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Abstract

Lyapunov exponents measure the average exponential growth rate of typical linear perturbations

in a chaotic system, and the inverse of the largest exponent is a measure of the time horizon over

which the evolution of the system can be predicted. Here, Lyapunov exponents are determined

in forced homogeneous isotropic turbulence for a range of Reynolds numbers. Results show that

the maximum exponent increases with Reynolds number faster than the inverse Kolmogorov time

scale, suggesting that the instability processes may be acting on length and time scales smaller than

Kolmogorov scales. Analysis of the linear disturbance used to compute the Lyapunov exponent,

and its instantaneous growth, show that the instabilities do, as expected, act on the smallest eddies,

and that at any time, there are many sites of local instabilities.
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I. INTRODUCTION

One of the defining characteristics of turbulence is that it is unstable, with small pertur-

bations to the velocity growing rapidly. Indeed, turbulent flows in closed domains appear to

be chaotic dynamical systems [12]. The result is that the evolution of the detailed turbulent

fluctuations can only be predicted for a finite time into the future, due to the exponential

growth of errors. In a chaotic system, this prediction horizon is inversely proportional to

the largest Lyapunov exponent of the system, which is the average exponential growth rate

of typical linear perturbations. The maximum Lyapunov exponent γ̄ is commonly used to

characterize the chaotic nature of a dynamical system [8]. In a turbulent flow, the maximum

Lyapunov exponent is thus a measure of the strength of the instabilities that underlie the

turbulence, and its inverse defines the time scale over which the turbulence fluctuations can

be meaningfully predicted.

Lyapunov exponents in chaotic fluid flows have been estimated experimentally since the

work of Swinney [28], using indirect methods. In numerical simulations, however, Lyapunov

exponents can be determined directly by computing the evolution of linear perturbations.

This has been done for weakly turbulent Taylor Couette flow [26] and very low Reynolds

number planar Poiseuille flow [12]. Remarkably, to the authors’ knowledge, Lyapunov ex-

ponents have not been determined for isotropic turbulence, a shortcoming corrected in this

paper.

Homogeneous isotropic turbulence is an idealized turbulent flow that has been extensively

studied both experimentally [4, 5, 17] and using numerical simulations [3, 11, 22, 27]. It

is valuable as a model for the small scales of high Reynolds number turbulence away from

walls [7]. It has been speculated that in isotropic turbulence, the maximum Lyapunov

exponent scales with the inverse Kolmogorov time scale [6], suggesting that the dominant

instabilities occur at Kolmogorov length scales as well. If true, then a study of the maximum

Lyapunov exponent and the associated instabilities in homogeneous isotropic turbulence will

be applicable to a wide range of flows.

This paper focuses on how the maximum Lyapunov exponent and hence the predictability

time horizon scale with Reynolds number and computational domain size of a numerically

simulated homogeneous isotropic turbulence. The speculation that γ̄ should scale as the

inverse Kolmogorov time scale τη [6] is in agreement with an estimate from a shell model [1].
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However, this scaling has not been directly tested in direct numerical simulations.

In addition, in the process of computing the maximum Lyapunov exponent in a direct

numerical simulation, one necessarily computes the linear disturbance that is most unstable

(on average). This can be used in the short-time Lyapunov exponent analysis, as introduced

in [26], to characterize the nature of the instabilities. This will be pursued here for isotropic

turbulence.

The remainder of this paper includes a brief review of Lyapunov exponents and how

they are computed in numerical simulations (section II) followed by a description of the

direct numerical simulations studied here (section III). The results of a scaling study of the

Lyapunov exponents are given in section IV, and a short-time Lyapunov exponent analysis

is presented in section V, followed by concluding remarks in section VI.

II. LYAPUNOV EXPONENT ANALYSIS

Two important characteristics of chaotic dynamical systems for the purposes of the cur-

rent study are that 1) solutions evolve toward a stable attractor, and 2) solution trajectories

on the attractor are unstable so that near-by trajectories diverge exponentially. The rate of

this exponential divergence is characterized by the Lyapunov exponents, whose characteris-

tics are recalled briefly here. Further details can be found in [26]. In addition, the use of

Lyapunov exponents in the analysis presented in the paper is described.

