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I. INTRODUCTION18

Kinematic (or continuity, or density) waves are among the simplest form of non-linear19

waves [1] and are widely encountered in many areas such as traffic flow, avalanches, sus-20

pensions and many others. The denomination arises from the fact that the flux of some21

conserved quantity is expressed directly in terms of that quantity thus bypassing the need22

for the consideration of dynamic effects. In these conditions the statement of continuity,23

complemented by suitable boundary and initial conditions, is sufficient to completely deter-24

mine the evolution of the conserved quantity in space and time.25

In this paper we describe fully-resolved simulations of a fluidized-bed-like solid-liquid26

system and show how the results can be analyzed so as to bring out the existence of kinematic27

waves and calculate their velocity. It is found that the velocity calculated in this way is in28

very good agreement with existing estimates based on a macroscopic, averaged formulation29

of fluidized beds [2]. An additional element of interest of this work is the description of a30

method by which detailed, microscopic information on a complex fluid-particle system can31

be interrogated to extract information that concerns the average, macroscopic character of32

the system.33

In a fluidized bed particles (or droplets) become suspended in an upward-directed fluid34

stream once the flow velocity exceeds the so-called minimum fluidization velocity [see e.g.35

3]. As the velocity increases further, the mean particle density decreases until, when the36

flow velocity becomes comparable to the single-particle terminal settling velocity, they are37

blown out of the system. Fluidized beds find major applications in chemical engineering, the38

oil industry, combustion and other areas thanks to the intimate contact that they promote39

between the solid and fluid phases.40

The efficiency of these and other types of fluidized beds would be higher were it not for41

the fact that the particle-fluid mixture does not remain homogeneous. Rising regions of low42

particle density, referred to as “bubbles”, very frequently form, particularly when there is a43

large density difference between the particles and the fluid as, e.g., in a gas-solid fluidized44

bed. The precise mechanism producing these structures has been debated for decades but45

firm conclusions resulting from these efforts are disappointingly few. A widely held belief is46

that bubbles form as the result of a cascade of instabilities, the first one of which affects the47

initial uniform state of fluidization which loses stability to vertically propagating density48
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waves [4–14]. This is one of the reasons of interest in the study of kinematic waves in49

disperse fluid-particle systems. Besides fluidized beds, other particulate systems display50

density waves, as first recognized by Kynch in the study of settling suspensions, and further51

elaborated in later studies by others [2, 15, 16].52

Nearly all existing theoretical studies of kinematic waves in particulate systems are based53

on coarse-grained descriptions in which the particles are modelled in an average sense. The54

only exception is Ref. [17] in which lattice-Boltzmann simulations for conditions close to55

those of the experiments of Ref. [18] are described. In order to limit the complexity of56

the horizontal structure of the voidage waves the authors used domains with a very small57

horizontal extent, mostly 12a × 12a, with a the particle radius, finding a generally good58

match with the experiments of Refs. [7, 18]. They noticed the presence of voidage waves59

but did not attempt to interpret them as kinematic waves.60

II. COMPUTATIONAL METHODS61

Recent improvements in computational capabilities and numerical methods have rendered62

possible the simulation of thousands of fully resolved particles, giving unprecedented access63

to detailed information on the flow in the neighborhood of each particle and on the particles64

response. In this study we take advantage of these developments and show how this detailed65

particle-level information can be processed to identify the presence of kinematic waves. We66

compare the celerity of these waves with the theory developed in earlier averaged treatments67

and find a very good agreement between the two.68

The simulations are performed with the Physalis method, a complete description of which69

is available in several papers including, most recently, [19]; implementation details are de-70

scribed in [20]. The Navier-Stokes equations are solved on a fixed Cartesian grid by a71

projection method. A characteristic feature of the method is the way in which the fluid is72

coupled to the particles, assumed to be rigid spheres. The coupling is based on the recogni-73

tion that, in the vicinity of the no-slip particle surfaces, the fluid motion differs little from a74

rigid-body motion. This circumstance permits the Navier-Stokes equations to be linearized75

to the Stokes form, for which an exact solution, obtained by Lamb [21, 22], is available. This76

analytical solution is used as a “bridge” between the particle surface and the closest nodes77

of the Cartesian grid thus bypassing the difficulties deriving from the complex geometrical78

