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The phenomenon of incomplete mixing reduces bulk effective reaction rates in reactive transport.
Many existing models do not account for these effects, resulting in the overestimation of reaction
rates in laboratory and field settings. To date, most studies on incomplete mixing have focused
on diffusive systems; here, we extend these to explore the role that flow heterogeneity has on
incomplete mixing. To do this, we examine reactive transport using a Lagrangian reactive particle
tracking algorithm in two-dimensional idealized heterogeneous porous media. Contingent on the
non-dimensional Peclet and Damköhler numbers in the system, it was found that near well-mixed
behavior could be observed at late times in the heterogeneous flow field simulations. We look
at three common flow deformation metrics that describe the enhancement of mixing in the flow
due to velocity gradients: the Okubo-Weiss parameter (θ), the largest eigenvalue of the Cauchy-
Green strain tensor (λC), and the finite-time Lyapunov exponent (Λ). Strong mixing regions in
the heterogeneous flow field identified by these metrics were found to correspond to regions with
higher numbers of reactions, but the infrequency of these regions compared to the large numbers of
reactions occurring elsewhere in the domain imply that these strong mixing regions are insufficient
in explaining the observed near well-mixed behavior. Since it was found that reactive transport
in these heterogeneous flows could overcome the effects of incomplete mixing, we also search for a
closure for the mean concentration. The conservative quantity u2, where u = CA − CB , was found
to predict the late time scaling of the mean concentration, i.e. Ci ∼ u2.
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I. INTRODUCTION

Chemical reactions are an important factor to consider in many flowing systems [26, 35, 38, 52, 54]. A perhaps
obvious, but critical feature to recognize in any of these systems is that in order for a reaction to actually occur, the
reactants involved in a reaction must first come into contact with each other. Mixing is the process that enables this,
and consequently, the mechanism that drives reactions. Given that flows can serve to enhance or attenuate mixing,
they can also have a pronounced effect on reactions in a given system.

Incomplete mixing reduces the overall bulk effective reaction rates in fluid systems with mixing-driven chemical
reactions. However, the effects of this phenomenon are typically not sufficiently accounted for in existing models,
resulting in the overestimation of reaction rates in laboratory experiments and field measurements [25, 28, 39, 40, 47].
Incomplete mixing limits the ability of reactants to come into contact, causing slower reaction rates compared to a
well-mixed system. A variety of models have been developed and used to address this problem, including pdf closures
[12], anomalous transport models [19, 20], modified effective kinetics [49], fractional advection-dispersion equations
(fADE) [10], moment equations [53], and particle tracking methods [2, 18–20]. It is important to be able to accurately
predict reaction rates, as it can have great consequences in many real world applications, an example being the
remediation of contaminants in groundwater [31, 37, 51] and surface flows [26]. Therefore there is a need to be able to
understand and adequately describe these incomplete mixing effects in order to accurately model reactive transport.

To examine this problem of incomplete mixing, it is common to look at irreversible bimolecular kinetic reactions of
the form A + B → P. This simple bimolecular case has been shown to be the foundation for more complex reactions
[24]. Since the focus of this work is on how the solutes A and B mix and react with one another, the product of their
reaction will be neglected for simplicity and we have A + B→ ∅. In a system where reactions occur with some known
rate coefficient k and there are equal initial amounts of A and B distributed uniformly throughout the domain, i.e.
CA(x,y,t=0) = CB(x,y,t=0) = C0, there is a well-known analytical solution for the concentration CA(x,y,t) = CB(x,y,t)
= C0/(1+kC0t) which scales like t−1 at late times [45]. This solution assumes that the system is perfectly well-mixed
at all times. In real systems, however, this will generally not be true, particularly in mixing-limited systems where
reaction time scales are faster than mixing time scales. This behavior is quantified by a non-dimensional Damköhler
number (Da), which is defined as the ratio of the diffusion time scale to the reaction time scale [10]. Thus, low Da
indicates that mixing (i.e. diffusion) is happening more quickly than reactions and well-mixed behavior is expected. In
contrast, high values of Da means that reactions are occurring more quickly than mixing by diffusion and incomplete
mixing behaviors can arise. If there is some fluctuation of CA and CB about the mean, these fluctuations will
become more dominant relative to the mean over time as reactions occur and reduce the mean concentration. These
concentration fluctuations will cause reactant solutes to segregate from one another and form patches of only one
species, which we refer to as islands. Since the reactants must come into contact before a reaction can occur, reactions
are limited to the interface between these islands, causing the overall reduction in the amount of reaction that takes
place. This is the phenomenon we call incomplete mixing.