A. Evolution of Linear Perturbations

Consider a solution trajectory u(t) of a chaotic system. The solution will evolve toward an

attracting set in phase space (the attractor); in turbulence this corresponds to the solution

evolving to a statistically stationary state. Let u(t0) at some arbitrary starting time t0 be

on the attractor, and consider an infinitesimal perturbation δu(t0) of the solution at time

t0, and its evolution in time. The Lyapunov exponents describe the growth or decay of the

magnitude of δu. In particular, the multiplicative ergodic theorem [19] implies that the limit

γ̄ = lim
t→∞

1

t
log

( ‖δu(t)‖
‖δu(t0)‖

)

(1)

exists and γ̄ is called a Lyapunov exponent. There is a spectrum of possible Lyapunov

exponents, depending on the solution u(t0) and the perturbation δu(t0) at the starting
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time. However, for almost all δu(t0), γ̄ = γ1 the largest Lyapunov exponent, and, due to

round-off error and other sources of noise, in practical computations, γ̄ = γ1 for all δu(t0).

Furthermore, the Lyapunov spectrum (γ1 > γ2 > γ2 > · · · ) does not depend on u(t0); it is

instead a property of the dynamical system. See the review by Eckmann et al. [8] for an

introduction to the theory.

In addition, in practical computations as discussed above, we expect that in the limit

t → ∞
δu(t)

‖δu(t)‖ → δu(u(t)) and
1

‖δu(t)‖
d‖δu(t)‖

dt
→ γ′(u(t)) (2)

where δu and γ′ depend only on the solution at t, and not on the starting conditions u(t0)

and δu(t0). The perturbation δu is the disturbance that grows most rapidly in the long

run, growing at the average exponential rate γ̄. It is defined by the fact that it’s long-time

average growth rate forward in time is γ̄ and when the evolution is backward in time the

long-time average growth rate is −γ̄. The short-time Lyapunov exponent γ′ is simply the

instantaneous exponential growth rate of δu.

Because γ′ and δu depend only on the solution at the current time, they can be used as

diagnostics for the instabilities responsible for a system being chaotic. In particular, when

γ′ is large, the underlying system is particularly unstable, and at that time the Lyapunov

disturbance δu is rapidly growing. Thus by seeking out times when γ′ is large, and by

analyzing the solution u and the Lyapunov disturbance δu at that time, we can characterize

the important instabilities. This is the short-time Lyapunov exponent analysis described by

Vastano & Moser [26].

In this paper we will be concerned with the scaling of γ̄ with Reynolds number and with

the chaotic instabilities revealed by short-time Lyapunov exponent analysis.

III. SIMULATIONS

To simulate the base field, we solve the three-dimensional incompressible Navier-Stokes

equations on a cube of dimension L = 2π, with periodic boundary conditions, to obtain

a computational approximation of homogeneous isotropic turbulence. Turbulence is main-

tained by introducing a forcing term to the Navier-Stokes equations which only acts at large

scales. The forcing formulation is described in section IIIA. The Navier-Stokes equations

are solved using a Fourier-Galerkin spatial discretization with N modes in each direction,
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and the vorticity formulation of Kim et al. [13]. This formulation has the advantage of ex-

actly satisfying the continuity constraint while eliminating the pressure term. A low-storage

explicit third-order Runge-Kutta scheme [25] is used for time evolution. The simulations

are performed using a modified version of the channel flow code PoongBack [14, 15].

To compute the Lyapunov exponents, we compute the growth rate of a linear perturbation

added to the base field. This perturbation satisfies the linearized Navier-Stokes equations:

∂δui

∂t
+

∂

∂xj
(ujδui + δujui) = −∂δp

∂xi
+

1

Re
∇2δui (3)

∂iδui = 0, (4)

where ui is the base field and δui is the disturbance field. The disturbance equations are

solved using the same numerical scheme as the Navier-Stokes equations. Note that the

forcing is applied only to the base field and not the perturbation. The implementation of

both the base and disturbance field solvers were verified using the method of manufactured

solutions.

A. Forcing

The goal of the forcing is to inject energy into the large-scale turbulence so that the

isotropic turbulence will be stationary. Forcing is applied to Fourier modes with wavenumber

magnitudes in a specified range, and is designed to produce a specified rate of energy injection

(forcing power), which, when the system is stationary, will be the dissipation rate. By

specifying the wavenumber range being forced, forcing power and viscosity, the integral

scale, turbulent kinetic energy and Reynolds number can be controlled.

