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We discuss two aspects of turbulent Rayleigh-Bénard convection (RBC) on the basis of high-
resolution direct numerical simulations in a unique setting; a closed cylindrical cell of aspect ratio of
one. First, we present a comprehensive comparison of statistical quantities such as energy dissipation
rates and boundary layer thickness scales. Data are used from three simulation run series at Prandtl
numbers Pr that cover two orders of magnitude. In contrast to most previous studies in RBC
the focus of the present work is on convective turbulence at very low Prandtl numbers including
Pr = 0.021 for liquid mercury or gallium and Pr = 0.005 for liquid sodium. In this parameter range
of RBC, inertial effects cause a dominating turbulent momentum transport that is in line with highly
intermittent fluid turbulence both in the bulk and in the boundary layers and thus should be able
to trigger a transition to the fully turbulent boundary layers of the ultimate regime of convection
for higher Rayleigh number. Secondly, we predict the ranges of Rayleigh numbers for which the
viscous boundary layer will transition to turbulence and the flow as a whole will cross over into
the ultimate regime. These transition ranges are obtained by extrapolation from our simulation
data. The extrapolation methods are based on the large-scale properties of the velocity profile.
Two of the three methods predict similar ranges for the transition to ultimate convection when
their uncertainties are taken into account. All three extrapolation methods indicate that the range
of critical Rayleigh numbers Rac is shifted to smaller magnitudes as the Prandtl number becomes
smaller.

PACS numbers: 47.27.De, 47.27.Ak

I. INTRODUCTION

The structure and dynamics of the viscous and thermal boundary layers near the cooled and heated plates in thermal
convection flow is significantly altered by the dimensionless Prandtl number Pr ≡ ν/κ of the working fluid [1, 2]. For
very low Prandtl numbers, momentum diffusion, with the kinematic viscosity ν being the diffusion constant, is much
smaller than temperature diffusion measured by the constant κ. Thus the thermal boundary layer is much thicker than
the viscous one. This regime is of particular interest in geo- and astrophysical convection flows. Around the solid inner
core of the Earth, which is mostly an iron-nickel alloy, a liquid outer core exists that is composed of molten metals at
high pressure and Pr ∼ 10−1 [3]. In solar and stellar convection the heat transport is supported by radiative processes
resulting in enhanced temperature diffusion and thus Prandtl numbers Pr . 10−3 in the Sun [4, 5] or Pr . 10−8 in stars
[6–8]. The majority of numerical studies of these convection flows operate at Prandtl (or turbulent Prandtl) numbers
Pr ∼ 0.1 to 1 in order to incorporate further physical processes of strong rotation and compressibility or magnetic
fields into the (spherical) models [4, 9]. Direct numerical simulations studies of turbulent convection below Pr . 0.01
are thus very rare. Low-Prandtl-number convection is also related to new methods of energy harvesting in liquid metal
batteries at Pr ∼ 10−2 [10–12]. In contrast, the thermal boundary layer is well embedded inside the viscous boundary
layer for very large Prandtl number where temperature diffusion is much smaller than momentum diffusion.
This large difference in the thicknesses of both interacting boundary layers has implications on the near-wall dynamics

and eventually on a transition to turbulence inside these boundary layers as discussed first by Kraichnan [13] in his
landmark work. When the Rayleigh numbers are sufficiently large at a given Prandtl number, near-wall coherent
structures, such as thermal plumes for the temperature field and streamwise vortices for the velocity field, trigger
turbulent fluctuations of both fields and change the character of the boundary layers into a transitional one. Eventually
these fluctuations fill the whole boundary layer region and the boundary layers are in a fully developed turbulent state.
This transition to turbulence can be expected to proceed in a different way than in a standard isothermal channel flow
or flat plate boundary layer [14, 15] for the following two reasons:
(i) In Rayleigh-Bénard convection (RBC) flows a well-defined canonical mean flow is missing, in particular in closed

rectangular or cylindrical convection cells as used in all laboratory experiments. The mean flow consists then of a
large-scale circulation (LSC) in form of a roll that breaks the symmetry and shows a complicated temporal sloshing and
oscillation dynamics [16–18]. The LSC divides the boundary plates at the top and bottom into three regions, an impact
region, a high-shear central region and an ejection region at approximately the diametral side of the impact region (see
Fig. 1 for this cylindrical geometry). This dynamics can be partly compensated by a rotation of the coordinate frame
into the instantaneous direction of this large-scale circulation flow, plane by plane starting from the wall [19]. In this
way a classical Reynolds-like decomposition of the turbulent fields is again possible when the analysis is restricted to
the central region.
(ii) The temperature field is an active scalar. Therefore thermal plumes (which are unstable fragments of the thermal

boundary layer that detach from the wall) will affect the fluid motion and enhance the velocity field fluctuations. Since
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FIG. 1: Snapshot of the boundary layer structure for Ra = 107 and Pr = 0.005. We display the field lines of the skin friction
field si = ∂ui/∂x3 at x3 = 0 with i = 1, 2 in yellow. They provide a two-dimensional blueprint of the velocity field near the
plate. Colored contours correspond to the magnitude of the vorticity component ω3 = ǫ3jk∂uk/∂xj (with j, k = 1, 2) taken in a
horizontal plane at z = 0.0034 which corresponds to 2δu (see eq. (9)). The magnitude of ω3 is indicated by the colorbar. The
three main regions of the boundary layer are also indicated. View is from above the boundary layer.

these plume ridges have a typical cross section that corresponds to the thermal boundary layer thickness, for Pr ≫ 1
these structures should have a small impact on the near-wall flow. Low Prandtl number convection is characterized
by fast diffusion time scales (since τd ∼

√
RaPr) and much coarser plume structures. These plume structures turn

out to be very efficient drivers of fluid turbulence in the convection flow [20] and therefore convective turbulence at
very low Prandtl number is dominated by inertial fluid motion. Thus convective turbulence at low Prandtl numbers
can be expected to be susceptible to turbulence transitions in the boundary layers at lower Rayleigh numbers than a
higher-Prandtl number flow.
With these two points in mind, in this paper we will discuss the boundary layer dynamics for 5×10−3 ≤ Pr ≤ 7×10−1