This problem has been studied extensively in systems where reactive solutes move purely by diffusion [27, 39, 40,
42, 45, 53, 55] and while we are motivated by flows in porous media, this problem has applications as far ranging as
physics [48, 55], chemistry [32], biology [41], economics [5, 23, 36], and social sciences [50]. Under these conditions,
the emergence of incomplete mixing leads to a slowdown in reaction and the mean concentration has been shown to
scale like t−d/4 at late times in these systems, where d is the number of spatial dimensions. This result has been found
in theory [27, 42, 55], numerical simulations [27, 42, 55], and experimental observations [39, 40]. The late-time scaling
behavior indicates a significant reduction in the overall number of reactions due to the strong effects of incomplete
mixing in these systems. Here, mixing occurs by diffusion alone. The natural next step is to examine systems where
diffusion driven mixing is modified due to advection in non-uniform flow fields.

The presence of a non-uniform flow field will cause the solutes to mix very differently than they would in a uniform
flow field where mixing occurs only by diffusion [16]. This difference is due to the stretching and compression
experienced by the fluid as a result of flow heterogeneity [4, 34, 56]. Since reactive species need to come into contact
for a reaction to actually occur, the different mixing characteristics in these non-uniform fields are also likely to
impact reactions. It is expected that mixing will be increased in non-uniform velocity fields, implying that it may also
enhance reactions. Many studies have worked to quantify mixing in heterogeneous systems by examining the temporal
evolution of global measures of mixing such as the scalar dissipation rate [9, 21, 33] and the dilution index [4, 9, 29].
Metrics such as second centered spatial moments are often used to quantify spreading as well, which when accounted
for properly can be tied back to mixing processes [3]. The aforementioned scalar dissipation rate and dilution index
are global measures of mixing, but mixing is inherently a local process dictated by local flow features. It is strong
local gradients in a velocity field that can cause stretching and compression that in turn influence mixing. To this
end, there are also many local flow deformation metrics related to velocity gradients that are used to describe mixing
characteristics of the flow field. Previous studies have considered flow deformation metrics such as the Okubo-Weiss
parameter [4, 22], the largest eigenvalue of the Cauchy-Green strain tensor [22], the finite-size Lyapunov exponent [30],
and the finite-time Lyapunov exponent [22]. These studies tied the flow deformation metrics to mixing and then made
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potential inferences about reactions, but to date no study explores the link between these velocity gradient metrics
and reactive transport. All of these metrics mentioned here that quantify mixing and spreading provide measures that
quantify the ability for reactants to collocate. For this reason, it is often argued that they should also serve as strong
indicators of the amount of reactions that occur at a given location in a flow; while the arguments seem reasonable,
they remain to be tested.

Recently the ideas of incomplete mixing were explored in a simple non-uniform flow, namely linear shear [46]. As
in the purely diffusive systems, it was found that incomplete mixing appeared when reactions occurred more quickly
than mixing by diffusion and the shear flow [46]. They found, however, a high sensitivity to the additional time scale
associated with shear: depending on the strength of the shear, the flow could seemingly overcome the incomplete
mixing effects and exhibit the well-mixed scaling behavior at late times [46]. Incomplete mixing was still present
in their systems as segregated islands of reactants clearly emerged, but the shear fluxes across the island interfaces
were sufficiently large that the system would behave as if it were well-mixed, albeit at a slower effective reaction rate.
While a lot can be learned from the shear flow case, it is a highly idealized flow and has also been shown to possibly
be a limit case as one of the most efficient flows for inducing mixing [9]. The goal of this work is to to take this one
step further and apply these concepts to more general non-uniform flows that are more representative of what would
be found in real systems. In particular we will focus on flows through two-dimensional idealized heterogeneous porous
media.

While the focus of this work is on incomplete mixing in flows through idealized heterogeneous porous media in two
dimensions, in principle the ideas presented here should be applicable to any incompressible and steady non-uniform
flow. Will these heterogeneous flows attenuate the effects of incomplete mixing? How will the results compare to
existing studies on purely diffusive systems and pure shear flow? Where are reactions most likely to happen? We
address these questions using a Lagrangian-based reactive transport model, and thus extend recent work that has
been performed in more idealized settings.

II. NUMERICAL MODEL

The governing equation for transport in our system is the advection-dispersion-reaction equation (ADRE). For our
two reactive species, A and B, the ADRE is

∂Ci
∂t

= D∇2Ci − v · ∇Ci − kCACB i = A,B (1)

where Ci is the concentration [mol L−2], D is the local dispersion coefficent [L2T−1] which is assumed to be constant,
v(x) is the incompressible velocity [LT−1], and k is the reaction rate constant [L2 mol−1T−1]. It is well-known
that random walks can be used to numerically simulate the advection-dispersion equation (ADE), and these ideas
have been extended to include reactions [6]. This particular Lagrangian particle tracking algorithm has been used to
study reactive transport in homogeneous [44, 45] and heterogeneous advection fields [8, 46]. Solving the ADRE with
this Lagrangian method requires that the solutes A and B are divided into particles that each represent some finite
mass, mp. Time is discretized into time steps of size ∆t, and at each time step the amount of reaction that takes
place is determined and the non-reacted particles continue to move by random walk. Full details of this method and
generalizations, including rigorous demonstrations that they converge and represent (1) are available from multiple
sources including [6–8, 11, 44, 45] and so we only provide a brief description here.