The energy injection is accomplished by the introduction of a forcing term fi to the Navier

Stokes equations:

∂ui

∂t
+

∂uiuj

∂xj

= − ∂p

∂xi

+
1

Re
∇2ui + fi (5)

∂iui = 0. (6)

Following [25], in the Fourier spectral method used here, the Fourier transform of the forcing

f̂i is specified in terms of the velocity Fourier transform ûi as

f̂i(k) = α|k|2ûi(k). (7)
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Case kfmin
kfmax

ν N L Reλ kmaxη Tavgq/L

1 0 2 0.0235 64 1.43 37.92 1.92 455.2

2 0 2 0.0113 96 1.58 58.34 1.66 123.8

3 0 2 0.0056 128 1.67 85.68 1.31 118.0

4 0 2 0.0038 192 1.70 106.33 1.47 51.2

5 0 2 0.0026 256 1.77 130.43 1.47 51.3

6 0 2 0.0010 512 1.82 211.76 1.44 69.5

7 2 4 0.0093 128 0.71 37.74 1.92 277.1

8 4 8 0.0037 256 0.35 37.31 1.92 72.1

TABLE I. Parameters defining the eight direct numerical simulations performed to study Lyapunov

exponent scaling. Values of L and ν are quoted in units in which the domain size is 2π and the

forcing power ǫT is one. The averaging times are normalized by eddy turnover time.

Given that ui is a Navier-Stokes solution, fi is guaranteed to be divergence-free. The coef-

ficient α in the above is determined as a function of time so that the forcing power is the

target dissipation rate ǫT . Since the forcing is applied only to a range of wavenumbers, this

yields

α = ǫT























ǫT





∑

kfmin
≤|k|≤kfmax

|k|2û∗
i (k)ûi(k)





−1

kfmin
≤ |k| ≤ kfmax

0 otherwise

(8)

where ·∗ denotes the complex conjugate, and kfmin
and kfmax

are the bounds on the range

of wavenumbers being forced. In the Fourier transform of the Navier-Stokes equations, the

viscous term has the same structure as fi, so this forcing can be interpreted as a negative

viscosity acting in the specified wavenumber range. The combined forcing and viscous term

is then −(ν − α)|k|2ûi(k). In the numerical solution of the Navier-Stokes equations, this

combined term is treated in the same way as the viscous term would be. Note that fi is just

a nonlinear function of ui, so there is no externally imposed stochasticity.
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B. Simulation Cases

To investigate the scaling of the maximum Lyapunov exponent γ̄ with both Reynolds

number and the ratio of the computational domain size L to the integral scale L, eight
simulations were performed. These are summarized in table I. To study the scaling of γ̄

with Reynolds number, six cases where simulated with the same forcing wavenumber range

and ǫT . This resulted in approximately the same integral scale in each case. The Reynolds

number was manipulated by changing the viscosity. To study the potential variation of γ̄

with domain size normalized by integral scale, the domain size was kept fixed at 2π and

the integral scale was changed by adjusting the forced wavenumber range, while keeping the

Reynolds number approximately fixed. In all cases kmaxη > 1 (see Table I), where kmax is

the maximum resolved wavenumber, and η is the Kolmogorov scale. The adequacy of this

spatial resolution was confirmed by doubling kmaxη in the Reλ = 85.68 case (case 3), and

confirming that γ̄ remained the same within the sampling uncertainty.

For each case, the simulation was run until the base solution became statistically steady

and then the statistics were gathered by time averaging over a period Tavg as reported

in table I. To identify when each simulation became stationary, the instantaneous viscous

dissipation was monitored as a function of time until it came into equilibrium, fluctuating

about ǫT while the instantaneous values of q2 and γ were fluctuating about their mean.

Finally, while processing the statistics, stationarity was assessed by averaging over shorter

periods and confirming that mean values of q2 and γ̄ were constant within the sampling

uncertainty, and that their variance scaled with the inverse of the averaging period.