3



relationship between the spherical particles and the underlying Cartesian grid. The parti-79

cle position and orientation is updated on the basis of the calculated forces and couples of80

hydrodynamic origin, collisions, gravity and buoyancy.81

The method, which has been extensively validated in earlier papers [see e.g. 19, 23], is82

accurate and efficient. Since the Lamb solution is expressed as a series of spherical harmonics,83

the error decreases exponentially, rather than algebraically, with the increase of the number84

of degrees of freedom used to describe each particle. This feature is in marked contrast with85

the algebraic error decrease of most other methods, such as immersed-boundary. The forces86

and couples on the particles are found directly from the coefficients of the expansion with87

no need for additional calculation. The no-slip condition at the particle surface is satisfied88

to analytical accuracy whatever the level of truncation of the series in the Lamb solution.89

A. Simulations90

The computational domain used in the present simulations was triply-periodic with a91

square cross section of dimension 20a × 20a and a vertical extent of 60a; all the particles92

were assumed to have equal radius. We used 8 mesh lengths per particle radius which,93

on the basis of our previous experience, provides a very good accuracy in the range of94

Reynolds number relevant for this study. By balancing the gravitational forcing in the95

vertical direction with an imposed upward pressure gradient, the simulations were in effect96

carried out in a reference frame coincident with the mean vertical particle motion. With97

500, 1000, 1500 and 2000 equal particles the mean particle volume fraction φ took the98

values 0.087, 0.175, 0.262, 0.349, respectively. We considered four different values of the99

particle-to-fluid density ratio, ρ∗ ≡ ρp/ρf = 2.0, 3.3, 4.0, 5.0.100

The parameters for the simulations were chosen to match experiments by Richardson &101

Zaki [24] who used glass spheres of radius 2.1 mm; our simulations for ρ∗ = 3.3 correspond102

to the liquid with density ρf = 875 kg/m3 and kinematic viscosity νf = 1.715× 10−5 m2/s103

that they denote by R0I. Details of the model are described in [19]. With the exception of104

Young’s modulus, which is softened for numerical reasons as explained in [19], the physical105

parameters used in the particle collision model, listed in Table I, were chosen to match those106

of glass spheres. The collision Stokes number Stc = ρ∗Rer/9, with Rer the particle Reynolds107

number based on the relative velocity, characterizes the strength of collisions [see e.g. 25].108
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Typical values of Stc encountered in the present simulations were at most 10-20. Thus,109

collisions are dominated by the fluid viscosity and are too weak to result in a rebounding110

motion of the colliding particles (see figure 6 in Ref. [19]). For this reason, the use of a111

smaller Young’s modulus cannot affect the results in any significant way.112

TABLE I. Values of the parameters used in the collision model of Ref. [19]

Young’s Modulus, E (MPa) 0.65

Poisson Ratio, σ 0.5

Dry coefficient of restitution, edry 0.98

Coefficient of friction, µf 0.5

In order to characterize the balance between gravity and viscous dissipation it is conve-113

nient to use the Galilei number114

Ga =
1

ν

√

(

ρp
ρf

− 1

)

(2a)3g , (1)

in which g is the acceleration of gravity and ν the fluid kinematic viscosity; the values of Ga115

corresponding to the present simulations are shown in Table II. By carrying out separate116

simulations in domains with size 20a × 20a × 80a we have calculated the terminal settling117

velocity wt of single particles for the density ratios used in this study. The results, together118

with the corresponding single-particle Reynolds number Ret = 2awt/ν, are also shown in119

Table II together with a measurement reported in Ref. [24] and an empirical relation valid120

for 20 < Ret < 260 [26]:121

Ga2 = 18Ret[1 + 0.1935Re0.6305t ]. (2)

There is a good agreement between our single-particle simulations, the experimental data122

point and the empirical relation (2) with maximum differences of less than 3%. Similar123

differences were found in an earlier paper [19] and shown to be comparable with those of124

other recent numerical studies.125

Particles were initially randomly arranged in the computational domain and, before data126

were recorded, allowed to reach a statistically steady state as revealed by the average values127

of the fluid velocity and particle velocity fluctuations. For the lower densities and volume128

fractions we could run the simulations used to calculate the speed of kinematic waves for129
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TABLE II. Galilei number, single-particle terminal velocity wt and corresponding Reynolds number

for the present simulations compared with an experimental result from [24] (R&Z) and simulations

from [26] (Y&K).