II.1. Particle Tracking Algorithm in a Single Time Step

The algorithm involves marching the system through time via discrete time steps. Here we illustrate briefly the
procedure for one time step from t1 to t2, where t2 = t1 + ∆t. It is a two step process analogous to operator splitting.

II.1.1. Step 1- Reaction

First, it is determined whether or not each particle will react in the given timestep based on their probability
of reaction. The probability of reaction is dependent on both the probability that particles will come into contact,
Pcollocation, and the kinetics of the reaction once two particles have collocated, Preact|coll. It is defined as

Preaction = PcollocationPreact|coll. (2)

The probability of collocation, Pcollocation, is the probability that a particle pair separated by a distance s will collocate
over time step ∆t. Preact|coll is the probability that two particles will react with one another given that they have
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come into contact [6, 45]. The probability of reaction is defined as

Preaction =
kmp

8πD
exp

(
− s2

8D∆t

)
(3)

where mp is the particle mass [mol]. For a specific A particle, the probability of reaction is calculated between
that particle and all B particles within a particular radius of its location at t1. This radius is chosen such that the
probability of reaction for that A particle with any B particle outside this radius is less than 10−6 which has been
shown to provide acceptable results [44], i.e.

r =

√
−8D∆t log

(
8πD∆tPreaction

Preact|coll

)
(4)

with Preaction = 10−6. A random number ξi is generated from U(0,1) for each AB particle pair. If for any AB
pair Preaction,i > ξi, then the A and B particles react and are removed from the system according to the reaction
A + B → ∅. If multiple B particles meet the requirements for reaction with a single A particle, then the AB pair
with the highest value of R = Preaction,i − ξi is chosen for reaction. If none of the AB pairs meet the requirement for
reaction, then the particular A particle does not react and we move on to the next A particle. This process is repeated
until the reaction algorithm has cycled through all of the A particles and determined which ones, if any, will react.
The particle searching process in this step of the algorithm was made more computationally efficient through the
implementation of a kd-tree. This reduces the complexity from an O(N2) process to O(N logN). Once the reaction
step is completed, we then move on to the random walk component of the algorithm.

II.1.2. Random Walk

After the first substep is complete, particles move by random walk in both x(x, y) directions according to Langevin
equation

x(t2) = x(t1) + v(t1)∆t+
√

2D∆t ξξξ (5)

where ξξξ ∼ N(0, 1). Thus, the particle locations are updated by both advection and a diffusive step. In the advective
step, v indicates the velocity of the particle, obtained from the prescribed flow fields, described in the following. The
last term reflects a random jump experienced by the particle due to diffusion with zero mean and a variance of 2D∆t.

II.2. Flow fields

The flow fields studied in this work are idealized two-dimensional heterogeneous porous media. The permeability
fields are generated from the superposition of randomly shifted periodic waves with integer numbers of wavelengths
that fit within the defined domain and are scaled to a specified variance. The permeability fields are periodic on all
sides and characterized by a correlation length lln κ and variance σ2

ln κ. These lognormal random Gaussian-correlated
fields are the standard model used to describe heterogeneous porous media [1, 57]. Darcy’s law, v(x, y) = κ

µ∇p,
coupled with incompressibility ∇ · v = 0, subject to a uniform pressure drop in the horizontal direction of flow, is
then solved using finite differences to obtain the flow field. A sample permeability field and the corresponding flow
field is shown in Figure 1. Due to the nature of Darcy’s law we can rescale the flow velocity values to any desired
mean velocity.

III. MEAN CONCENTRATION

We initially have equal amounts of solutes A and B in our system, i.e.