IV. SCALING OF LYAPUNOV EXPONENTS

Of primary concern here is the dependence of the maximum Lyapunov exponent on the

Reynolds number and on the domain size. To address this, the maximum Lyapunov exponent

γ̄, the integral scale (L) and Reynolds number based on the Taylor micro-scale (Reλ) are

needed, along with their uncertainties. Based on the assumption of isotropy, the latter two

were determined to be L = 0.15q3/ǫ and Reλ = q2
√

5/(3ǫν) [20]. Thus the two statistical

quantities that need to be computed from the DNS are γ̄ and q2. Both are determined as

a time average over averaging time Tavg (see table I), and the standard deviations σ of the
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case q2 σq2 γ̄τη σγ̄τη

1 4.51 0.107 0.0922 0.0038

2 4.80 0.160 0.1075 0.0046

3 4.99 0.075 0.1177 0.0032

4 5.05 0.044 0.1231 0.0040

5 5.19 0.046 0.1304 0.0034

6 5.28 0.084 0.1599 0.0048

7 2.82 0.008 0.0941 0.0019

8 1.76 0.001 0.0945 0.0021

TABLE II. Values of q2 and the maximum Lyapunov exponent γ̄, along with the standard deviation

(σ) of the sampling uncertainty. Values of q2 are quoted in units in which the domain size is 2π

and ǫ = 1, and γ̄ is normalized by the Kolmogorov time scale τη.

uncertainty due to finite averaging time were determined using the technique described by

[18]. The values of γ̄, q2 and their standard deviations are given in table II. The standard

deviations of the derived quantities L and Reλ are determined simply as σL = (0.225q/ǫ)σq2

and σReλ =
√

5/(3ǫν)σq2 , where for σL it is assumed that σq2/q
2 ≪ 1. Note that since for

each simulation ǫ and ν are specified, there is no uncertainty in their values.

The dependence of the maximum Lyapunov exponent in Kolmogorov units on Reynolds

number is shown in figure 1, including uncertainties expressed as the standard deviation. If

the hypothesized scaling of the Lyapunov exponent on Kolmogorov time scale were correct,

these data would, within their uncertainty, fall along a horizontal line. However, this does not

appear to be the case. Indeed, γ̄τη appears to be growing with Reλ. Also, shown in figure 1 is

the dependence of scaled Lyapunov exponent on domain size at constant Reynolds number.

These data do appear to be consistent with the hypothesis that the Lyapunov exponent does

not depend on the domain size.

To make these scaling observations quantitative, Bayesian inference is used to infer the

coefficients α and β in a scaling relationships of the form

γ̄τη = α1Reβ1

λ and γ̄τη = α2(L/L)β2, (9)

given the data and its uncertainties. These scaling relationships serve as the “model” for the
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(a) (b)

FIG. 1. Dependence of the Lyapunov exponent scaled in Kolmogorov units (γ̄τη) on (a) the Taylor

scale Reynolds number Reλ and (b) the ratio of the integral scale to the domain size L/L, from

the data in table II. The error bars on the data (in blue) represent one standard deviation. Also

shown are the outputs of the models (9) (in red) calibrated with Bayesian inference, with the dark

and light gray shading representing variations of one and two standard deviations respectively.

inference. In Bayesian inference for this problem, the joint probability distribution π(α, β|d)
of the parameters α and β conditioned on data d (shown in table I) is sought. Bayes’ theorem

gives this conditional probability as:

π(α, β|d) ∝ π(d|α, β)π(α, β) (10)

where π(d|α, β) is the likelihood and π(α, β) is the prior. The likelihood is the joint probabil-

ity density for the observed quantities evaluated for the observed values of these quantities,

as determined by the model with parameters α and β, and given the uncertainties in the

data. The prior represents our prior knowledge about the parameters, independent of the

data.

The data are statistical averages obtained from direct numerical simulations. The primary

source of uncertainty in such data is statistical sampling error. The central limit theorem

implies that in the limit of large samples, the uncertainty associated with sampling error is

normally distributed with zero mean. Therefore, to formulate the likelihood, the data are

assumed to have Gaussian uncertainty with standard deviations as reported in table II. The
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probability distribution for the ith observation of the value of γ̄ as predicted by the models

is thus given by

π(γ̄|α, β, xi) =
1

σγi

√
2π

exp

[

−(γ̄ − αxβ
i )

2

2σ2
γi

]

(11)

where xi is the independent variable (Reλi or Li/L, depending on which scaling relation is

being inferred) of the ith observation and σγi is the standard deviation in γ̄ associated with

the ith observation. Note that each observation corresponds to one of the simulation cases

listed in Tables I and II. For the inference of the Reλ scaling there are 6 observations (cases