———– Current Work ———– —— R&Z —— Y&K

ρp/ρf Ga wt m/s Ret wt m/s, Ret Ret

2.0 49.7 0.177 43.27 – 44.17

3.3 75.4 0.313 76.60 0.319, 78.25 78.40

4.0 86.1 0.374 91.57 – 93.82

5.0 99.4 0.453 110.84 – 113.74

dimensionless times νt/(2a)2 up to 24.3. However, as the density ratio and volume fraction130

increase, inter-particle interactions become more frequent and energetic, which requires a131

smaller time step and more iterations for convergence. In these cases, for practical reasons,132

we only integrated up to νt/(2a)2 of about 14.2. The integration time necessary for the133

comparisons with the Richardson-Zaki correlation was significantly shorter (in some cases as134

short as νt/(2a)2 = 0.7) since the fluid velocity did not take much time to reach steady state.135

Due to computational constraints, we were unable to run simulations with larger density136

ratios and volume fractions for long enough to calculate the kinematic wavespeed. These137

simulations were, however, included in the comparison to the Richardson-Zaki correlation.138

III. KINEMATIC WAVES139

When the particle density is not too different from that of the fluid, in steady conditions140

dynamical effects are minor and the particle velocity is mostly determined by the hindrance141

that they provide to each other’s motion and to the motion of the fluid in the interstitial142

spaces. In these conditions the primary determinant of the particle-fluid relative velocity is143

the particle volume fraction as has been known since the early days of studies on this subject.144

A one-dimensional balance equation for the particle volume fraction may be written in the145

form146

∂φ

∂t
+

∂jp
∂z

= 0 , (3)
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TABLE III. Fitted parameters κ and n from the current simulations with 95% confidence intervals.

Ret n κ

43.27 3.25 ± 0.15 0.87 ± 0.04

76.60 3.03 ± 0.11 0.85 ± 0.03

91.57 2.94 ± 0.11 0.84 ± 0.03

110.84 2.94 ± 0.08 0.85 ± 0.02

where jp is the flux of the volume fraction φ and z the vertical coordinate directed upward;147

t is time. In the conditions envisaged here the particle flux can be expressed in terms of148

the volume fraction φ. Application of the chain rule to the second term of (3) then results149

in a first-order wave equation in which the speed c with which information about volume150

fraction changes propagates is given by c = djp/dφ.151

A. Richardson-Zaki Correlation152

The particle flux jp can be expressed as the sum of a component φj, describing the fact153

that the particles travel with the mixture volume flux j, and a drift-flux component jd,154

which corrects for the difference between j and the actual particle flux. If the particles and155

fluid mean velocities are denoted by 〈wp〉 and 〈wf〉, we have j = φ〈wp〉 + (1 − φ)〈wf〉 and156

the particle flux relative to j is jd = φ(j − 〈wp〉) = φ(1 − φ)(〈wp〉 − 〈wf〉). A well-known157

empirical relationship for 〈wp〉 − 〈wf〉 was developed by Richardson & Zaki [24] in the form158

〈wf〉 − 〈wp〉
wt

= κ(1− φ)n−1 , (4)

where the exponent n depends on the single-particle Reynolds number; a correlation de-159

scribing this dependence is (5.1− n)/(n− 2.7) = 0.1Re0.9t [27]. The parameter κ in (4) is a160

slowly decreasing function of Ret and is somewhat less than 1 [26, 28–31]. This circumstance161

reflects the fact that the mutual interference among the particles, mostly due to their slowly162

decaying wakes, persists even in very dilute systems; a similar effect is found in the case of163

rising bubble swarms [32, 33].164

We can calculate 〈wf〉 and 〈wp〉 from our numerical results by carrying out volume and165

time averages over the entire computational domain and duration of the simulations and166

fit a relation of the form (4) to the results, thus determining values for κ and n. The167
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FIG. 1. Comparison of the power-law fit coefficients n and κ in (4). Black dots are from this study,

white circles are from [26], and the solid and dashed lines are relations for n from [24] and [27],

respectively.