CA(x, y, t = 0) = CB(x, y, t = 0) = C0 (6)

where the overbars denote volume averages over the spatial domain. Since A and B react in a 1:1 reaction, this means
that CA(t)=CB(t) at all times. To generate as close to uniform an initial condition in concentration, the particles
representing solutes A and B are initially distributed randomly with uniform probability across the entire domain.
For our setup, we initially have N = 500000 particles of each species with 2N total particles in the system. Note
that this will in fact not result in a perfectly uniform concentration field due to small subscale fluctuations. It is
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FIG. 1. (Top) The natural logarithm of the permeability field, ln (κ). (Middle) Horizontal velocity vx and (Bottom) vertical
velocity vy. Lengths have been normalized to the domain extent in the y-direction.

precisely these small scale fluctuations that amplify, resulting in incomplete mixing effects. If these fluctuations were
not present the system would likely remain perfectly well-mixed, but we are argue that perfect mixing is untenable in
real systems. We examine the behavior of the mean concentration in time as it is a measure of the amount of reaction
that has taken place in our system. As discussed in the introduction, it is known that if the system is well mixed, the
mean concentration will evolve as

Ci,wm(x, y, t) = Ci,wm(t) =
C0

(1 + kC0t)
∼ t−1 (at late times), (7)

and that a purely diffusive system will scale as t−d/4 at late times when incomplete mixing arises. Since we are
considering a two dimensional d = 2 system, a late time scaling of t−1/2 is expected. For illustrative purposes, Figure
2 shows results for a representative system that we consider. On it are shown the analytical solution (7) of the mean
concentration under perfect mixing and the simulation results for both the mean concentration in a purely diffusive
system and a system with the heterogeneous flow field shown in Figure 1. A constant local dispersion coefficient of
D = 10−5 and a reaction rate of k = 10 were used for both simulations. The flow field in Figure 1 has lln κ = 0.12,
σ2
ln κ = 1, and vx = 0.1, where vx is the mean velocity in the x-direction. Figure 3 shows the particle locations at

four points in time throughout the heterogeneous flow field simulation and demonstrates how the islands grow over
time. It was found that at early times the mean concentration for the heterogeneous system is in agreement with the
purely diffusive case. Then at some point in time, the system accelerates relative to the diffusive case and in terms
of scaling with time it begins to behave as if it were nearly well-mixed, i.e. ∼ t−1, but with a lower effective reaction
rate due to the continued presence of incomplete mixing. This transition from purely diffusive behavior to a nearly
well-mixed scaling occurs when t ≈ lln κ/vx. This corresponds to the characteristic time when particles have had
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FIG. 2. The black line corresponds to the well-mixed solution for the mean concentration and scales like t−1 at late times. The
red line is the result for the mean concentration in a purely diffusive system and scales as t−1/2 at late times. The blue line
corresponds to the mean concentration from our simulation in an idealized heterogeneous porous medium with Pe = 1200 and
Da = 14400. At late times, our model results for this particular heterogeneous field scales as if it were almost well-mixed.

the opportunity to move through regions of different permeabilities (i.e. traverse a correlation length with the mean
velocity), which explains why this is the time when the effects of the non-uniform flow begin to impact the results for
the mean concentration (see Figure 3).

Several cases were studied looking at a variety of heterogeneous flow fields, Damköhler (Da) numbers, and Peclet
(Pe) numbers. Figure 4 shows the mean concentration vs. time for the cases with varying Peclet and Damköhler

numbers that were examined in this study. The diffusive Damköhler number is defined here as Da =
kC0l

2
ln κ

D . As
mentioned in the introduction, the Damköhler number is a ratio of a transport time scale (in this case diffusion) to

the reaction time scale. The Peclet number is defined as Pe = vxlln κ
D and describes the ratio of advective transport to

diffusive transport. As shown in Figure 4, if Da is held the same, the simulation results will display more well-mixed
behavior with increasing Pe. This is because advection dominates with high Pe and the enhanced mixing due to the
non-uniformity of the flow field will dampen the incomplete mixing effects. In contrast, holding Pe the same and
increasing Da will lead to a stronger emergence of incomplete mixing behavior. This is because large Da indicates that
reactions are happening faster than mixing can bring reactants together. The representative case shown in Figures 2
and 3 is a system with Pe = 1200 and Da = 14400. We will return to this representative case later in our discussion.

In this work we will address two main questions regarding the behavior of the mean reactant concentration. First,
can we explain the nearly well-mixed scaling that was observed at late times in Figure 2? Specifically can we attribute
this to regions of strong mixing as characterized by velocity gradient based flow deformation metrics? Then we ask:
given a flow field, can we predict the late-time behavior of the mean concentration without having to solve a full
reactive transport problem?
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FIG. 3. The A and B particle locations for a system with Pe = 1200 and Da = 14400 are shown at an early time (t∗ = 12),
early intermediate time (t∗ = 54.1), late intermediate time (t∗ = 155.4), and late time (t∗ = 630.6). It is observed that the
islands grow in size over time, demonstrating the presence of incomplete mixing in the system.

IV. CONNECTING FLOW DEFORMATION METRICS AND REACTIONS

IV.1. Where Do Reactions Occur?

