = 0 to ∆p = 10 kPa. This pneumatic loading was implemented as a live pressure, such that the force was always
applied normal to the surface.

In Fig. 3b, we show examples of the experimental and computed surface profiles of a single groove, at five different
values of the internal pressure (∆p = {2, 4, 6, 8, 10} kPa), for a sample with N = 14 grooves. The groove profiles
closely resemble catenaries, especially for small values of ∆p, which is to be expected given the nearly radial pneumatic
loading on the latex film. We find excellent agreement between the experiments and the FEM simulations, noting
that the latter involve no free fitting parameters.

From the groove profiles, a representative set of which was shown in Fig. 3, we measure the groove depth as
d = ro − rf , where ro and rf are defined in Fig. 2b, and d is drawn schematically in Fig. 3a. It is worth noting
that the groove depth, d, is defined relative to the initial state of the sample with no pressure being applied. This
means that for a sample with N grooves, d = 0, corresponds to an N -sided polygon rather than a perfect cylinder.
However, for increasing values of N , the sample approaches the a smooth cylinder case. In Fig. 4a, we plot d versus
∆p, for four different samples with N = {14, 16, 20, 24}, from both the experiments and the corresponding FEM
simulations; excellent agreement is found between the two. The errorbars on the experimental data represent the
standard deviation of five different tests. We find a linear relationship between the groove depth and the internal
pressure. The constant of proportionality decreases for the samples with increasing N . This is likely due to the
difference in stretch required to reach the same groove depth in samples with more grooves. Given a constant groove
depth, samples with higher N achieve a higher stretch than those with fewer grooves. Thus, a larger load, i.e. ∆p,
must be applied to samples with more grooves.
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FIG. 4. (a) Groove depth, d, versus pressure differential, ∆p, for samples with different numbers of grooves; see legend, which
also applies to (b). Solids lines and data points correspond to simulations and experiments, respectively. (b) Normalized groove
depth, d = d/w, as a function of normalized pressure, ∆p = ∆pw/[Gt], for the same data as in (a). The slope of the best linear
fit to the data is α = 0.152± 0.001.

Next, we nondimensionalize the groove depth as d̄ = d/w, and the pressure as ∆p̄ = ∆pw/[Gt]. The latter
was chosen based on dimensional analysis. In Fig. 4b, we plot these dimensionless quantities and find that all the
experimental and numerical data collapse onto a linear master curve, for all of the samples tested:

d̄ = α∆p̄, (1)

where α = 0.152± 0.001 was determined by fitting the data.
Thus far, our results establish a predictive relationship between the groove depth and the internal pressure of the

samples. This, together with the electronic pressure control valve, we are able to set and vary the depth of the grooves
on demand. This capability was used in the subsequent wind tunnel experiments to systematically characterize the
dependence of the aerodynamic performance of our samples, specifically the drag coefficient, on the groove depth.
The details and results of these experiments are addressed next.
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IV. WIND TUNNEL TESTS

Above, through mechanical experiments and FEM simulations, we established a relationship between the depth of
the grooves and the internal pressure of the samples. We proceed by characterizing the aerodynamic performance of
our grooved samples using wind tunnel tests. More specifically, we shall systematically quantify how the aerodynamic
drag coefficient of the samples, Cd, varies with the Reynolds number of the flow (in the range 2.5 < Re [×104] < 15),
as a function of the groove depth, d.

Two types of experiments were undertaken with either (i) fixed or (ii) active grooves. (i) For the fixed groove
experiments, we measured Cd across the full range of Re, while setting the internal pressure of the sample at a fixed
value, to target a constant value of d. In doing so, we followed the mechanical design principles identified in Section III
that relate d with ∆p. For each value of d, we tabulated the corresponding minimum value of Cd and the critical
Re∗ at which it occurred. (ii) Additionally, we performed active groove experiments where the Reynolds number was
gradually increased, and at each Re, the groove depth was automatically adapted to minimize the drag coefficient.
As we shall show below, these morphable cylinders with an active control of their groove depth exhibited an overall
aerodynamic drag, across the full range of Re, that was significantly lower than any of their fixed counterparts.