computed values are given in Table III and shown in graphical form in figure 1, where they168

are compared with the results of [26] for κ and Refs. [24] (solid line) and [27] (dashed line) for169

n. Figure IIIA compares the present simulation results for the mean liquid-particle relative170

velocity (symbols) with the Richardson-Zaki curve (4) (lines) calculated with the parameter171

values derived from the present simulations. These comparisons are very favorable, which172

provides additional confidence in the present numerical results.173

Upon making use of (4) in the expression for the particle volume flux we find174

jp = φj − κwtφ(1− φ)n , (5)

from which, upon differentiation with respect to φ and recognizing the fact that the total175

flux j is a constant (as follows immediately by adding (3) to its counterpart written for the176

liquid volume fraction 1− φ), we find177

c = j − κwt(1− φ)n−1 [1− (n + 1)φ] . (6)

In the situation considered here the mean particle velocity vanishes so that j = (1−φ)〈wf〉.178

Use of (4) then gives the well-known result [see e.g. 2, p. 189]179

c = κnφ(1− φ)n−1wt . (7)
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FIG. 2. Comparison of the present simulation results for the mean fluid-particle relative velocity

(symbols) with the Richardson-Zaki curve (4) (lines). The dotted line and stars are for ρp/ρ = 2;

the dash-dotted line and green squares for ρp/ρ = 3.3; the solid line and red circles for ρp/ρ = 4;

and the the dashed line and light blue triangles for ρp/ρ = 5. Insets: top right: close up of

φ ≈ 0.175; bottom left: close up of φ ≈ 0.087.

A point worthy of explicit notice is that, according to kinematic wave theory, the waves are180

non-dispersive. Dispersive effects may exist of course, but they will be small in situations181

in which kinematic wave theory is approximately applicable. A quantification of dispersion182

would require a coupling of the continuity and momentum equations and, therefore, a much183

more sophisticated theory.184
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IV. KINEMATIC WAVE SPEED185

In a system seat of waves, all the fields will exhibit a wave structure that propagates with186

the same velocity. In order to determine this velocity we make use of the auto-correlation187

of the fields on the basis of the following argument. Consider a generic field f , such as188

the particle number density, volume fraction or other. Since the system under considera-189

tion is statistically uniform over horizontal planes we will consider fields averaged over the190

horizontal variables x and y and only dependent on the vertical coordinate z and time.191

A pure wave propagating in the z direction would confer to the field f a space and time192

dependence of the form f(z, t) = f(z− ct). The space-time autocorrelation is f(z +∆z, t+193

∆t) f(z, t) = f(z + ∆z − c(t + ∆t))f(z − ct) and, for ∆z = c∆t, it reduces to f 2(z, t) and194

exhibits therefore a maximum. In the present system the waves are contaminated by the195

randomness of the particle distribution. In order to bring out this maximum with greater196

clarity we average the autocorrelation over z, since the system is statistically homogeneous197

in the vertical direction, and over time, since we only consider the numerical results at steady198

state after the initial transient has faded away. Thus we focus on quantities of the type199

Rff (∆z,∆t) = 〈f(z +∆z, t +∆t) f(z, t)〉 , (8)

where angle brackets denote the space-time average and, for brevity, we write f in place of200

(f − 〈f〉)/√σf , with σf the variance of f so that, in fact, Rff denotes the autocorrelation201

function of f . In the presence of waves this quantity will exhibit a series of maxima along202

lines ∆z = c(∆t + NT ) with T the wave period, N = 0 for the first wave, N = 1 for the203

second one and so on. From the slope of these lines in a ∆t, ∆z plane we can then determine204

the wave speed c. Again, because of the statistical irregularities of the system, we might205

well expect that the line of maxima will be strongest for the first wave and gradually decay206

as the value of f at a certain position z0 cannot be expected to be very strongly correlated207

to the value of f at the same position several waves later. Similarly, the value of f at a208

certain time t0 cannot be expected to be strongly correlated to its value at the same instant209

several wavelengths away.210

With the present numerical data, a naive way to implement this approach is to calculate211

averages of the field of interest over horizontal layers of cells thus generating a discretized212

version of f(z, t); we will use the adjective “raw” to refer to quantities obtained in this way.213

As an example, a snapshot of the “raw” particle number density n so calculated is shown214
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FIG. 3. The thin dashed line is a snapshot of the “raw” number density, i.e., the number density

calculated by counting the particle centers contained in each horizontal layer of cells, for ρp/ρ =