with a focus on the much less explored parameter regime of smaller Prandtl numbers. We have a comprehensive set
of high-resolution direct numerical simulation (DNS) of three-dimensional turbulent convection flows, all obtained in
exactly the same geometry, a closed cylindrical cell at aspect ratio Γ = 1, i.e., cell diameter D equals cell height H .
The data consist of three series of Prandtl numbers Pr = 0.7 for air, Pr = 0.021 for mercury and Pr = 0.005 for liquid
sodium, the latter of which corresponds to the smallest value that can be obtained in controlled laboratory experiments.
In the case of liquid sodium, our largest Rayleigh number value of Ra = 107 exceeds those that have been obtained
in the experiments [21] for cells with Γ & 1. The situation is different for convection in mercury at Pr = 0.021 where
Rayleigh numbers up to Ra = 1011 have been obtained in laboratory experiments which are not accessible in DNS.
These high Rayleigh numbers correspond to Reynolds numbers of the turbulent flow of Re ∼ 106 [22].
Our study summarizes global measures of transport of heat and momentum as well as dissipation. We discuss trends

of characteristic boundary layer scales with respect to Rayleigh number and compare different spatial intermittency
measures of the velocity boundary layer. These measures require the evaluation of velocity and temperature derivatives
inside the boundary layers which are not accessible in laboratory experiments, in particular for larger Rayleigh numbers.
Their extrapolation to higher Rayleigh numbers allows us to predict a range of Rayleigh numbers beyond which the
transition to turbulent boundary layers might be present and convection crosses over into Kraichnan’s ultimate regime
[13]. This transition is expected to be subcritical just as for isothermal boundary layers and thus a range of Rayleigh
numbers for the transition can be expected rather than a sharp threshold [14]. Our ranges of Rayleigh numbers follow,
however, from the uncertainty of the extrapolation. We discuss the numerical method in the next section. This is
followed by our analysis of global transport and of boundary layer scalings. We then summarize our results and discuss
possible future directions.

II. SIMULATIONS

We solve the three-dimensional equations of motion in the Boussinesq approximation. They couple the velocity field
ui(xj , t) with the temperature T (xj , t). The indices i, j, k = 1, 2, 3, and the Einstein summation convention will be used
in this work. The equations are made dimensionless by using height of the cell H , the free-fall velocity Uf =

√
gα∆TH
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FIG. 2: Simulation data record plotted in the parameter plane which is spanned by Ra and Pr. The blue shaded area of the
parameter plane for Pr > 0.16 is accessible for gases and/or binary gas mixtures [26]. The red shaded areas indicate the range of
Rayleigh numbers which are covered by laboratory experiments in cases of liquid mercury and liquid sodium for cells with Γ ∼ 1.
These are the experiments by Glazier et al. [22] up to Ra = 8× 1010 for mercury and Horanyi et al. [21] up to Ra = 5× 106 for
sodium. Three of our simulations are on a line of constant Grashof number Gr = Ra/Pr which has been discussed in [20]. The
constant Gr data points are connected by the inclined red line. A summary of further low-Prandtl-number experiments is found
in [25].

and the imposed temperature difference ∆T . The equations contain the three control parameters: the Rayleigh number
Ra, the Prandtl number Pr and the aspect ratio Γ = D/H = 1 with the cell diameter D. The equations are given by

∂ui

∂xi
= 0 , (1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

√

Pr

Ra

∂2ui

∂x2
j

+ Tδi3 , (2)

∂T

∂t
+ uj

∂T

∂xj
=

1√
RaPr

∂2T

∂x2
j

, (3)

where

Ra =
gα∆TH3

νκ
, Pr =

ν

κ
. (4)

The variable g stands for the acceleration due to gravity, α is the thermal expansion coefficient, ν is the kinematic
viscosity, and κ is thermal diffusivity. No-slip boundary conditions for the fluid are applied at all walls. The side walls
are thermally insulated and the top and bottom plates are held at constant dimensionless temperatures T = 0 and 1,
respectively.
The equations are numerically solved by the Nek5000 spectral element method package which has been adapted to

our problem [23, 24]. The cylindrical cell is composed of spectral elements. On each element, the turbulent fields are
expanded in Lagrangian interpolation polynomials of order N in each space direction. This sums up to more than 6
million spectral elements and approximately 10 billion mesh cells (see Tab. I) which require more than half a million
Message Passing Interface tasks at the Blue Gene/Q supercomputers JUQUEEN in Jülich (Germany) and Mira at
Argonne National Laboratory (USA). As seen in the table, a particular challenge are the largest Rayleigh number runs
at the lowest Prandtl number which require small integration time steps due to the high diffusivity of the temperature
field. For example, run 19 consumed 22 million processor core hours for runs with 131,072 Message Passing Interface
tasks while advancing for 11 free-fall times Tf . It is clear that a longer time series would be desirable.
Fig. 2 summarizes all simulation data sets and relates them to ranges of Rayleigh numbers that have been reached in

the laboratory in a comparable geometry and Prandtl number. The figure displays also the range of Prandtl numbers
that are accessible to gases and binary gas mixtures and thus to optical imaging technology.
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Run Pr Ra Ne N Nbl Nu Re Reτ Snapshots Runtime

1 0.7 3× 105 3,520 11 27 5.80 ± 0.03 116 ± 1 – 401 695

2 0.7 5× 105 3,520 11 24 6.90 ± 0.13 151 ± 2 – 401 682

3 0.7 7× 105 3,520 11 20 7.78 ± 0.05 179 ± 1 – 407 682

4 0.7 106 30,720 7 25 8.65 ± 0.06 214 ± 6 5 300 542

5 0.7 5× 106 30,720 7 17 13.79 ± 0.17 483 ± 1 7 340 459

6 0.7 107 30,720 11 21 16.77 ± 0.01 675 ± 3 8 230 177

7 0.7 5× 107 30,720 13 18 25.8 ± 0.3 1, 490 ± 40 12 192 93

8 0.7 108 256,000 11 27 31.4 ± 1.3 2, 070 ± 60 14 84 79

9 0.7 109 875,520 11 18 63± 4 6, 240± 140 24 92 72

10 0.7 1010 2,374,400 9 8 127± 6 19, 300 ± 900 48 41 48

11 0.021 3× 105 256,000 7 54 4.29 ± 0.12 1, 830 ± 30 18 68 92

12 0.021 106 256,000 9 48 5.43 ± 0.03 3, 030 ± 40 24 150 131

13 0.021 107 875,520 11 26 10.11 ± 0.05 8, 450± 100 35 206 29
∗14 0.021 108 2,374,400 13 18 19.1 ± 1.3 22, 900 ± 300 48 27 12
∗15 0.021 4× 108 6,272,000 11 42 30.8 ± 1.7 46, 000 ± 600 76 75 6

16 0.005 3× 105 256,000 9 43 3.26 ± 0.02 4, 620 ± 20 43 29 30

17 0.005 106 875520 9 39 4.45 ± 0.07 8, 290 ± 40 49 63 39

18 0.005 2.38× 106 2,374,400 11 30 5.66 ± 0.09 12, 800 ± 120 65 25 8
∗19 0.005 107 5,644,800 9 148 8.0± 0.7 20, 800 ± 160 54 19 11