A. Experimental protocol to measure the aerodynamic drag coefficient

During testing, the groove depth of the samples was set by varying the internal pressure through the vacuum
regulator as described in Section II A. The groove depth was varied from d = 0 to d = 0.81 mm (i.e., d̄ = d/w = 0.1
in dimensionless form), for four samples with the following numbers of grooves: N =14, 16, 20 and 24. The wind

speed was then slowly increased at a rate of U̇ ≈ 0.05 m/s2, until either the wind speed reached a maximum (at
U = 34 ms−1) or the signal from load-cell became saturated (at Fd = 22.25 N).

Based on the measured quantities, we calculated the Reynolds number as:

Re =
UD

ν
, (2)

where D = 6.98 cm is the outer diameter of the sample, and ν = 1.57 × 10−5 m2s−1 is the kinematic viscosity of air
(at 25◦C). Moreover, the drag coefficient was calculated as:

C̄d =
2Fd

ρU2LD
, (3)

where ρ = 1.18 kg m−3 is the density of air (at 25◦C), and L = 30.5 cm is the width of the wind tunnel. All experiments
were performed in the range 2.5 < Re [104] < 15, over which, the measured drag force laid within 0.3 < Fd [N] < 17.

It is important to note that the projected area of the sample is relatively large compared to the cross-sectional
area of the test section of wind tunnel; the blockage ratio is β = DL/L2 = 0.23. As such, blockage effects [23] need
to be taken into account. Otherwise, calculating the drag coefficient directly from Eq. (3) would lead to artificially
high values. In order to compensate for this blockage, Maskell’s theory [24] was used to correct the measured drag
coefficient as:

Cd =
C̄d

1 + ε β C̄d
, (4)

where C̄d is the uncorrected drag coefficient [from Eq. (3)] and ε = 0.3453 is a numerical factor determined using
the following fitting protocol. Wind tunnel experiments were first performed using four smooth, rigid cylinders of
diameters D = {1.90, 3.81, 6.35, 7.62} cm, in the range of Reynolds number, 2.5 < Re [104] < 15. The results of these
experiments are shown in Fig 5.

Throughout this range of Re, our smooth cylinders, unlike the grooved samples, remained in the subcritical regime
(i.e. prior to the drag crisis), where the drag coefficient for a smooth cylinder is well-known to be 1.2 [7]. As expected,
for all the diameters tested experimentally, the C̄d calculated through Eq. (3) were consistently above this classic value.
We then took the experimental data for C̄d(Re), displayed as the solid symbols in Fig. 5, and calculated Cd through
Eq. (4), while taking ε as a free fitting parameter. In the fitting procedure, we minimized the difference |〈C̄d〉 − 1.2|,
using the fminsearch algorithm in Matlab [25], where 〈·〉 represents averaging over the full Re range. In the fitting
procedure, the uncorrected drag coefficients of all of the cylinders were considered simultaneously in order to attain
a single value of ε that applied to all the samples by minimizing the total difference from the expected classic value
of 1.2. This procedure yielded ε = 0.3453. The open symbols in Fig. 5 represent the drag coefficients for each sample
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FIG. 5. Drag Coefficient, Cd, versus Reynolds number, Re, for smooth cylinders of different diameters and thus blockage ratios
ranging from 1.90 < D [cm] < 7.62 and 0.0625 < β < 0.25, respectively. The solid black corresponds to the classic curve for
a smooth cylinder [7]. The solid symbols are the uncorrected experimental results, and the open symbols are the corrected
results using Maskell’s theory [24] with ε = 0.3453, which was determined using the procedure described in the text.

when this particular value of ε is used for the blockage correction. As a result all four cylinders used in this calibration,
upon correction, exhibited the same value of Cd ≈ 1.2. For the remainder of this study, we will report aerodynamic
drag coefficients corrected through Eq. (4), with this specific value of ε, to take blockage effects into account.