3.3 with 1000. The solid line and the thick dashed line are the number density reconstructed by a

Fourier series with 15 and 30 coefficients, respectively.

by the thin dashed line in figure 3 for the case ρp/ρ = 3.3 with 1000 particles (the quantity215

shown is vn, the particle number density normalized by the sphere volume v = 4
3
πa3). Each216

data point is calculated by counting the particle centers contained in a single horizontal217

layer of cells and dividing by the volume of the layer. It is evident that, even after this218

horizontal averaging, the result is affected by a considerable amount of noise. Figure 4219

shows the autocorrelation function Rnn for these parameter values calculated as explained220

before by averaging over z and t. While approximately parallel lines of maxima and minima221

are vaguely suggested by this figure, a strong signal can only be identified for the first wave222

and only for very small values of ∆z and ∆t. It would be very difficult to deduce a precise223

estimation of the wave speed from results of this type.224

The situation is very similar if we try to use other fields. In principle the particle volume225

fraction can be calculated by counting the fraction of the volume of each horizontal layer226

of cells falling inside particles. A snapshot of the particle volume fraction obtained in this227

way vs. z similar to that of figure 3 is shown by the dashed line in figure 5. A number of228
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FIG. 4. Autocorrelation function (averaged over horizontal planes and z and t) of the “raw” particle

number density, i.e., the number density calculated by counting the particle centers contained in

each horizontal layer of cells, for ρp/ρ = 3.3 with 1000 particles.

peaks with a width of about 1 can be discerned which, given the normalization in terms of229

the particle diameter, evidently correspond to fluctuations on the scale of single particles.230

The autocorrelation function of the volume fraction so calculated (averaged over z and t) is231

shown in figure 6. Once again we can distinguish a series of inclined line-like features, but232

we encounter the same problem as before if we are interested in an accurate determination233

of c.234

The use of additional short-time or short-space averaging might perhaps reduce the influ-235

ence of statistical fluctuations, but it would make it more difficult to discern the space-time236

variability associated with the waves by blurring their distinct spatio-temporal structure.237

The challenge facing this procedure is illustrated by the space-time representation of the238

“raw” particle volume fraction shown in figure 7. The range of values represented in the239

figure is very limited, and averaging to eliminate noise runs the serious risk of destroying240

much of the signal as well. This danger would be even greater at larger volume fractions, in241

which the fluctuations around the mean would be even smaller.242
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FIG. 5. The dashed line is the “raw” particle volume fraction, i.e., the volume fraction calculated

as the fraction of volume of each horizontal cell layer falling inside particles for ρp/ρ = 3.3 with

1000 particles. The solid line is the particle volume fraction reconstructed by a Fourier series with

15 coefficients.

These difficulties have prompted us to develop a different way to interrogate the results243

of our simulations by relying on the use of a truncated Fourier series to coarse-grain the244

fields obtained from the resolved simulations.245

V. FOURIER RECONSTRUCTION246

The numerical simulations furnish what may be called “microscopic” information on the247

various quantities characterizing the process under consideration. For the particle number248

density such microscopic information is embodied in a field nmicr defined by249

nmicr(x, t) =

Np
∑

α=1

δ(x− xα(t)) , (9)
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FIG. 6. Autocorrelation of the “raw” particle volume fraction φ (i.e., the particle volume fraction

obtained by counting the fraction of volume of each horizontal cell layer falling inside particles) for

ρp/ρ = 3.3 with 1000 particles; the quantity shown is averaged over z and t.

where xα(t) is the instantaneous position of the center of the α-th particle and Np the total250

number of particles. This quantity can be expanded in a Fourier series as251

nmicr(x, t) =
∑

k

n(k, t) exp(ik · x) , (10)

where the summation ranges over all the wave vectors k = 2π(n/Lx, m/Ly, ℓ/Lz) in the252

reciprocal lattice; Lx, Ly and Lz are the dimensions of the computational domain in the253

three coordinate directions and ℓ, m and n integers. The Fourier coefficients n(k, t) are254

given by the scalar products255

n(k, t) =
1

V

(

exp(ik · x), nmicr

)