TABLE I: Parameters of the different spectral element simulations. We display the Prandtl number Pr, the Rayleigh number
Ra, the number of spectral elements Ne, the polynomial order of the expansion in each of the three space directions, the number
of mesh cells inside the thermal boundary layer Nbl, the Nusselt number Nu, the Reynolds number Re, the friction Reynolds
number Reτ the number of statistically independent snapshots, and the total runtime in units of the free-fall time Tf = H/Uf .
The runs with one asterisk are either new or have been run for a longer time to gather a better statistics in comparison to [19, 25].
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FIG. 3: Global turbulent transport and dissipation laws versus Rayleigh number. Left: Scaling laws of turbulent heat transfer,
Nu(Ra), for the three series of DNS. The inset compensates all plots with respect to the scaling exponent for convection in air.
Middle: Scaling laws of turbulent momentum transfer, Re(Ra). The inset replots data and compensates the series with respect to
the scaling for convection in air. Right: Skin friction coefficient cτ determined over the inner plate section with r ≤ 0.3 denoted
with an index b as a function of the Rayleigh number. Open circles correspond to Pr = 0.7, asterisks to Pr = 0.021 and filled
diamonds to Pr = 0.005 in all panels.

III. GLOBAL TURBULENT TRANSPORT AND DISSIPATION

In response to the three input parameters Ra, Pr and Γ, turbulent heat and momentum fluxes are established in an
RBC flow. The turbulent heat transport is determined by the dimensionless Nusselt number which is given by

Nu = 1 +
√
RaPr〈u3T 〉V,t . (5)
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Expression 〈·〉V,t stands for a combined volume and time average. The mean thickness of the thermal boundary layer
is given by

δT =
1

2Nu
. (6)

The left panel of Fig. 3 summarizes the global turbulent transport laws of heat obtained for the three series of DNS.
We fit the data to the following scaling laws:

Nu =











(0.13± 0.02)Ra0.26±0.01 : Pr = 0.005

(0.13± 0.04)Ra0.27±0.01 : Pr = 0.021

(0.15± 0.01)Ra0.29±0.01 : Pr = 0.700

(7)

A decrease of the scaling exponent from 0.29 for convection in air to 0.26 in sodium is observed. Theoretical predictions
for the scaling exponents at different Prandtl numbers are found in the range between 1/3 and 1/4. The exponent of
1/3 would follow from a model that describes thermal boundary layers as being marginally stable, an idea which goes
back to Malkus [27]. The scaling theory of Shraiman and Siggia [28] builds on a turbulent boundary layer and gives
an exponent of 2/7 for Pr > 1. Our exponent of 0.29 for Pr = 0.7 is consistent with the Grossmann-Lohse theory that
however predicts no pure algebraic scaling [1, 29]. An exponent of 1/4 follows from a joint balancing of inertial and
buoyancy term in the momentum balance together with a balance of advection and diffusion terms in the advection-
diffusion equation for temperature [30]. It is also the result of an asymptotic model for steady inertial convection in two
dimensions by Busse and Clever which is formulated for the limit of very small Prandtl numbers [31]. In both models
[30, 31] of low-Prandtl convection, it is assumed that the fluid turbulence is highly inertial. The compensated plots in
the insets of both panels show that this scaling is not perfect, as it has been found in many other studies of thermal
convection. When the data of run 19 are excluded from the fit, the exponent for the sodium series becomes 0.265± 0.01
as given in [25]. The exponents are found in the same range as laboratory experiments in air [2] and in mercury or
gallium [22, 32, 33] as well as in sodium [21].
The turbulent momentum transport is expressed by the Reynolds number Re which is defined as

Re = urms

√

Ra

Pr
with urms =

√

〈u2
i 〉V,t , (8)

The mean thickness of the viscous boundary layer is frequently given by Blasius-type relation

δu =
a√
Re

, (9)

where a < 1 is a free parameter (here a = 1/4 as in [34]). The following scaling laws can be derived from our data (see
mid panel of Fig. 3):

Re =











(21± 9)Ra0.43±0.03 : Pr = 0.005

(6.5± 0.6)Ra0.45±0.01 : Pr = 0.021

(0.24± 0.01)Ra0.49±0.01 : Pr = 0.700

(10)

Again, the trend is very systematic with an exponent that decreases for decreasing Prandtl number and with a prefactor
that is systematically enhanced confirming the high level of developed fluid turbulence in the cell. If we exclude run
19 from the fit to the data for the series of convection in sodium, an exponent of 0.49± 0.01 would follow [25]. For the
turbulent momentum transfer fewer (direct) measurements are available. In nearly all cases the temperature signal is
used to determine a Reynolds number on the basis of a characteristic frequency, e.g. in Ref. [35]. Our scaling exponent
for mercury agrees with the experiments [35] as does that for air [36].
Finally it is worth noting that we observe fairly constant slopes for all Reynolds versus Rayleigh data the mid panel of

Fig. 3, and particularly for Pr=0.7 which covers Reynolds numbers that span two orders of magnitude. For all Re the
bulk flow is turbulent, and the boundary layer that can be characterized by an increasing level of turbulent fluctuations
as Ra increases, but is still always below the transition to a fully turbulent boundary layer.
Most of the kinetic energy is dissipated in the boundary layers. A global measure of the dissipative losses in shear

flows is the skin-friction coefficient (see e.g. [37]) which is given in the present flow [25] in dimensionless form by

cτ =
2〈τw〉b,t
u2
rms

. (11)

Here, 〈τw〉b,t is the mean wall shear stress. This stress field is connected with the friction velocity uτ via 〈τw〉b,t = u2
τ .