B. Aerodynamic drag coefficient versus Reynolds number for the fixed grooved samples

In Fig. 6a, we plot a family of curves of the measured (and corrected for blockage effects) drag coefficient, Cd, as a
function of Reynolds number, Re, for a sample with N = 24 grooves. The curves represent the sample in several fixed
states with normalized groove depth in the range 0 ≤ d̄ ≤ 0.093, at equally spaced increments of d̄ = 0.0072. The
classical results for smooth cylinders by Wieselsberger [7] are also plotted (solid black line). For this smooth cylinder
case, in the range of 2 ≤ Re [104] ≤ 20, the drag coefficient is constant, at 1.2. The onset of the drag crisis occurs
at Re ≈ 2 × 105, after which Cd drops dramatically for increasing Re until it reaches the minimum of Cd = 0.3 at
Re = 5× 105. Hereon, we refer to the lowest value of the drag coefficient and the critical Reynolds number at which
it occurs as C∗

d and Re∗, respectively.
For the shallowest groove depth (d̄ = 0), the drag coefficient in the subcritical regime decreases slowly from

Cd = 1.24 to 1.17 over the range 2.5 ≤ Re[104] ≤ 7. This indicates that in the subcritical regime, the drag on
the samples starts slightly higher than that on a smooth cylinder, presumably due to the slightly non-circular cross
section. The fixed sample also deviates from the smooth cylinder in terms of the value of Reynolds number for the
onset of the drag crisis: Re = 7 × 104 for the fixed grooves sample with d̄ = 0, and Re = 20 × 104 for the smooth
cylinder. For this fixed case, past the initiation of the drag crisis, Cd decreases for increasing Re, but never reaches a
minimum. This means that for the fixed groove depth of d̄ = 0, the critical Reynolds number is above the maximum
Reynolds number that we could explore experimentally, Re∗ > 1.5× 105.

As the groove depth is systematically increased, the dependence of drag coefficient versus Reynolds number changes
dramatically. Focusing on d̄ = 0.043, the drag crisis begins at approximately Re = 2.75× 104 and the drag coefficient
drops sharply until reaching a minimum drag coefficient of C∗

d = 0.75, at Re∗ = 4.85× 104. As the Reynolds number
is increased further, the drag coefficient increases until asymptoting at Cd = 0.9. For experimental runs with deeper
grooves, e.g. d̄ = 0.093, the Cd(Re) curve is starkly different from the cases with shallower grooves. The drag
coefficient first increases monotonically with Re, but eventually asymptotes to Cd = 1.1. This behavior points to the
fact that for this particular value of the groove depth (d̄ = 0.093), the critical Reynolds number is lower than the
lower bound of the available experimental range, i.e. Re∗ < 2.5 × 104). While the curves for the extreme values of
d̄ appear to take on a very different shape than those for smaller d̄, it is likely that, if the experimental range of Re
could be expanded to both lower and higher bounds, then all the samples would show a clear subcritical, critical,
supercritical and transcritical regime.

The above results (for N = 24 grooves) indicate that as d̄ increases, Re∗ decreases, whereas C∗
d increases. This
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trend also holds for samples with different number of grooves. In Fig 7a, we plot C∗
d versus d̄, for samples with

N = 14, 16, 20 and 24 grooves. For all of these cases, C∗
d increases with increasing d̄. Moreover, for a given value

of d̄, samples with increasing N exhibit a decreasing value of C∗
d . Note that, even though C∗

d . 0.9 for all the data
shown in Fig 7a, this is not necessarily the absolute maximum value of the C∗

d for these samples since only curves with
a well-defined minimum were considered in our analysis. As described above for the case with (N, d̄) = (24, 0.093),
samples with grooves deeper than those plotted in Fig 7 exhibit a monotonically increasing Cd with Re, without a
clear minimum (the drag crisis occurs below the experimentally available range).