As discussed in the previous section, the results of our reactive transport simulations through heterogeneous flows
showed that these systems could, depending on their Peclet and Damköhler numbers, behave as if they were nearly
well-mixed at late times, but with a reduced overall reaction rate due to incomplete mixing. Metrics based on flow
deformation provide information about the enhancement of mixing due to the flow field. Since mixing drives chemical
reactions in these systems, we explore three different flow deformation metrics and determine whether there is any
connection between them and reactions. The goal here is to see if high mixing regions as indicated by these flow
deformation metrics can help explain the nearly well-mixed behavior that was observed in our simulations at late
times.

The flow deformation metrics we consider are all based on the velocity gradient tensor E = ∇v, where the diagonal
terms describe stretching and compressing effects from the flow field and the off-diagonal terms represent shear and
rotation. The Okubo-Weiss parameter illustrates the balance between these diagonal and off-diagonal terms and is
defined as

θ(x) = −4 det(E), (8)

as discussed in [4, 22]. It was found that there is a direct correlation between the evolution of mixing from a point
source, as quantified by the entropy based dilution index, and the Okubo-Weiss parameter [4], suggesting that this
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FIG. 4. The mean concentration vs. time is shown for the simulation results of 9 cases with different Peclet and Damköhler
numbers. The red lines are the well-mixed solution defined in (7) and the blue lines are the simulation results for heterogeneous
flow field cases at the specified Peclet and Damköhler numbers.

metric could be important when studying mixing and reactions. The Lagrangian deformation gradient tensor, F,
represents the deformation experienced by a fluid parcel at a specific point over a given amount of time. Since
rotation does not contribute to mixing, the right Cauchy-Green strain tensor removes its contribution and is given by

C(x) = FTF. (9)

The largest eigenvalue of the Cauchy-Green strain tensor, λC , quantifies the strength of the deformation [22]. The
final metric based on flow topology that we look at is the finite-time Lyapunov exponent (Λ), defined as

Λ(x) =
ln [λC(x)]

2∆t
. (10)

Here we examine the impact of the Okubo-Weiss parameter (θ), the largest eigenvalue of the Cauchy-Green strain
tensor (λC), and the finite-time Lyapunov exponent (Λ) on reactive transport. We are motivated by the fact that in
a heterogeneous flow there is a demonstrable connection between the collocation density, which drives reactions, and
θ, λC , and Λ [22]. Here we will directly compare these flow deformation metrics to reactions and see if they correlate
to the regions where reactions are most likely to occur in our system.

IV.2. Simulation results

10 realizations of our reactive transport simulation were performed for the same flow field for each case of varying
Peclet and Damköhler numbers considered in this study and the location of every reaction that took place in each
simulation was recorded. Our goal here is to determine if there is a connection between regions of high mixing
potential, as quantified by the flow deformation metrics, and the number of reactions that actually occurs at any
given location. Based on previous arguments [22], it might be expected that regions with strong mixing potential will
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bring the reactants together more efficiently. Thus, if the high mixing regions increase the likelihood of reactants to
collocate, it is expected that higher amounts of reactions will take place there.

Our initial check to see if there was any relationship between reaction locations and the flow deformation metrics
was to calculate the correlation coefficient, which for generic variables X and Y is defined as

ρX,Y =
KX,Y

σXσY
, (11)

where KX,Y is the covariance of X and Y, and σX and σY are the standard deviations of X and Y, respectively. The
three flow deformation metrics θ, λC , and Λ were calculated on a grid defined over the entire domain of the system.
The location of every reaction that occurred throughout each simulation was stored on the same grid. The correlation
coefficient was calculated by directly comparing the numbers of reactions that occurred in a given location for all
times to the flow deformation metrics at the same location as defined by the grid. The results of this for all cases
are shown on Table I. The correlation coefficients between the number of reactions and each of the flow deformation
metrics were found to have low values for all cases, implying that there is no significant correlation between them. At
first sight this suggests that the arguments of increased likelihood of reaction presented in [22] are wrong, but a closer
inspection is warranted before making such a conclusion. To this end, we must consider some conditional statistics.

TABLE I. Correlation coefficients between reaction numbers and flow deformation metrics for each of the nine cases with
different Peclet and Damköhler numbers. Nr is the number of reactions obtained from a 2D histogram of reaction locations for
10 realizations.