Following [19], the friction velocity is given by

uτ (x3 = 0) =
4

√

Pr

Ra

〈





〈

∂ui

∂x3

〉2

b





1

4 〉

t

, (12)
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FIG. 4: Snapshots of the temperature field in the top row and of the wall shear stress field in the bottom row. (a,d) Run 19
at Ra = 107 and Pr = 0.005. (b,e) Run 14 at Ra = 108 and Pr = 0.021. (c,f) Run 10 at Ra = 1010 and Pr = 0.7. All three
runs have a comparable Reynolds number Re ≈ 2 × 104 as seen in Tab. I. The interior plate section is always highlighted.
The corresponding color scales are the same in the three cases. The cross section planes for T are taken at z = δT /2 with
δT = 1/(2Nu) being the thermal boundary layer thickness. The ratio of the thicknesses is approximately 1 : 7 : 16 when
convection in sodium, mercury, and air are compared. The instantaneous wall shear stress field can be derived from Eqns. (11)

and (12) as τw(x1, x2) = Gr−1/2|∂3ui| with Grashof number Gr = Ra/Pr and summation over i = 1, 2. View is from below in
all figures.

with i = 1, 2. Fig. 3 (right) summarizes the results for cτ for all simulation data. The following algebraic power laws
have been fitted to the recent data sets.

cτ =











(0.2± 0.1)Ra−0.12±0.05 : Pr = 0.005

(0.7± 0.2)Ra−0.18±0.02 : Pr = 0.021

(10± 1)Ra−0.26±0.01 : Pr = 0.700

(13)

Note that this calculation method differs from the one in [25] which alters the scaling laws slightly. Without run 19
the power law fit for the series at Pr = 0.005 is cτ = (0.78 ± 0.01)Ra−0.23±0.01. We have chosen the present method
in order to conduct the analysis consistently with the subsequent sections where the logarithmic law of the wall will be
discussed. While a laminar isothermal flat plate boundary layer would approximately scale as cτ ∼ Ra−1/4, a turbulent
boundary layer would follow cτ ∼ Ra−1/10 for larger Reynolds numbers if we simply translate Re ∼

√
Ra [37]. We

observe that the magnitude of the scaling exponent for air coincides with the one for a laminar boundary layer and that
this exponent increases for sodium to almost a fully turbulent boundary layer scaling. This crossover is caused by the
increasing discrepancy between the thicknesses of thermal and viscous boundary layers as Pr falls and the fact that the
temperature is an active scalar that affects the fluid motion near the walls. In Fig. 4, we plot three horizontal cuts well
inside the corresponding thermal boundary layer for runs 10, 14 and 19. All three simulations result in a comparable
Re ≈ 20, 000. Bright contours stand for the detachment zones of thermal plumes. Coarse temperature field contours
(see left panel for sodium) are then in line with regions across which wall shear stress filaments vary only moderately.
This can be seen in the bottom row of the same figure. The region containing detaching plumes is largest in the sodium
case and results in a reduced drop in the friction coefficient with respect to Ra.
Another global dissipation measure is the volume mean of the kinetic energy dissipation rate. The corresponding
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FIG. 5: Mean kinetic energy dissipation rate as a function of the Rayleigh and Prandtl numbers. Left: Mean kinetic energy
dissipation rate 〈ǫ〉V,t obtained in the full cylinder volume V . The scaling laws that were fitted to the data results in the following
scaling exponents: −0.20 ± 0.01 for Pr = 0.7 (open circles), −0.20 ± 0.01 for Pr = 0.021 (asterisks) and −0.21 ± 0.03 for
Pr = 0.005 (diamonds). Middle: Mean dissipation rates in a subvolume Vb centered in the bulk away from all walls, 〈ǫ〉Vb,t. This
results in the following scaling exponents: −0.19 ± 0.01 for Pr = 0.7 (open circles), −0.15 ± 0.05 for Pr = 0.021 (asterisks) and
−0.03 ± 0.08 for Pr = 0.005 (diamonds). Without run 19 the exponent is −0.19 ± 0.02 for Pr = 0.005. The subvolume in the
bulk takes 22% of the total cell volume. Right: Replot of the mean kinetic energy dissipation rates in the bulk in versus Reynolds
number to demonstrate ansatz (16).
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field is defined as

ǫ(xk, t) =
1

2

√

Pr

Ra

(

∂ui

∂xj
+

∂uj

∂xi

)2

. (14)

The kinetic energy balance in a statistically stationary regime gives rise to an exact relation for the mean kinetic energy
dissipation rate [24]

〈ǫ〉V,t =
Nu− 1√
RaPr

. (15)

In Fig. 5(a), we plot the mean kinetic energy dissipation rate for the three DNS data series obtained from a full volume
and time average of Eqn. (14). It is observed that the power law exponent of the scaling of the dissipation rate
with respect to Rayleigh number is about the same for all series and varies between 0.20 and 0.21. At a given Ra,
the magnitude of mean kinetic energy energy dissipation is enhanced as Pr decreases which is in line with a growing
relevance of the inertial effects of the fluid turbulence. Following Grossmann and Lohse [38], we decompose the mean
kinetic energy dissipation rate into a boundary layer (bl) and bulk (bu) contribution. Dimensional analysis gives the
following Reynolds number dependencies of both contributions of the mean dissipation rate with a physical dimension
that is indicated here with a tilde

〈ǫ̃〉V,t = 〈ǫ̃bl〉V,t + 〈ǫ̃bu〉V,t = c1
ν3

H4
Re

5

2 + c2
ν3

H4
Re3 . (16)

In Fig. 5(b) the mean kinetic energy dissipation rate in the bulk of the cell is displayed. The combined volume-time
average is taken in a cylindrical subvolume Vb in the center of cell that occupies about 22% of the total volume V and



8

is sufficiently far away from all boundary layers for all Ra and Pr, including those at the sidewalls. It is seen that
the dissipation rate magnitude is significantly smaller in the bulk, by a factor of two or larger. The magnitude of the
power law exponents that were fitted to the data are slightly smaller and decrease with decreasing Pr. If we take the
Reynolds number based on the free-fall velocity, Ref = UfH/ν =

√

Ra/Pr, eq. (16) translates to

〈ǫ〉V,t
√

(Pr/Ra)3
= c1Re

5

2 + c2Re3 . (17)

Figure 5(c) replots the mean dissipation rates in the bulk in correspondence with eq. (17) and reproduces a cubic scaling
with the Reynolds number that is taken from Tab. I.
Following from Tab. II of Ahlers et al. [1], our data correpond to regime IIℓ for which kinetic energy dissipation

in the bulk and thermal dissipation in the boundary layer dominate, respectively. In this regime, pure scaling laws
Nu ∼ Ra1/5Pr1/5 and Re ∼ Ra−2/5Pr−3/5 would follow. Our series for the lower Pr trends towards this scaling.
Is is also interesting to plot the ratio of the viscous and thermal boundary layer thicknesses here, which is displayed

in Fig. 6. The ratio is smaller than one for all runs displayed. There is, however, a fairly significant decrease in the ratio
as Prandtl number decreases. The resulting scaling with respect to Rayleigh number is a consequence of the obtained
scaling laws Nu(Ra, Pr) and Re(Ra, Pr) in combination with the definitions (6) and (9). The scaling exponent of the
thickness ratio remains thus nearly unchanged for decreasing Prandtl number. This is a consequence of the fact that
the Nusselt and Reynolds scaling exponents both decrease in magnitude as Prandtl number decreases (see also eqns. (7)
and (10)). For other definitions of thermal and viscous boundary layer thicknesses, and a more systematic comparison
for Rayleigh and Prandtl numbers, see also refs. [25, 49].