Fig. 7b shows the critical Reynolds number as a function of groove depth, for samples with different values of N .
We find that Re∗ decreases with d̄ for all cases. It is interesting to note that while there does not seem to be a trend
with N , the data for each sample is consistent with a power-law scaling, Re∗ ∼ d̄−0.5, as is made more clear in the
double-logarithmic plot in the inset of Fig. 7b.

The results presented thus far for the C∗
d(d̄) and Re∗(d̄) behavior are in agreement with the classic work of Achen-

bach [9] on the effect of surface roughness on drag coefficient for smooth cylinders. In his seminal studies, cylinders
with different levels of roughness were fabricated by gluing sand grains of different sizes to the surface of cylinders. His
studies defined a roughness coefficient as ks/D, where ks is the sand-grain roughness and D is the cylinder diameter.
The results showed that increasing the roughness coefficient decreased the critical Reynolds number, and increased
the minimum drag coefficient [9]. In our experiments the groove depth is analogous to the sand-grain roughness.
For sake of comparison with Achenbach’s data, Figs. 7c and 7d show C∗

d(d/D) and Re∗(d/D), respectively. Both
Achenbach’s work [9] and our own, demonstrate that at each Reynolds number there is a specific groove depth (or
roughness in Achenbach’s case) which minimizes drag. However, unlike Achenbach’s work, which required a separate
sample for each value of roughness, we can obtain obtain a family of curves for different groove samples with a single
sample. This makes it possible to more readily and systematically gather data for a large number of surface shapes.
Being able to explore a larger number of groove depths allowed for the determination of the drag minimizing groove
depth at each value of Re. This relationship will be leveraged next to actively control the sample, such that, given
variable wind loading conditions, the grove depth can be automatically varied to minimize the aerodynamic drag.

C. Minimal aerodynamic drag from active pneumatic control of the surface deformation

The active system used to minimize the drag under changing conditions involved combining all of the results
presented thus far. First, in Section IV B, we determined the groove depth which minimized the drag coefficient,
at each Reynolds number. To set the groove depth to the optimal value, the corresponding internal pressure was
determined according to the relationships found in Section III. Combining these we find the internal pressure required
to minimize Cd at each Reynolds number. Therefore, an experimental control system was developed to actively change
the surface morphology to minimize the drag coefficient. This system used the wind velocity data measured by the
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FIG. 6. Drag Coefficients, Cd, versus Reynolds number, Re, for grooved cylinders at increasing values of depressurization
(and consequently increasing normalized groove depth, d̄). Solid black line correspond to the result for a smooth cylinder
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pitot tube (and therefore Re) and then employed the relationship described above to set ∆p in the sample to target
the drag minimizing value.

The green squares in Fig. 6a show experimental data obtained using this active drag minimizing mechanism,
demonstrating that the drag coefficient can be reduced significantly and consistently when compared to the fixed
surfaces. This minimal behavior is achieved by essentially surfing the wave of minimum drag coefficient C∗

d(Re). As
such, the behavior of the active sample is a lower bound envelope of all of the fixed samples for different values of d̄.
Across the full range of Reynolds number explored (2.5 ≤ Re [104] ≤ 15), the drag coefficient of the active samples
decreases monotonically from Cd = 0.90 to 0.54, which is in stark contrast to the highly non-monotonic behavior of
the fixed samples (due to the presence of the drag crises).

Fig. 6b reproduces the data in Fig. 6a (for the active sample with N = 24), but now also adding the results for
the active samples with N = 14, 16, and 20. For clarity, the Cd(Re) curves of the corresponding static samples have
not been included. Both active samples with N = 20 and N = 24 exhibit similar behavior in which there is a
steady monotonic decrease in Cd with increasing Re. For the active sample with N = 16 the relationship Cd(Re) is
less smooth than the other samples. Moreover, for lower Reynolds numbers (around 2.5 < Re[104] < 6), the drag
coefficient for this N = 16 case is higher than the samples with a higher number of grooves. Reducing the number
of grooves further to N = 14, the relationship Cd(Re) becomes even less smooth and the drag coefficient is higher
across the full range of Re. Given this, larger values of N seem to enhance the performance of the samples up to a
point, beyond which increasing N has no effect.