=
1

V

Np
∑

α=1

exp(−ik · xα(t)) , (11)

with V = LxLyLz the volume of the computational domain.256

Retention of the infinite number of terms in the Fourier expansion (10) would reproduce257

nmicr, but a suitable truncation of the series will generate a coarse-grained version of nmicr.258

Furthermore, retaining only the terms of the series with wave numbers k parallel to the259
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FIG. 7. Space-time distribution of the “raw” particle volume fraction ( i.e., the particle volume

fraction obtained by counting the fraction of volume of each horizontal cell layer falling inside

particles) for ρp/ρ = 3.3 with 2000 particles.

z-axis is equivalent to averaging over horizontal planes. On the basis of these considerations260

we define the coarse-grained number density as261

n(z, t) =
N
∑

ℓ=−N

nℓ(t) exp (ikℓz) , (12)

with kℓ = 2πℓ/Lz and262

nℓ(t) =
1

V

Np
∑

α=1

exp(−ikℓz
α(t)) . (13)

A suitable value for N can be estimated by recognizing that the smallest features of the263

coarse-grained number density field n that it makes sense to consider in a macroscopic264

framework should not be so small as to permit the identification of single particles. If we265

choose this shortest wavelength to be two particle diameters, we have N = Lz/(4a) = 15266

and we find the result shown by the solid line in figure 3. While this is just an estimate,267

we have found that the results are not very different if this number is increased up to 30268

or decreased to 10, which would amount to include wavelengths as short as the particle269

diameter or as long as 3 diameters, respectively. As an example, the thick dashed line in270
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figure 3 shows the particle number density reconstructed with 30 terms. Some more detail271

can be identified in this line, but the 15-term reconstruction overall reproduces well the272

large-scale (and, therefore, properly macroscopic) features of the number density.273

We can deal in a similar way with any other quantity associated with the particles. In274

particular, the microscopic version of the volume fraction, φmicr, equal to one inside the275

particles and zero in the fluid, can be expressed as276

φmicr(x, t) =

Np
∑

α=1

H (a− |x− xα(t)|) , (14)

with H the Heaviside step function. Its Fourier-series expansion is277

φmicr(x, t) =
∑

k

φ(k, t) exp(ik · x) , (15)

with278

φ(k, t) =
1

V

(

exp(ik · x), φmicr

)

=
1

V

Np
∑

α=1

∫

vα
exp(−ik · x)H (a− |x− xα(t)|) dvα

=
4π

k3
(sin ka− ka cos ka)n(k, t) . (16)

Here each integral in the first line is extended over the volume vα of the α-th particle and279

k = |k|. It is worth noting that the last step shown here is a direct consequence of the280

expression for the Fourier coefficients and could not be obtained in a volume averaging281

context.282

Again, we obtain a horizontally-averaged coarse-grained volume fraction field by consid-283

ering only the coefficients of order 0 in the horizontal directions and truncating the sum:284

φ(z, t) =
N
∑

ℓ=−N

φℓ(t) exp(ikℓz) . (17)

This is the coarse-grained version of φmicr which we identify with the φ appearing in the285

macroscopic theory. Since φmicr is highly discontinuous, in order to avoid possible conver-286

gence problems caused by the Gibbs phenomenon, the sum in (17) is calculated according287

to the Cesáro summation method [34].288

An example of the spatio-temporal representation of the field φ obtained in this way289

is shown in figure 8. In spite of the statistical noise, the wave structure of the particle290

distribution is much clearer than in figure 7.291
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FIG. 8. Fifteen-terms Fourier reconstruction of the volume fraction for a representative case with

φ = 0.349 (N = 2000) and ρ∗ = 3.3; white corresponds to the mean volume fraction over the entire

computational domain. This figure should be compared with figure 7 in which the “raw”, rather

than the Fourier-processed, volume fraction is shown.
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FIG. 9. Autocorrelation of the particle volume fraction reconstructed with 15 Fourier terms for

a representative case with φ = 0.349 (N = 2000) and ρ∗ = 3.3. The dashed line is obtained by

a least-squares fit of the position of the maxima for each ∆z. This figure may be compared with

figures 6 and 4 which show the autocorrelation of the “raw” volume fraction and number density,

respectively.
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FIG. 10. Continuity wave speed calculated from the present simulations (symbols) compared to

the relationship given in (7) shown by the dashed lines.