Pe = 12 Pe = 120 Pe = 1200

Da = 144

ρX,Y

ρNr,θ=-0.0020

ρNr,λC= 0.0208

ρNr,Λ= 0.0384

ρX,Y

ρNr,θ= 0.0380

ρNr,λC= 0.0740

ρNr,Λ= 0.0972

ρX,Y

ρNr,θ= 0.0365

ρNr,λC= 0.0596

ρNr,Λ= 0.0639

Da = 1440

ρX,Y

ρNr,θ= 0.0147

ρNr,λC= 0.0324

ρNr,Λ= 0.0373

ρX,Y

ρNr,θ= 0.0167

ρNr,λC= 0.0511

ρNr,Λ= 0.0672

ρX,Y

ρNr,θ= 0.0725

ρNr,λC= 0.1085

ρNr,Λ= 0.1281

Da = 14400

ρX,Y

ρNr,θ= 0.0006

ρNr,λC= 0.0123

ρNr,Λ= 0.0127

ρX,Y

ρNr,θ= 0.0429

ρNr,λC= 0.0631

ρNr,Λ= 0.0521

ρX,Y

ρNr,θ= 0.0342

ρNr,λC= 0.0508

ρNr,Λ= 0.0557

Since low correlation coefficients were found for all cases shown in Table I, we now shift our focus back to our
representative case with Pe = 1200 and Da = 14400 and increase the number of realizations to 100 for a more in-depth
analysis. The two-dimensional histogram of reaction locations over 100 realizations and the flow deformation metrics
calculated for this system are shown in Figure 5. Figure 6 shows scatterplots of each of the deformation metrics and
the corresponding number of reactions for every location on the defined grid, displaying the low correlation coefficients
found in Table I. Although the correlation coefficient indicates that there is no significant correlation between the
amount of reaction and the flow deformation metrics, we found that the highest mixing regions specified by these
metrics did correspond to regions that had a large number of reactions. To explore this further, we define a threshold
number of reactions, τ , and look at the flow deformation metrics in regions where the number of reactions that took
place is at or above this threshold. The mean value of a specific flow deformation metric β (where β = θ, λC , or Λ)
at locations with numbers of reactions above the threshold τ is defined by

β≥τ (τ) =

∑Ngp
i=1 βiH[Nri − τ ]∑Ngp
i=1 H[Nri − τ ]

(12)

where Ngp is the number of grid points, βi is the value of the flow deformation metric at the ith grid point, Nri is
the number of reactions that took place at the ith grid point, and H[Nri − τ ] is the Heaviside step function. Plots
of β≥τ vs. τ for each of the flow deformation metrics are shown in Figure 7. These figures demonstrate that by
filtering locations in the domain based on whether or not the number of reactions that occurred there is above a
specified threshold, the strongest mixing regions as indicated by the flow deformation metrics did indeed have more
reactions. That is, in order to observe the behaviors anticipated by [22] statistics must be looked at from a conditional
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FIG. 5. (a) The 2D histogram of reaction locations for 100 realizations of the Pe = 1200 and Da = 14400 case. Every time a
reaction occurs, the location of the reaction is recorded. (b) The corresponding fields of the Okubo-Weiss parameter (θ), (c)
λC , and (d) the finite-time Lyapunov exponent (Λ) are shown.

perspective. The reason that the correlation coefficients indicated a weak correlation between the flow deformation
metrics and reaction numbers is that these high mixing regions make up a very small portion of the domain and only
a small fraction of the total amount of reactions took place in these regions. This means that there is a relationship
between flow topology and reactions, but there are so many reactions happening everywhere else in the domain that
the impact of these high mixing regions on reactions as a whole is negligible in a global sense. For this reason, the
regions with strong mixing defined by flow deformation metrics cannot sufficiently explain the well-mixed behavior
observed at late times in our simulation. It should be noted that these results are for reactive transport in two-
dimensional heterogeneous porous media and may not be universally true for real three-dimensional systems. As was
found for the two-dimensional case, we expect that there will be no significant correlation between flow topology
metrics and reactions in three-dimensions. Further work would need to be done to verify this and other metrics of
flow topology may need to be considered in the three-dimensional case.

V. CLOSURE FOR THE LATE-TIME BEHAVIOR OF THE MEAN CONCENTRATION

The initial condition for our transport simulations is to have equal amounts of A and B distributed randomly and
uniformly throughout the domain. Due to the stochastic nature of this initial condition, we separate the concentration
into its mean and fluctuation

Ci(x, t) = Ci(t) + C ′i(x, t), (13)
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FIG. 6. A scatterplot of the local values of θ, λC , and Λ and the number of reactions at the same locations for the Pe = 1200
and Da = 14400 case.

where Ci is the volume average over the domain and C ′i is the fluctuation from that mean. By substituting (13) into
(1) and averaging, an equation for the rate of change of the mean concentration in time is found to be

∂Ci
∂t

= −kCi
2 − kC ′AC ′B . (14)

The expected behavior of the mean concentration over time can be explained using a dominant balance argument.
At early times, the concentration fluctuations will be small compared to the mean, so the second order fluctuation
term, C ′AC

′
B , can be neglected. This leads to the well-mixed solution and indicates that at early times our simulation

results should behave as if they were well-mixed. This is indeed true as seen in Figure 2, where the simulation results
for both a purely diffusive system and a system with a heterogeneous flow field agree with the well-mixed solution
at very early times. At late times when reactions have removed most of the A and B particles from the domain, the

mean concentration changes more slowly in time so the ∂Ci
∂t term can be neglected and a dominant balance between

the other two terms in (14) emerges. Thus, the mean concentration is expected to scale as

Ci ∼
√
−C ′AC ′B . (15)

at late times. If it is known how C ′AC
′
B scales at late times, then the late time behavior of the mean concentration

will be known as well. Our goal is to be able to predict the scaling of the mean concentration given any flow field
without needing to perform a reactive transport simulation and measure it. To do this, we need a closure for C ′AC

′
B .