1-6 in the tables, data plotted in figure 1a), and for the L/L scaling there are 3 observations

(cases 1, 7 and 8 in the tables, data plot-ed in figure 1b). In addition to the uncertainties

in γ̄, there are uncertainties in the values of the independent variables x (Reλ or L/L) due
to the sampling uncertainty in the value of q2, as determined from the DNS, again with a

Gaussian distribution and standard deviation for the ith observation of σxi
. In this case,

the probability distribution of the independent variable x given the observation xi is

π(x|xi) =
1

σxi

√
2π

exp

[

−(x− xi)
2

2σ2
xi

]

. (12)

The conditional distribution of γ̄ given the parameters and the observed independent variable

is then given by

π(γ̄|α, β, xi) =

∫

x

π(γ|α, β, x)π(x|xi) dx. (13)

Finally, to obtain the likelihood, (13) is evaluated at γ̄ = γi and the uncertainties in each

observation are assumed to be independent (an excellent assumption), yielding:

π(d|α, β) =
∏

i

π(γ̄ = γi|α, β, xi). (14)

To inform the prior, we consider the range of time scales in the turbulence. The largest is

the eddy turn-over time, which is proportional to q2/ǫ, and the smallest is the Kolmogorov

time scale
√

ν/ǫ. The ratio of the turnover to the Kolmogorov times scales asReλ. Therefore,

the Lyapunov exponent γ̄τη scaling with the turn-over time would imply β = −1 and scaling

with the Kolmogorov scale would imply β = 0. However, theoretical arguments suggest that

the Lyapunov exponent scales with the Kolmogorov time scale [6] (β = 0), and we need

to allow for the possibility that this assessment may be in error in either direction. The

bounds on the range of plausible values of β were therefore extended to −1 ≤ β ≤ 1, and

a uniform distribution over this range was used as a prior for β. Somewhat arbitrarily, the
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FIG. 2. Posterior PDFs for α1 and β1 in the Reynolds number scaling model (9). Shown are the

marginal distributions of both parameters along with contours of their joint distribution.

same range was used for the β prior in the domain size scaling relationship. The parameter

α is a positive definite scaling parameter, and so following Jaynes [10], a Jeffries distribution

π(α) ∼ 1/α is used as an (improper) prior. Finally, the priors for α and β are independent

so π(α, β) = π(α)π(β).

Given the likelihood and prior described above, and the data in Table II, samples of the

posterior distribution were obtained using a Markov-chain Monte Carlo (MCMC) algorithm

[9] as implemented in the QUESO library [16, 21]. The resulting samples were used to

characterize the joint posterior distribution of α and β for both the Reynolds number and

domain size scaling model, as shown in figures 2 and 3. Notice in these figures that the joint

distribution has probability mass concentrated in thin diagonally oriented regions, showing

that uncertainty in α and β are highly correlated. Indeed, the uncertainty in the β’s is as
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FIG. 3. Posterior PDFs for α2 and β2 in the domain size scaling model (9). Shown are the marginal

distributions of both parameters along with contours of their joint distribution.

large as it is because changes in β can be compensated for by changes in α so that the model

still fits the data. The MCMC samples were also used to determine the uncertainty in the

model predictions for the Lyapunov exponent as a function of Reynolds number and domain

size, with the results plotted in figure 1, along with the data. From this, it is clear that the

scaling models as calibrated are consistent with the data and their uncertainty.

The marginal posterior distribution for β in the Reynolds number scaling relation shows

that the most likely values of β are between about 1/4 and 1/3, with the possibility that the

value is zero essentially precluded. This is remarkable since it suggests instability time scales

that will become increasingly faster than Kolmogorov with increasing Reynolds number. The

origin of this fast time scale is currently unclear. One possibility to consider is that this fast

instability time scale arises as an artifact of the time discretization of the DNS. However
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the DNS time step in Kolmogorov units ∆t/τη ∼ Re
−1/2
λ , so if the Lyapunov exponent were

scaling with the DNS time step, β would be 1/2, which is also essentially precluded by the

posterior distribution. The time discretization thus appears to be an unlikely origin of the

observed Reynolds number scaling. This was also verified by running a time refinement

study where γ̄ was found to be invariant to changing ∆t. An alternate model formulation

of the form γ̄τη = α1Reβ1

λ + δ1 was also investigated, and calibration produced a range of β

values between 0.2 and 1.2, also precluding zero.