A. The speed of kinematic waves292

The autocorrelation of the particle volume fraction reconstructed with 15 Fourier coef-293

ficients and averaged over z and t is shown in figure 9. The wave structure of the particle294

distribution is strikingly clearer than in figures 6 and 4. In order to calculate the wave speed295

from these results, for each value of ∆z we find the ∆t corresponding to the first maximum,296

form the ratio ∆z/∆t and then average the results obtained in this way. The standard297

deviation of the distribution of values of ∆z/∆t about this average permits us to estimate298

the error of this determination. The results obtained in this way are shown in figure 10.299

The lines shown in the figure are graphs of the average-equation result (7) constructed with300

the values of wt, n and κ calculated in this work and shown in Tables II and III.301

Overall, the agreement between (7) and the numerical results is very good. Accounting302

for the confidence levels of the fits shown in figures 1 brings the lines within the expected303
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range of the computational results for all but the lowest volume fraction points, where a304

discrepancy of less than 5% remains. A possible explanation is that, at low volume fractions,305

the mean free path of the particles is long enough that dynamic effects become significant306

and the kinematic wave model therefore less applicable. For the larger density ratios and307

volume fractions the completion of all the necessary simulations would have required more308

time than seemed warranted by the very good agreement between macroscopic theory and309

simulations diplayed in the figure; we have chosen to proceed without including these results.310

B. The fluid velocity field311

A similar procedure can be adopted for the fields of the continuous phase. We consider312

the fluid velocity field in the vertical direction, wf(z, t) and write its coarse-grained version313

by truncating its Fourier series expansion:314

φ(z, t)wf (z, t) =

N
∑

ℓ=−N

wℓ(t) exp(ikℓz) , (18)

with315

wℓ(t) =
1

V

∫

V

wf (x, t)χf(x, t) exp(ikℓz)dV , (19)

where χf (x, t) is the indicator function of the fluid phase and the integral is over the entire316

volume of the computational domain. A useful feature of this approach is that the volume317

occupied by the particles is excluded in a natural way.318

The relation between the instantaneous velocities calculated with this truncated Fourier319

series reconstruction with N = 15 and by averaging over horizontal cell layers is shown by320

the solid and dashed lines, respectively, in figure 11. The effectiveness of the Fourier method321

to remove noise is particularly evident here.322

The presence of kinematic waves can be detected in the fluid velocity autocorrelation323

in the same way demonstrated before. An example is shown in figure 12. The picture324

is somewhat fuzzier than for the volume fraction, but the dashed line with the slope as325

calculated by a least square method as explained before provides a good fit to the velocity326

maxima. The dimensionless slope corresponding to this line is 2ac/ν = 21.37 which differs327

by about 7% from the value 22.86 shown in figure 10.328

On intuitive grounds it may be expected that fluid velocity and particle volume fraction329
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FIG. 11. Instantaneous fluid vertical velocity vs. z as calculated from the Fourier reconstruction

with N = 15 coefficients (solid line) and by averaging over horizontal cell layers for ρp/ρ = 3.3

with 1000 particles.

would be oppositely correlated so that a graph of the cross-correlation function330

Rwφ(∆z,∆t) =
〈[wf(z +∆z, t +∆t)− 〈wf〉] [φ(z, t)− 〈φ〉]〉

√
σwσφ

, (20)

should exhibit a pronounced negative minimum along lines ∆z = c(∆t+NT ). This expec-331

tation is indeed borne out by the results of figure 13, where the line has the slope 2ac/ν =332

21.37.333

C. Power spectra334

The squares of the Fourier coefficients plotted as functions of the wave number give335

directly the power spectra of the waves. These spectra, calculated from the Fourier-336

reconstructed volume fraction, are shown in figure 14 for all the parameter values simulated337

in this work as functions of Lz/λℓ, with λℓ = 2π/kℓ. In each case the spectra are normalized338

by the maximum value.339

These spectra are shown in figure 14. Several of them exhibt a dominant peak for a340
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FIG. 12. Autocorrelation function of the “raw” fluid vertical velocity, i.e., the fluid vertical velocity

averaged over each horizontal cell layer; the quantity shown is averaged over z and t for ρp/ρ =

3.3 and 1000 particles.