IV. TRANSITION TO TURBULENCE IN THE VISCOUS BOUNDARY LAYER

A. Method I: Friction Reynolds number from logarithmic law of wall

In ref. [19], we showed that the viscous boundary layer is characterized by a favorable pressure gradient which is
connected with the LSC flow in the cell. Since this LSC is twisted and obeys a complicated three-dimensional dynamics,
in particular an ongoing change of the orientation, a rotation of the frame of reference into the mean orientation of
the LSC at each plane of constant x3 was suggested. This plane-by-plane rotation, which is done for each snapshot
separately, removes the interior twist of the roll, by compensating for the orientation changes and allows us to define
streamwise and spanwise directions similar to plane wall-bounded shear flows. Details of the transformation can be
found in the appendix. Together with the transformation x̂i = Rijxj , a corresponding transformation for the velocity
components is given as ûi = Rijuj.
Based on the friction velocity (12), we define an inner viscous scale by

ℓτ =

√

Pr

Ra
u−1
τ . (18)

Thus û+
i = ûi/uτ and x̂+

i = x̂i/ℓτ . Note that for Figs. 7 and 10, the instantaneous profiles for û+
i versus x̂+

i are first
found by dividing ûi by the instantaneous uτ and x̂i by the instantaneous ℓτ . Then these profiles are time averaged
(see [19] for more details). We can now define a friction Reynolds number as Reτ = ũτ δ̃∗/ν̃. In dimensionless form this
translates to

Reτ = uτδ∗

√

Ra

Pr
. (19)

The relevant length scale used here is the x3 coordinate of the maximum of the time-averaged velocity profile which is
denoted as δ∗. Thus Reτ differs from the typical definition in a turbulent channel flow (CF) where the half width of the
channel is taken as the characteristic scale. Fig. 7 shows the mean streamwise velocity profile obtained for the interior
plate sections at the top and bottom. The linear relation and the von Kármán law are also indicated together with a CF
Benchmark case for a turbulent boundary layer at Reτ = 180 [39]. The RBC flow results in a friction Reynolds number
of Reτ = 48. The bottom figure replots data on doubly linear axes. For all RBC data sets, the shape of the mean
profile is qualitatively the same. In contrast to a pressure-driven CF, the profile passes through a maximum at x̂3 = δ∗
and decreases to a bulk plateau afterwards. The behavior is thus closer to a turbulent plane wall jet as discussed for
example by George et al. [40].
This calls for a closer inspection. Figure 8 shows typical vertical cuts through the near-wall flow region where we

display the velocity field in a plane along the y-axis (run 19 at the top and run 14 at the bottom of the figure). In
both instances the flow direction is from left to right in the interior section which is indicated by the red double-headed
arrow. The thickness of the BL varies significantly along the downstream direction, and this is caused by detaching
plumes and downwelling from the vigorous bulk turbulence. These processes will prohibit any self-similar downstream
evolution as it is known from evolving turbulent plane wall jets [40]. We have tried without success to collapse the data
after re-scaling by δ∗ and the mean streamwise velocity maximum.



9

FIG. 7: Mean streamwise velocity profile for a turbulent RBC flow (run 14). Top: Plot of the data in inner wall units for
comparison with the logarithmic law of the wall for a turbulent channel flow [39] at Reτ = 180. Profiles have to intersect
(x̂+

3 , û
+
1 ) = (1, 1) which is indicated by solid gray lines. The dashed vertical line at x̂+

3 = 5 separates viscous sublayer and buffer
layer, the dashed line at x̂+

3 = 30 separates the buffer and logarithmic layer. The linear law û+
1 = x̂+

3 and the von Kármán law
û+
1 = k−1 log x̂+

3 + B with the constant k = 0.4 and B = 5.5 are indicated as solid red lines. Bottom: Replot of the data in a
double linear plot, but with the x-axis as x̂3. The dashed vertical line indicates now the thermal boundary layer thickness which
is given by δT = 1/(2Nu).

FIG. 8: Velocity field snapshots inside the thermal boundary layer for runs 14 (bottom) and 19 (top). Vertical cuts are taken
along the x-axis in the top panel and along the y-axis in the bottom panel. All arrows are normalized to one such that only the
flow direction is indicated. The background color stands for the three-dimensional velocity magnitude u = (u2

i )
1/2. Colors range

from u = 0 (white) to u = 0.5 (deep blue). Note the real aspect ratio of this cut is 167:1 and that the viscous boundary layer
thickness is about 1/3 of the displayed height in both cases. We also indicate the interior section b that is taken for most of the
present boundary layer analysis.

Fig. 9 shows the resulting friction Reynolds numbers versus Rayleigh number. The series for Pr = 0.021 and
Pr = 0.7 follow a power law scaling. By means of an extrapolation one can now determine the range of critical Rayleigh

numbers, Ra
(I)
c for which Reτ ≈ 200, i.e., the friction Reynolds number for which the boundary layers in a channel

flow are fully turbulent [41, 42] and for which we would expect a transition into the ultimate convection regime in the
present setup. This friction Reynolds number is reached in the series for convection in air for an intersection point

of Ra
(I)
c (Pr = 0.7) = 5 × 1012, and a range of 1012 ≤ Rac ≤ 2 × 1013 when the error bars of the power law fit to

Reτ (Ra) are incorporated. The upper boundary of this uncertainty range is consistent with the convection experiments

of He et al. [43, 44]. In case of mercury, one obtains an intersection point of Ra
(I)
c (Pr = 0.021) = 1011 and a range

of 5 × 109 ≤ Rac ≤ 4 × 1012. Note that runs 14 and 15 have been run longer for the present analysis which caused a
slightly modified range in comparison to Ref. [19]. The case of liquid sodium is more uncertain. If one includes only

the first three data points in the least squares fit, an intersection point of Ra
(I)
c (Pr = 0.005) = 109 and a range of

107 ≤ Rac ≤ 5 × 1011 results. The scatter becomes even larger when the fourth data point of run 19 is incorporated.
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〈û
+ 1
〉 b
,t
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〈û
+ 1
〉 b
,t
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FIG. 10: Mean streamwise velocity profiles for different Prandtl and Rayleigh numbers (see Tab. I). The maxima
(δ∗/ℓτ , û

+
3 (δ∗/ℓτ )) are indicated as stars. A power law fit to the successive maxima in each series is used to predict the intersection

point of the logarithmic profiles with the von Kármán law. This intersection point is at û+
1 = 134, 129, 83 for Pr = 0.7, 0.021, 0.005,

respectively. In all cases, the profiles taken from the top and bottom plates are included.