It is important to remember that the initial state of each sample is an N -sided polygon due to the fact that the
latex film is stretched over the rigid acrylic skeleton. When N is sufficiently large, the geometry is closer to a rough
cylinder, with a roughness that can be pneumatically tuned. However, when N is small, such as in the case of N = 14,
the geometry becomes far too discrete for the system to behave as a rough cylinder. We believe that this is the reason
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why the N = 14 active sample has a Cd(Re) behavior that is significantly less smooth than the other samples with
more grooves.

V. CONCLUSION

In summary, we have experimentally investigated the aerodynamic performance of morphable grooved cylinders,
whose surface topography can be varied through pneumatic actuation. We focused on how the dependence of the
aerodynamic drag of samples with different groove depth and numbers, as a function of the velocity of the incoming
flow (in high Reynolds number conditions). The surface topography of each sample, namely the depth of the grooves,
could be systematically and dynamically varied by applying a pressure differential across the outer latex shell.

A series of mechanical experiments, combined with finite element simulations, demonstrated that the groove depth
varied linearly on the pressure differential. Moreover, nondimensionalizing the groove depth yield a collapse of the
data into a linear master curve, independently of the number of grooves. This master curve was later used as a design
guideline and, part of a control system, to set the groove depth, on demand.

Our morphable cylindrical samples were then systematically tested in wind tunnel experiments. First, we tested
samples with fixed grooves (i.e., setting and then holding ∆p constant for the full sweep of Reynolds number, during a
single experimental run). These experiments showed that the drag coefficient, Cd, versus Reynolds number, Re, curves
depended strongly on groove depth. These results are in agreement with classic experiments on rough cylinders [9],
albeit with our added advantage of being able to systematically and precisely vary groove depth with a single sample.
For samples with deeper grooves, the drag crisis occurs at lower values of the critical Reynolds number, Re∗, and with
a higher value of the minimum drag coefficient, C∗

d .
From these experiments with fixed grooves, we determined the optimal groove depth for a given Reynolds number.

With this information at hand, we then introduced an active control system that sensed the incoming wind speed and
set the corresponding optimal groove depth to minimize the aerodynamic drag. We demonstrated that the actively
morphable samples exhibited a drag that was consistently and significantly lower than the fixed sample counterparts,
decreasing monotonically from Cd = 0.90 at Re = 2.5× 104 to Cd = 0.54 at Re = 15× 104. This monotonic behavior
is in contrast with the strongly non-monotonic behavior of rough cylinders, or samples with fixed groove depth.

It should be noted that since we use a pneumatic system to control our samples, the pressure field on the surface
of the samples resulting from the flow could potentially affect the geometry of the latex membrane in the specimens.
However, throughout all of our experiments, the maximum stagnation stagnation pressure is at most 710 Pa, and
this value is only reached at the extreme upper limit of the Reynolds numbers explored. Given that the pneumatic
loading of the samples involves a pressure differential that is significantly higher (typically higher ∆p > 1 kPa) than
the stagnation pressure, we assumed that the pressure imposed by the flow field has effectively no effect in modifying
the resultant geometry of the sample.

We believe that our active mechanism for aerodynamic drag reduction opens exciting opportunities for applications
in bluff structures were aerodynamic performance under variable flow conditions is a primary concern for structural
resilience or fuel efficiency. In this work, the closest that the samples could come to a smooth cylinder was a polygonal
shape (even if closer to a circular cross-section for increasing values of N). Future work could explore samples that
are able to reach a smooth cylinder, and thus recover the classical results while also having the functional benefits
that we have presented. Additionally, building on our proof-of-concept investigation, future studies should address
more complex geometries beyond the cylinders that we have studied. Moreover, specific applications may call for
modes of actuation beyond pneumatics, such as particle-enhanced soft composites [26], shape memory polymers [27],
or electroactive materials [28].
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