wavelength equal to half the height of the computational domain, while in other cases341

the dominant peak is for a wavelength equal to the height of the domain. This is an342

indication that, in these latter cases, the computational domain used is too short to include343

the entire wave. Nevertheless, since the wave speed is independent of the wavelength as344

noted after (7), the present results for the wave speed are unaffected by this limitation.345

Indeed, upon comparing with the graph of the wave speeds in figure 10, it is seen that346

velocities corresponding to cases with peaks at λ = Lz and λ = 1
2
Lz exhibit a comparable347

agreement with the kinematic wave theory.348

A comparison between the spectra calculated from the Fourier-reconstructed fluid velocity349

and volume fraction is shown for one case in figure 15. The two spectra are quite similar as350

expected.351

The temporal spectra can be found by expanding the Fourier-reconstructed signal (e.g.,352

the volume fraction) in a Fourier series in time at each spatial point and then averaging over353

space. An example of the results obtained in this way is shown in figure 16 for ρp/ρ = 3.3 and354

1000 particles. The two nearly superposed lines are the results found from the reconstructed355
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FIG. 13. Normalized cross-correlation of volume fraction and fluid vertical velocity, each recon-

structed with 15 Fourier modes, for the case ρp/ρ = 3.3 with 1000 particles. The slope of the

dashed line is the speed of kinematic waves calculated from the reconstructed volume fraction as

explained in the text.

volume fraction and vertical fluid velocity. There is a prominent peak at f∗ ≡ (2a)2f/ν ≃356

0.71. Forming the product (λ/2a)f∗ = 2ac/ν with λ = Lz we find 2ac/ν ≃ 21.3, to be357

compared with the value 22.86 from figure 10. The difference between the two values is358

likely due to the need to omit, in the calculation of the spectrum, data corresponding to the359

initial transient, the end of which is somewhat ill-defined. We have found that the position360

of the peak frequency moves slightly as the fraction of omitted data is changed. Figure 16361

also exhibits another strong peak at the first harmonic f∗ ≃ 1.5, another much weaker one362

at the second harmonic f∗ ≃ 2 and other smaller ones as well.363

VI. DISCUSSION AND CONCLUSION364

In this paper we have demonstrated a method to extract average properties from the365

results of direct numerical simulations of particulate flows. We have used the method to366

reconstruct the coarse-grained volume fraction and fluid velocity field in the fully-resolved367
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FIG. 14. Spatial power spectra of the Fourier-reconstructed volume fraction; λ denotes the wave-

length of the Fourier components. From left to right, the columns correspond to φ = 0.087, 0.175,

0.262, 0.349; from top to bottom the rows are for ρp/ρ = 2, 3.3, 4 and 5.

simulation of a fluidized-bed-like system in which equal spheres are suspended in an upward368

flow of a fluid with comparable, but smaller, density. In particular, we have shown that369

the coarse-grained fields show the presence of kinematic waves propagating upward in the370

bed. The celerity of these waves is very close to that produced by existing macroscopic371

23



0 5 10 15
Lz/λ

0.25

0.50

0.75

1.00

P
/
P
m

a
x

FIG. 15. Power spectra of the particle volume fraction (solid line) and of the fluid vertical velocity,

both reconstructed with 15 Fourier coefficients, vs. the normalized wave number for ρp/ρ = 3.3

with 1000 particles.

description of such systems.372

Ref. [18] describes a study of volume fraction waves forced by the oscillations of the dis-373

tributor at the bottom of a liquid-filled tube for particles with a density ratio comparable374

to the present one and a Galileo number slightly larger than ours. In the volume fraction375

range of our simulations they characterize their observations as “turbulent regime” and376

were unable to identify clear wave-like structures by their method. A visual inspection of377

the particle motion computed in this work (see the video uploaded with the Supplemental378

Material [35] which refers to 2000 particles with ρ∗ = 3.3) confirms this disorderly appear-379

ance. Nevertheless, in spite of their convoluted apperance, the volume fraction iso-surfaces380

given by the filtered three-dimensional Fourier reconstruction, shown on the right, convey381

the clear impression of upward moving structures. These wave emerge therefore as a very382

robust feature of the dynamics of the system investigated in spite of the complex horizontal383

structure of the numerical results as well as, in all likelihood, of experiment.384
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