The extrapolations show that the crossover range is shifted towards smaller Rayleigh numbers as the Prandtl number
decreases.

B. Method II: Extrapolation of velocity profile maximum

An alternative method is based on the maxima at x3 = δ∗ of the streamwise velocity profiles. In Fig. 10 we
display all mean streamwise velocity profiles and indicate the maxima of the velocity profiles for each data set. A
curve fit through the data is also drawn that intersects the law of the wall at a certain point. The curve fit is
obtained as follows: We fit a power law to the maxima position, δ∗/ℓτ = C1 × Rac1. The procedure is repeated for
û+
3 (δ∗/ℓτ ) = C2 ×Rac2 . The result is the parametric dashed curve that connects the maxima and can be extrapolated

to higher Rayleigh numbers such that the intersection point with the von Kármán law and thus the corresponding

Rayleigh number can be determined. With this procedure we obtain Ra
(II)
c (Pr = 0.005) = 6× 108 and an uncertainty

range of 3 × 106 ≤ Rac ≤ 1012 for convection in liquid sodium. In case of mercury, Ra
(II)
c (Pr = 0.021) = 1010 and an

uncertainty range of 5 × 109 ≤ Rac ≤ 5 × 1010 follows. For convection in air one obtains Ra
(II)
c (Pr = 0.7) = 9× 1011

and an uncertainty range of 1 × 1011 ≤ Rac ≤ 4 × 1012. This method underestimates Ra
(II)
c as is assumed that for

this intersection point, the boundary layer is fully turbulent. However, it may be that the profile needs to overlap with
the von Kármán law for a more substantial region for the boundary layer to be considered fully turbulent. It is seen,
however, that the transition ranges of method II overlap significantly with those from method I. Again the uncertainty
of the series with lowest Prandtl number is largest. The error bars of the power law fits results in the ranges for Rac.
Nevertheless, method II is an appropriate complementary way to obtain transition ranges based on large-scale quantities
such as mean profiles. For completeness we plot δ∗(Ra, Pr) in Fig. 11. While the data for Pr = 0.7 and 0.021 follow
a consistent decrease in magnitude and increase in magnitude of scaling exponent, the data for Pr = 0.005 appears to
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Line styles agree with those from Fig. 9. The vertical lines (same linestyle as data) correspond to the critical Rayleigh numbers
from Tab. II, method II.

be more of an outlier. More data at higher Ra and lower Pr would enable us to better understand this behavior.

C. Method III: Shape Factors

In refs. [45, 46], we obtained the temperature shape factors for Pr = 0.7 and Pr = 0.021. We refine this method and
include the results for Pr = 0.005 here. Following Schlichting [37], we can define a displacement thickness as

du =

∫ δ∗
u
h

0

(

1− 〈uh(x3)〉b,t
[〈uh〉b,t]max

)

dx3 (20)

where δ∗uh
is the x3-location of [〈uh(x3)〉b,t]max. The variable uh =

√

u2
1 + u2

2 is the rms horizontal velocity. Likewise
we can define a displacement thickness for temperature as

dT =

∫ ∞

0

(

1− 〈T (x3)〉b,t
[〈T 〉b,t]mean

)

dx3 (21)

where [〈T 〉b,t]mean is the mean temperature in the bulk. Since the mean temperature profiles are typically not perfectly
constant in the bulk (i.e. there tends to be a temperature gradient, which changes with Rayleigh and Prandtl number),
we only integrate in practice out to 2.5 times the thermal boundary layer thickness, found here by the slope method.
This is the same method used in [45]. In Fig. 12 these displacement thicknesses are plotted as a function of Rayleigh
and Prandtl numbers. In the left panel, one sees that the thermal displacement thickness increases in magnitude as
Prandtl number decreases, and that the scaling exponents systematically decrease, also as Prandtl number decreases.
The opposite is found for the velocity displacement thickness: the magnitude is smaller and the exponent is larger as
Prandtl number decreases. This trend is similar to what was found for the local method of finding boundary layer
thicknesses as presented in Scheel and Schumacher [25], although the exact exponent values differ.
For a laminar boundary layer [47], it is expected that the displacement thickness falls off with Rayleigh number

with an exponent of 1/4, but for a turbulent boundary layer this exponent decreases to 1/10. This displacement
thickness analysis suggests that all of our boundary layers are closer to a laminar BL, with possibly a slight increase
in intermittency as Prandtl number increases for the velocity boundary layer and the opposite trend for the thermal
boundary layer.
A momentum thickness can also be defined for velocity

mu =

∫ δ∗
u
h

0

(

1− 〈uh(x3)〉b,t
[〈uh〉b,t]max

)( 〈uh(x3)〉b,t
[〈uh〉b,t]max

)

dx3 (22)

and temperature

mT =

∫ ∞

0

(

1− 〈T (x3)〉b,t
[〈T 〉b,t]mean

)( 〈T (x3)〉b,t
[〈T 〉b,t]mean

)

dx3 (23)
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FIG. 13: Shape factors, HT (left) and Hu (right) as defined in Eqn. (24) as a function of Rayleigh and Prandtl numbers. All
horizontal lines are the shape factors for the Prandtl-Blasius case. For temperature, the shape factor HT depends on Prandtl
number: the dashed line is for Pr = 0.7, the solid line is for Pr = 0.021 and the dashed-dotted line is for Pr = 0.005. For
velocity, the shape factor Hu is independent of Prandtl number.

From these quantities, we can define the shape factors H as

HT =
dT
mT

and Hu =
du
mu

. (24)

The shape factor for the laminar Prandtl-Blasius profile is 2.59 forHu, independent of Prandtl number. The computed
quantity for HT is Prandtl number dependent and is 2.58, 2.47, and 2.44 for Pr = 0.7, 0.021 and 0.005, respectively
(see Fig. 13). A shape factor that is larger than the laminar value tends to indicate an overshoot of the Prandtl-Blasius
profile and a smaller shape factor indicates an undershoot. The latter is caused by rising (or falling) plumes and resulting
recirculations due to flow incompressibility. In almost all cases, the shape factors are fairly close, but tend to fall below
the Prandtl-Blasius values. The results for Hu demonstrate a systematic decrease in shape factor as Prandtl number
decreases. The results for HT show similar shape factor values for Pr = 0.7 and Pr = 0.021 as was also presented in
[46]. However, the temperature shape factor for Pr = 0.005 is an outlier. And the shape of the temperature profile
does look different for Ra < 1 × 107, with a distinct rounded peak at the end of the boundary layer as is evidenced
by the larger shape factors. For Ra = 1× 107, the thermal boundary layer more closely resembles the Prandtl-Blasius
profile.
Finally, we can use our results for the velocity shape factor, Hu to predict a transition to a turbulent boundary layer.