As with the time step, interest in the computational domain size arises because of concern

that computational artifacts not impact our Lyapunov exponent analysis. The posterior

distribution of β in the domain size scaling relationship (figure 3) shows that β = 0 is highly

likely, with the most probable values of β ranging from -0.05 to 0.05. If there is an effect of

the domain size, the data indicates that it is extremely weak. It therefore appears that the

Lyapunov exponent Reynolds number scaling discussed above and the short-time Lyapunov

exponent analysis presented in section V are unaffected by finite domain size effects.

V. SHORT-TIME LYAPUNOV EXPONENT ANALYSIS

As discussed in section II, both the disturbance field (δu) used to compute the Lyapunov

exponent and its instantaneous exponential growth rate (γ′) depend only on the instan-

taneous Navier-Stokes velocity u, not on the initial disturbance. In short-time Lyapunov

exponent analysis, we study γ′ and δu to learn about the instabilities responsible for the

chaotic nature of turbulence.

First, consider the time evolution of the exponential growth rate γ′, which is shown in

figure 4 for Reλ = 37 and 210 (cases 1 and 6 respectively), normalized by γ̄. Note that

in both cases γ′ takes large excursions from the mean, of order 3 times the mean value.

However, the variations in γ′ occur on a much shorter time scale and the large excursions

seem to occur more often in the high Reynolds number case. The time scale on which γ′

varies appears to decrease somewhat faster than the Kolmogorov time scale with increasing

Reynolds number, as when plotted against t/τη, γ
′ still varies faster for case 6 (figure 5).

At the same Reynolds number (cases 1 and case 8), the variability of γ′ decreases sharply

with increasing relative computational domain size L/L. The fact that the time scale of the

instability, as measured by the Lyapunov exponent, decreases faster than the Kolmogorov
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time scale suggests that the instability processes are acting at small spatial scales. In this

case, a simulation with a larger domain size relative to intrinsic turbulence length scales

would include a larger sample of local unstable turbulent flow features, resulting in smaller

variability in γ′. In comparing case 8 with case 1, the relative volume increases by a factor

64, suggesting that the variability of γ′ should be about a factor of 8 smaller in case 8 than

in case 1, which is indeed consistent with the data.

At the peaks in γ′, the growth of the disturbance energy is particularly rapid, and the

question naturally arises as to what is special about these times. To investigate this, the

spatial distribution of the magnitude of the disturbance energy density is visualized in fig-

ure 6 at three times, just before the beginning of a peak in γ′, a time half way up that

peak and at the peak (tq/L = 9.58, 9.85 and 9.89 in figure 4). Notice that before the rapid

growth of γ′ into the peak, the energy in the disturbance field is broadly distributed across

the spatial domain. Half way up the peak, the distribution is much more spotty, and finally

at the peak, the disturbance energy is primarily focused in a small region, appearing in the

lower left corner of figure 6(c). The contour levels in these images were chosen so that the

contours enclose 60% of the disturbance energy, implying that 60% of the disturbance energy

is concentrated in the small feature in the lower left of figure 6(c). Another indication of

the dominance of the disturbance feature in figure 6(c) is that the contour level needed to

enclose 60% of the energy is about 2500 times the mean disturbance energy density, while

in figure 6(a) the contour is only about 15 times the mean. Clearly the growth of the distur-

bance field in this concentrated area is responsible for the peak in γ′. However, the spatially

local exponential growth rate of the disturbance energy |δu|−2 ∂|δu|2/∂t is not particularly
large there, large values of this quantity are distributed broadly across the spatial domain.

It seems, then, that the large peak in γ′ is due to a local disturbance that is able to grow

over an extended time until it dominates the disturbance energy, so that the disturbance is

localized in a region of relatively large growth rate. This is presumably unusual because it

requires that the local unstable flow structure responsible for the disturbance growth persists

for a long time.

It is of interest to investigate the turbulent flow structures responsible for the large

localized disturbance energy at the peak in γ′. In the region where δu is localized, the base

field exhibits a pair of co-rotating vortex tubes (figure 7), whose centers are approximately

6.5η apart. As shown in figure 8, the disturbance vorticity is localized on the vortex tubes,
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with regions of opposite signed disturbance vorticity to one side or the other of each vortex

tube. This disturbance, when added to the base field would have the effect of displacing

each vortex tube along the line between the positive and negative peaks in the disturbance

vorticity associated with each tube. The instability then appears to be one associated

with slowing (speeding up) the co-rotation of the vortex tubes while they move away from

(toward) each other. Note that the disturbance equations, being linear and homogeneous,

are invariant to a sign change, and so the sign of the vortex displacement is indeterminate.