V.1. Closure Approach 1 - Peak of the Green’s function

Previous studies, based on the method of moments, have suggested that a closure for C ′AC
′
B can be found by

calculating the peak of the Green’s function [10, 43, 46, 53]. These studies showed that

C ′AC
′
B ∼ −G(x = xpeak, t). (16)

While this result is theoretical, it is built using many assumptions which may be dubious for a system with non-
uniform advection (e.g. statistical stationarity and the initial anticorrelation of second order moments). Nonetheless,
given the great success of these methods across so many examples we test it here. To measure G(x = xpeak, t), we
simulated the evolution of a pulse of conservative particles in our heterogeneous flow field shown in Figure 1 and
measured the peak. Due to the nonstationary nature of the domain, multiple starting locations were considered. In
all cases, while at early times differences were observed, it was found that at late times G(x = xpeak,t) ∼ t−1.2, which
suggests that we should expect the mean concentration to scale as ∼ t−0.6. This indicates that the late time behavior
of the mean concentration in our heterogeneous fields should be closer to the purely diffusive scaling than it is to
the well-mixed scaling. By examining the results in Figure 2, however, this is clearly not true. This can likely be
attributed to the fact that the peak of the Green’s function is dependent on the initial condition since our system is
not homogeneous. Therefore, the peak of the Green’s function closure may not be general and cannot be used as a
closure for this system.
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FIG. 7. The average θ, λC , and Λ values at locations where the amount of reactions that have occurred is above the threshold
τ indicated on the x-axis for the Pe = 1200 and Da = 14400 case.

V.2. Closure Approach 2 - Conservative Component u2

In order to find a closure for C ′AC
′
B , we define a conservative component

u = CA − CB . (17)

This conservative quantity has been widely used in studies of reactive transport systems [17, 27, 55, 58]. It is called
the conservative component, because (1) can be written for i=A and i=B and the ADRE for i=B can be subtracted
from the ADRE for i=A to obtain the following conservative equation for u:

∂u

∂t
= D∇2u− v · ∇u. (18)
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FIG. 8. The evolution of C′AC
′
A, C′AC

′
B , and u2 in time for a system with Pe = 1200 and Da = 14400. At late times, u2 scales

like C′AC
′
A. The quantities C′AC

′
A, C′AC

′
B , and u2 have been non-dimensionalized by C2

0 .

From (13) and (17), we can show

u2 = 2C ′AC
′
A − 2C ′AC

′
B . (19)

This means that the conservative quantity u2 is related to the reactive quantities C ′AC
′
A and C ′AC

′
B . We examine the

behavior of u2 in time, with the goal of learning about the late time scaling of C ′AC
′
B and, ultimately, via (15) the

mean concentration.

V.2.1. Simulation Results

Using the same particle tracking algorithm described previously we can calculate u and thus u2. All three terms in
Equation (19) are plotted as a function of time in Figure 8. It is clear from Figure 8 that at late times

u2 ∼ C ′AC ′A. (20)

This means that if the conservative quantity u2 is measured, then the late time behavior of the reactive quantity
C ′AC

′
A is known.

Recall that the term whose behavior we are interested in is C ′AC
′
B , because it will give us the late time behavior of

the mean concentration. We find that at late times that the relationship between the behavior of C ′AC
′
A and C ′AC

′
B
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FIG. 9. The evolution of
√
−C′AC′B , and C′AC

′
A in time for a system with Pe = 1200 and Da = 14400. At late times, C′AC

′
A

scales like
√
−C′AC′B .

is given by

C ′AC
′
A ∼

√
−C ′AC ′B . (21)

This is shown in Figure 9. Equation (21) contradicts assumptions made in the moment argument of [53] which led
to the Green’s function closure, possibly explaining why it failed here. Interestingly, the same behavior is observed in
purely diffusive systems and this exact scaling can be clearly seen in the figures of [45], but went unnoticed in that
work. This result has been found consistently in our simulation results for reactive transport across a broad range of
parameter space in both our heterogeneous flow fields and purely diffusive systems. Finally, by combining equations
(21), (20), and (15), we find that at late times we expect

Ci ∼ u2. (22)

Thus, if we know the late time behavior of u2 we also know the behavior of the mean concentration. This late time
scaling behavior was found to be consistent for the variety of Peclet and Damköhler numbers examined in this study.
The evolution of the mean concentration Ci and u2 in time for these cases is shown in Figure 10. This suggests that
we can solve a reactive transport problem by understanding the conservative one.
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FIG. 10. The evolution of Ci and u2 in time. Ci is given by the blue dashed line and the solid black line is u2. At late times,
Ci ∼ u2.