The shape factor Hu should be 1.28 for a turbulent boundary layer [47]. In Fig. 14 we fit lines to the data and find

the intersection of these fits with the horizontal line at Hu = 1.28. This value will be Ra
(III)
c . For Pr = 0.7 a fit to
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Extrapolation Method Pr Rac Uncertainty Range

I 0.7 Rac = 5× 1012 1× 1012 < Rac < 2× 1013

I 0.021 Rac = 1× 1011 5× 109 < Rac < 4× 1012

I 0.005 Rac = 1× 109 1× 107 < Rac < 5× 1011

II 0.7 Rac = 9× 1011 1× 1011 < Rac < 4× 1012

II 0.021 Rac = 1× 1010 5× 109 < Rac < 5× 1010

II 0.005 Rac = 6× 108 3× 106 < Rac < 1× 1012

III 0.7 Rac = 4× 1016 6× 1012 < Rac < 1× 1022

III 0.021 Rac = 7× 1014 2× 1012 < Rac < 1× 1018

IV 0.7 Rac = 3× 1013 1× 1013 < Rac < 5× 1013

IV 0.021 Rac = 2× 1013 1× 1012 < Rac < 1× 1014

TABLE II: A comparison of different methods to predict the range of critical Rayleigh numbers, Rac, at which the viscous
boundary layer becomes turbulent for three different Prandtl numbers. Methods I-III are described in this paper. Method IV
was discussed in [25].

the last four data points gives Ra
(III)
c (Pr = 0.7) = 4× 1016, for Pr = 0.021 the Ra

(III)
c (Pr = 0.021) = 7× 1014. The

data for Pr = 0.005 is very scattered with no clear trend. The resulting uncertainty ranges vary quite widely, when
the error associated with the least squares fit is taken into account. These ranges are 6 × 1012 < Rac < 1 × 1022 for

Pr = 0.7 and 2 × 1012 < Rac < 1 × 1018 for Pr = 0.021. While the predictions for Ra
(III)
c are larger for the other

methods, the values of Ra
(III)
c do overlap when the uncertainty is taken into account. It is not surprising that method

III overestimates the value for Rac since the boundary layer profile would be fully turbulent if Hu = 1.28, whereas
for method II, we extrapolate to where the boundary layer just reaches the log-law, or when it just starts to become
turbulent. Furthermore, as summarized in Ref. [48], the shape factor Hu of turbulent flat plate boundary layers is often
found rather at values of 1.4, i.e., larger than 1.28. This would additionally decrease the critical Rayleigh numbers in
our extrapolation. The results for all three methods are summarized in Tab. II. In addition, the results from a fourth
method that we discussed in [25] are given for completeness. This method is based on a shear Reynolds number Resh
which can be determined by means of a root mean square velocity taken at the distance from the plate that corresponds
to the mean of a locally fluctuating viscous boundary layer thickness. The local boundary layer thickness is determined
from the vertical derivatives of the horizontal velocity components which correspond to the two components of the skin
friction vector field. A turbulent fraction is defined as the percentage of BL area for which Resh & 350. The transition
follows for those Ra that would have a turbulent fraction of 100%.
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3 )〉 = α ln x+
3 + β(Pr) with α ≈

2.12 , β(Pr) = (3.8Pr1/3 − 1)2 − 1 + 2.12 lnPr. In all cases, the profiles taken from the top and bottom plates are included.

V. TEMPERATURE FIELD STATISTICS

A. Mean profiles

In ref. [19], we also examined the profiles of the mean temperature inner wall units and we extend this analysis here.
We define the friction temperature as

Tτ = −
〈

u−1
τ (t)√
RaPr

〈

∂T

∂x3

〉

b

∣

∣

∣

∣

∣

x3=0

〉

t

. (25)

Thus θ+ = T/Tτ and we plot these profiles as a function of Rayleigh and Prandtl number in Fig. 15. Note that for
Figs. 15, the instantaneous profiles for θ+ versus x+

3 are first found by dividing θ = {T/∆T for x3 = 1, 1− T/∆T for
x3 = 0} by the instantaneous Tτ and x3 by the instantaneous ℓτ . Then these profiles are time averaged (see [19] for
more details). We see that the profiles follow a similar trend of rising as Rayleigh increases, with a portion of the profile
following a logarithmic law. The region of the profile that is logarithmic tends to increase as Rayleigh number increases.
The dashed lines are a plot of the theoretically predicted turbulent temperature profile by Yaglom and Kader [50, 51]
for each Prandtl number: 〈θ+(x+

3 )〉 = α lnx+
3 + β(Pr) with α ≈ 2.12 , β(Pr) = (3.8Pr1/3 − 1)2− 1+ 2.12 lnPr. While

the profiles for Pr = 0.021 and Pr = 0.005 have slopes that are smaller than the slope of theoretical log law, the slope
for Pr = 0.7 is quite similar, with an agreement of 10% for the three highest Rayleigh numbers (although the intercept
does not match). Finally one sees that as Prandtl number decreases, the temperature profiles tend to decrease in size
in these inner wall units, but they reach their peak at larger x+

3 values.
The slopes 〈αf 〉t of the linear portion of the semilog plots are found by fitting each instantaneous temperature profile

to the equation 〈θ+(x+
3 )〉b = αf lnx

+
3 + βf . The 〈αf 〉t values are then the time averages. The error bars are given

by the standard deviation in the αf values found from the instantaneous profiles. Then these values are converted to
units of unscaled T versus x3 by multiplying by the friction temperature Tτ . These slopes, 〈αf 〉tTτ are plotted in Fig.
16 for all available Rayleigh and Prandtl numbers. The universality in these slopes for the three Prandtl numbers is
quite remarkable. In addition the results from Ahlers et. al. [52] are also plotted, which were for Pr = 0.8, Γ = 0.5
and 5 × 1011 < Ra < 5 × 1012. However, their results were for an aspect ratio of 1/2 and they measured the profiles
close to the sidewall of the container, and either of these could account for the discrepancy. In their paper, they also
predicted a theoretical scaling exponent between −0.005 and −0.106, which does agree with our exponent. In addition,
Wei and Ahlers [53] found, for Pr = 12.3,Γ = 1 and 2 × 1010 < Ra < 2 × 1011, a scaling exponent of −0.011± 0.025
(no prefactor given) which is in agreement with our results. More work needs to be done experimentally, numerically
and theoretically to better understand the dependence of 〈αf 〉tTτ on Rayleigh and Prandtl number.
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B. Probability density functions