Such an instability of co-rotating vortices is reminiscent of the pairing instability in two-

dimensional mixing layers.

VI. CONCLUSIONS

The results of the scaling study (section IV) show definitively that, at least over the

Reynolds number range studied, the Lyapunov exponent does not scale like the inverse

Kolmogorov time scale, as had been previously suggested [1]. Instead, γ̄τη increases with

Reynolds number like Reβλ for β in the range from 1/4 to 1/3. Further note that the analysis

of Aurell et al. [1] indicated that a correction for the intermittance of dissipation would yield

β < 0, also inconsistent with the current results. If positive β scaling holds to much higher

Reynolds numbers, it would be remarkable, as it would mean that there are instability

processes that act on time scales shorter than Kolmogorov. This could be related to the

sub-Kolmogorov scale fluctuations described in [2, 23, 24, 29] which are predicted to occur

at length scales that get smaller relative to Kolmogorov with increasing Reynolds number

[23].

Note, however, that in the highest Reynolds number (Reλ = 210) simulation performed

here, γ̄τη is still only 0.16. It is certainly possible that this Reynolds number dependence of

γ̄τη is a low Reynolds number effect, caused by insufficient scale separation between the large

scales and the scales at which the instabilities act, and that the value will reach a plateau

at some much higher Reynolds number. Clearly, this scaling behavior of the maximum

Lyapunov exponent is worthy of further study. If the scaling behavior observed here does

extend to much larger Reynolds numbers, it would imply that turbulent fluctuations are

even less predictable than previously thought.

The short-time analysis described in section V confirmed that the dominant instabilities
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(b)Case 8, Reλ = 37, large L/L
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9.0 9.5 10.0 10.5 11.0

tq/L

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

γ
′
/γ̄

(d)Case 6, Reλ = 210 (zoomed in)

FIG. 4. Short-time Lyapunov exponent scaled by γ̄. In (d), the time axis is expanded to zoom

in on the peak indicated in (c), and symbols show the times at which the images in figure 6 were

obtained.

in turbulence act on the smallest eddies. Further, at Reλ = 210, when the instantaneous

disturbance growth rate was the largest (about 3 times the mean), the disturbance energy

was highly localized, suggesting that it was a particular local instability that was responsible

for the rapid growth at that time. However, this was not due to a particularly large local

growth rate, as the logarithmic time derivative of the spatially local disturbance energy

was equally large in regions spread throughout the domain. It may be that the localized

instability we observed is not of particular importance, except that the underlying structure
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FIG. 5. Short-time Lyapunov exponent γ′/γ̄ with time scaled by τη.

(a)tq/L = 9.58 (b)tq/L = 9.85 (c)tq/L = 9.89

FIG. 6. Contour of the magnitude of δu at three times leading up to the peak as indicated in

figure 4 for Reλ = 210 (case 6). The contour shown is that at which 60% of the disturbance energy

is enclosed by the contour. To achieve this, the contour levels are (a) 15, (b) 25, and (c) 2500 times

the mean disturbance energy density.

in the turbulent field was especially long-lived. None-the-less, studying it showed that one of

the possible instability mechanisms acting in turbulence is reminiscent of pairing instabilities

of co-rotating vortices, as in a mixing layer. In this, the short-time Lyapunov analysis

pursued here appears to be a valuable tool for the study of the instabilities underlying

turbulence.

17



FIG. 7. Contour of the magnitude of the vorticity of the base field for Reλ = 210 (case 6) at the

peak of γ′ in the region where the disturbance field is localized (box highlighted in figure 6c) . The

contour level is 9.2 times the square root of the mean enstrophy. The vortex tubes are co-rotating,

with the direction of rotation indicated by the black arrow.
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FIG. 8. The magnitude of the vorticity (grayscale) and the disturbance vorticity component normal

to the plane (contour lines) in a plane perpendicular to and in the middle of the vortex tubes shown

in figure 7. For the disturbance vorticity, the red and blue contours are of opposite signs.
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