.

VI. CONCLUSION

We have studied reactive transport in heterogeneous flows with the goal of understanding how the non-uniformity of
the flow field impacts mixing and reactions. Specifically, we were interested in observing the effects of the heterogeneous
velocity field on incomplete mixing and determining where in the flow reactions are most likely to take place.

To study this problem, we examined bimolecular reactions of the form A + B → ∅ using a Lagrangian reactive
particle tracking method. This numerical model was used to investigate systems over a range of Peclet and Damköhler
numbers. In systems with low Da, diffusion leads to mixing at faster rates than reactions occur and so behaviors
close to well-mixed are observed. Additionally, with high Pe the enhanced mixing that arises due to the stretching
and deformation associated with the non-uniform velocity field causes the system to behave more well-mixed. For
these high Pe cases, the mean concentration always returns to a near well-mixed scaling at late times even with the
presence of incomplete mixing. In the regime of low Pe and high Da, strong incomplete mixing behavior is present
since reactions occur faster than mixing can bring reactants together. Specific focus is placed on the case of Pe = 1200
and Da = 14400 since it is representative of incomplete mixing behavior in these inhomogeneous settings. At early
times for this setup a deviation from the well-mixed solution is observed due to the emergence of incomplete mixing.
At some later point in time, when the particles have had a chance to travel through regions of varying permeability,
the system returns to a near well-mixed scaling due to the enhanced mixing by the non-uniform flow field.

To identify where reactions are most likely to occur, we looked at three flow deformation metrics that describe the
enhancement of mixing due to velocity gradients in the flow: the Okubo-Weiss parameter (θ), the largest eigenvalue
of the Cauchy-Green strain tensor (λC), and the finite-time Lyapunov exponent (Λ). Our goal was to determine
whether or not these metrics could explain the near-well mixed behavior that was observed at late times for the
Pe = 1200 and Da = 14400 case. High mixing regions defined by these flow deformation metrics were found to
have much higher numbers of reactions than other locations in the system. However, these strong mixing regions
make up a relatively small portion of our domain and the vast majority of the total number of reactions occurred
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elsewhere. This tells us that while the regions of high mixing potential quantified by these flow deformation metrics
do indicate locations where larger numbers of reactions are expected to occur, they are insufficient in explaining the
near well-mixed behavior that was observed at late times in these heterogeneous flow fields.

After understanding that the inhomogeneous flow fields can overcome incomplete mixing effects, a closure for the
mean concentration equation was sought so that late time behavior could be predicted based entirely on conservative
transport. It was found that the late-time scaling behavior of the mean concentration of a reactive transport simulation
can be predicted from the conservative quantity u2, where u = CA − CB . Specifically, based on a combination of
dominant balance arguments and an empirical relationship seen throughout all of the simulations performed in this
study, we find that Ci ∼ u2. While we have been able to show this empirically across a broad and relevant range of
parameter space, further work needs to be done to explain this behavior in a rigorous and theoretical manner as it
suggests that previous closure arguments may make invalid assumptions.

This study examined reactive transport in a two-dimensional idealized system, however, real systems are of course
three-dimensional. While valuable information can be learned from the two-dimensional case and a large number
of studies on mixing and reactions in porous media focus on two-dimensional flows [e.g. 3, 4, 9, 22, 33, 34, 46, 57]
, additional concerns will arise regarding dilution, mixing, and reactions when these ideas are extended to three-
dimensions. Dilution will be increased due to the added spatial dimension [29] and mixing will change due to the
possibility of twisting streamlines [13–15]. These differences in dilution and mixing will have an impact on reactions.
Since there was no significant correlation between flow topology metrics and reactions in two-dimensions, we expect
that the same will be true for the three-dimensional case as well although continued work would be required to verify
this.

In summary, it was found that the non-uniformity of the flow in our idealized two-dimensional heterogeneous porous
media could, depending on the non-dimensional Peclet and Damköhler numbers, enhance mixing enough to overcome
the effects of incomplete mixing in our systems. Flow deformation metrics based on velocity gradients did indicate
where high numbers of reactions could be expected, but the impact of this is insignificant for our system as there
are many more reactions happening elsewhere in the domain. Finally, it was found that the scaling of the mean
concentration at late times can be predicted from the conservative quantity u2.
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