Finally we summarize the statistics of the temperature field for the three series of simulation runs. The probability
density functions (PDFs) of T (x, t) for different Rayleigh and Prandtl numbers are shown in Fig. 17. While the panels
to the left evaluate the distribution of T in the full volume V , the data to the right are obtained in the subvolume Vb

(see section III). All PDFs are centered around their global 〈T 〉V,t or bulk mean 〈T 〉Vb,t, respectively. We find that the
temperature PDFs at a fixed Pr become systematically more narrow about the mean as the Rayleigh number increases,
both, in the bulk and the full volume. This trend agrees with what is seen in ref. [22] in the bulk for the high-Rayleigh
number experiments in mercury. However for Pr = 0.005 and the highest Rayleigh number (run 19), we see that
PDFVb,t, the distribution taken over the bulk of the container, has widened. The reason for this observation could be
that the Reynolds number is large enough to generate sharper plume structures of the temperature field.
The trend is confirmed in Fig. 18(a), where we plot the width for the bulk temperature PDFs. We see that the

widths decrease systematically as Rayleigh increases except for run 19 which is an outlier. In Fig. 18, we also plot the
skewness and kurtosis for the bulk temperature pdfs as defined by the following equations:

Skewness =
〈(T − 〈T 〉Vb,t)

3〉Vb,t

〈(T − 〈T 〉Vb,t)
2〉3/2Vb,t

, (26)

Kurtosis =
〈(T − 〈T 〉Vb,t〉4Vb,t

〈(T − 〈T 〉Vb,t)
2〉2Vb,t

. (27)

The skewness, or asymmetry of the PDF is fairly randomly scattered about zero, and the larger values for the higher
Rayleigh numbers are most likely a result of the shorter simulation times. The kurtosis, on the other hand, tends to
grow systematically from sub-Gaussian values (smaller than 3) at the lowest Rayleigh numbers to values larger than 3
for all Prandtl numbers and sufficiently large Ra. This indicates a increasing intermittency of temperature statistics.
The kurtosis is found to level off for the series at Pr = 0.7 for Ra & 108.

VI. SUMMARY AND DISCUSSION

The main purpose of the present work was summarize our DNS results for all Rayleigh and Prandtl numbers and
then to use these results to predict a possible transition to turbulence in the viscous boundary layer of a turbulent
Rayleigh-Bénard convection flow by different analysis methods. We used our existing and further extended direct
numerical simulation data basis for three-dimensional turbulent convection in a closed cylindrical cell at an aspect ratio
of 1. Most of the data are obtained in the regime of very low Prandtl numbers, i.e., in a regime of convection where
the thermal and viscous boundary layers are partly decoupled from each other. It is the thin viscous boundary layer
which shows a transitional behavior that is accompanied by intermittent fluctuations of local thickness, wall stress or
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FIG. 17: Temperature probability density functions (PDFs) for Pr = 0.7 (top row), Pr = 0.021, (middle row) and Pr = 0.005
(bottom row). The horizontal axis is the temperature minus the global, 〈T 〉V,t, or bulk mean temperature, 〈T 〉Vb,t. The left
column (PDFV,t) gives the PDFs taken over the entire container, and the right column (PDFVb,t) gives the PDFs taken over the
bulk (see caption for Fig. 5 for a definition of the bulk).

velocity amplitudes. In the focus of the present work was the analysis of “standard” quantities of turbulent boundary
layer analysis, such as the existence of logarithmic profiles, displacement and momentum displacement thicknesses and
the resulting shape factors. Based on such quantities, we suggest three methods that predict a range of critical Rayleigh
numbers for a transition to boundary layer turbulence by extrapolation. Furthermore, a fourth method which we
discussed in [25] is added for completeness.
One point that did not receive much attention in the past is related to the specific shape of the velocity profile.

Theoretical models such as [54] assume a logarithmic profile that extends all the way to the mid plane of the convection
layer or cell. The mean streamwise velocity profiles in our simulations are however found to be closer (although not
equal) to a planar wall-jet with a pronounced local mean velocity maximum and an offset (see fig. 7). Similarly to
channels, this class of flows obeys a logarithmic law of the wall as reported in refs. [55, 56]. It would thus be interesting
to verify whether the decreasing mean velocity towards the bulk has consequences for the scaling predictions. Which
theoretical model best describes the viscous BL profiles near the plates and how this effects the global transport across
the boundary layers is still an open question that requires closer inspection.
The predicted transition ranges in all methods are shifted to lower Rayleigh number values as the Prandtl number

decreases which is consistent with the results of the scaling theory by Grossmann and Lohse (see e.g. Fig. 3(a) in
ref.[1]). For convection in air, the predictions of methods I and IV are consistent with experimental results [44]. The
four methods that are independent of each other predict partly overlapping ranges of critical Rayleigh numbers. We
note again that the extrapolations in all cases have large error bars. For the smallest Prandtl number, namely run 19,
longer time series would be needed to resolve the slow transformation of the large-scale flow in the cell. The intention of
this work is to suggest several analysis tools that can be applied in future simulations and partly even in experiments.
At this stage, it is hard to say which of our methods is most reliable, although it is seen that method III has the largest
uncertainty ranges and method II provides only a lower bound as it predicts just when the boundary layer reaches the
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2〉Vb,t, skewness and kurtosis calculated from the bulk temperature PDFs in the right column of

Fig. 17. See Eqns. (26) and (27) for our definitions of skewness and kurtosis.

log-law.
We also wish to note that our predictions do not imply that such a transition must occur. Our study should

therefore be understood as an encouragement to conduct a new series of high-Rayleigh number laboratory experiments,
in particular in the low Prandtl number regime. This is to our view one of the most interesting sectors of the Ra− Pr
parameter plane, since the turbulence is highly inertial as we discussed here and in our subsequent works [19, 20, 25].
Specifically, liquid sodium, the lowest Prandtl number that can be obtained in a laboratory, seems to occupy a special
role. It is still not well-understood if the turbulent convection flow switches into a different regime as Rayleigh number
increases, as a result of the very diffusive temperature field. Our trends for the Nusselt number in Fig. 3 might suggest
such a behavior. Further longer-term numerical simulations are currently underway to understand these observations
better and will be reported elsewhere.
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VII. APPENDIX: TRANSFORMATION INTO LSC FRAME

We summarize the rotations of coordinates and fields that have been used in Ref. [19] to determine a streamwise and
spanwise in a closed cylindrical convection cell. The mean orientation angle of the LSC is calculated in each plane at
fixed height x3 > 0 by

〈φ(x3, t)〉b = arctan

[ 〈u2(x3, t)〉b
〈u1(x3, t)〉b

]

. (28)

At each plane of constant x3 we apply afterwards
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and thus the velocity components transform correspondingly as
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